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Integrating Seismic Data for Lithofacies Modeling:
A Comparison of Sequential Indicator

Simulation Algorithms1

Tingting Yao2

Clastic reservoir characterization starts typically with modeling lithofacies distribution and geometry.
The architecture of the reservoir, governed by the lithofacies geometry, is a major source of hetero-
geneity in such clastic systems. Seismic data provide potentially valuable information about the areal
distribution of different lithofacies, such as the averaged prior proportion of each lithofacies. However,
seismic data are available only at coarse vertical resolution rather than the fine lithofacies sampling
along wells, hence seismic is considered equivalent to 2D data while building 3D geological mod-
els. This scale difference between the seismic data and the lithofacies data available along the wells
makes direct integration difficult. Different algorithms have been proposed to integrate the seismic
data: (1) duplicate seismic data along the vertical line and use the prior proportions provided by the
seismic data as prior local means; (2) integrate the 2D seismic data as collocated block averages; and
(3) duplicate seismic data along the vertical line and integrate them using a Markov-Bayes algorithm.
These three algorithms are applied on a data set originating from a real clastic reservoir. The results
are compared with regard to how much kriging weight is applied to the seismic data and how well the
information from seismic data is honored.
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INTRODUCTION

The distribution of lithofacies in a clastic reservoir is the most important hete-
rogeneity for reservoir characterization and performance prediction (Haldorsen
and Damsleth, 1990). Reservoir modeling of clastic systems starts with model-
ing lithofacies geometry, followed by the simulation of petrophysical properties
within each lithofacies. There are many different approaches to the stochastic
modeling of reservoir facies, the two main classes being object-based and cell-
based algorithms. Object-based algorithms can generate models displaying the
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crisp geometric shape of the facies, which are consistent with prior geological
morphological interpretations (Deutsch and Wang, 1996; Georgsen and Omre,
1993; Omre, Solna, and Tjelmeland, 1990; Stoyan, Kendall, and Mecke, 1987).
However, the probabilistic distributions of the shape parameters, required by the
object-based algorithms, are difficult to infer from actual subsurface data. In ad-
dition, conditioning to dense local data and integrating secondary information can
be difficult. In this paper, we will focus on cell-based geostatistical methods for
lithofacies modeling.

For cell-based geostatistical methods, the most commonly used is sequential
indicator simulation (Journel and Alabert, 1989, 1990). This technique generates
lithofacies at each cell of 3D model, one at a time, by drawing from the local
conditional cumulative distribution function (ccdf) estimated from the condition-
ing data. The previously simulated values are to be used as conditioning data for
the nodes to be simulated subsequently, hence the spatial structure of the distribu-
tion of lithofacies can be reproduced. Compared with objected-based algorithms,
sequential indicator simulation can not reproduce the crisp geometric shapes of
facies such as channels, since it is based on the two-point statistics of the variogram
only. However, it can honor the local conditioning data and integrate secondary
information faster and easier.

Because of the sparse sampling of well data, it is important to integrate in-
formation from seismic data that delivers better areal coverage (Fournier, 1995;
Haas and Dubrule, 1994; Tjolsen and others, 1995; Xu, 1995). However, seismic
data always provide information on a larger scale than the well log data, and are
considered equivalent to 2D data when building 3D lithofacies models. Integration
of data defined on such different scales is a difficult challenge. Several algorithms
have been proposed to integrate the seismic data. One proposal is to repeat the
2D seismic attribute profile along each vertical slice, thus creating artificially
dense 3D seismic data. They are then used as prior means or as covariates in a
Markov-Bayes algorithm (Zhu and Journel, 1993). The other proposal is to inte-
grate the 2D seismic data interpreted as a block average value and honor these data
using simulated annealing (Deutsch, Srinivasan, and Mo, 1996) or block cokriging
(Behrens, Macleod, and Tran, 1996). Simulated-annealing algorithms require deli-
cate tuning of the annealing schedule parameters to reach convergence and may
be cpu-intensive.

In this paper, we focus on three algorithms based on sequential indicator sim-
ulation for integrating seismic information: (1) integrating seismic data as a prior
mean; (2) integrating seismic data as a collocated block value; and (3) integrating
seismic data with the Markov-Bayes algorithm. All these algorithms are applied
to a synthetic data set generated from a real clastic reservoir. The results are com-
pared with regard to how the correlation between seismic data and well log data
is honored. The pros and cons of these different algorithms in different situations
are discussed.
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RECALL OF CELL-BASED SEQUENTIAL INDICATOR
SIMULATION ALGORITHMS (sisim)

The cell-based indicator simulation algorithm is based on sequential simula-
tion. At each node of the simulation grid, the local lithofacies probability distribu-
tion function conditional to both original data and previously simulated values is
determined, followed by drawing the lithofacies type from that local distribution.
The new drawn lithofacies value is then used as conditioning data for the nodes to
be simulated later, hence the name “sequential indicator simulation.”

Assuming there are altogetherK lithofacies, each original lithofacies datum
is recoded as a vector of binary indicator [i (uα; k), k = 1, . . . , K ] with

i (uα; k) =
{

1 if uα ∈ lithofaciesk

0 otherwise
(1)

The conditional probability of occurence of lithofaciesk at any unsampled
locationu is estimated by indicator kriging as (Goovaerts, 1997, p. 293)

Prob{Z(u) = k | (n)} = E{I (u; k) | (n)} = i ∗(u; k), k = 1, . . . , K

with

i ∗(u; k)− pk =
n∑
α=1

λα(u; k)[i (uα; k)− pk] (2)

wherepk = E{I (u; k)} is the global proportion of lithofaciesk; the notation (n)
means “conditioning to then neighborhood data available”: these include both
original data and previously simulated values.λα represent the weights determined
by solving the kriging system. Note that the best estimation ofi ∗(u; k) could be
achieved by cokriging involving all the indicator datai ∗(uα; l ), l = 1, . . . , K . That
requires inference of all the auto- and cross-indicator covariance models, which is
not applicable in reality.

The indicator kriging process is repeated for theK lithofacies; the resulting
conditional probabilitiesi ∗(u; k) are then assembled into a cumulative conditional
distribution function, or ccdf:

∏
(u; k) =

k∑
k′=1

i ∗(u; k′) ∈ [0, 1]

The simulated lithofacies type atu is obtained by a Monte Carlo sampling
from that local ccdf. The ordering of the lithofacies while assembling the ccdf can
be arbitrary since it does not affect the facies type from Monte Carlo sampling.
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Note that the set of conditional probabilitiesi ∗(u) may not verify the order relation
condition, that is,i ∗(u) ∈ [0, 1] and

∏
(u; K ) =∑K

k′=1 i ∗(u; k′) = 1. Therefore,
correction for order relations needs to be made prior to the Monte Carlo sampling
(Deutsch and Journel, 1998). This might have an impact on the reproduction of
indicator variogram models, depending on the correction magnitude (Deutsch and
Journel, 1998).

The major advantage of sequential indicator simulation, which is based on
indicator kriging, is that it can account for soft data in a fast and robust way while
generating the conditional distributions, provided that the soft data can be coded
as a prior local probability value.

Integrating Seismic Data as Prior Local Mean

With seismic data providing information about the local prior probability
pk(u) of faciesk prevailing at locationu, the simple indicator kriging expression (2)
can be written as follows:

i ∗(u; k)− pk(u) =
n∑
α=1

λα(u; k)[i (uα; k)− pk(u)] (3)

Note that expression (3) requires knowledge of the prior local meanpk(u) at
every grid locationu, that is, at the resolution of the 3D modeling grid. But, seismic
data typically do not have the same vertical resolution as that of the geological
model. They usually represent some averaged proportions of each lithofacies along
vertical lines, hence are considered as 2D data. The assumption that a seismic
measurement provides the same information at different vertical levels of the
3D modeling grid amounts to duplicating the actual 2D seismic value along the
vertical lines to generate artificial 3D data, that is,pk(u) = pk(x), whereu = (x, z)
(Goovaerts, 1997, p. 190; Gorell, 1995). This duplication could lead to some
vertical banding in the 3D realization if the vertical range is relative short and the
kriging weight on the prior mean in high.

Note that in the simple kriging estimate of Equation (3), we assumed that
the prior local mean is stationary within the search neighborhood although it
will change with the estimation locationu. Therefore, Equation (3) can also be
written as

i ∗(u; k) =
n∑
α=1

λα(u; k)i (uα; k)+ λ0 pk(u) (4)

with λ0 = 1−∑n
α=1 λα being the weight applied on the prior local meanpk(u)

provided by seismic data. The corresponding simple kriging system determining
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the weightsλα(u; k) is

n∑
β=1

λβCI (uβ − uα; k) = CI (u− uα; k), α = 1, . . . ,n (5)

whereCI (uβ − uα; k) is calculated from the indicator variogram model for litho-
faciesk.

The weightλ0 = 1−∑n
α=1 λα applied on the local mean depends on all the

λα, which are dependent only on the spatial structure, that is, the indicator vario-
gram model of the lithofacies. As the continuity range of the indicator variogram
model increases, the weightsλα increases. The weight,λ0, applied on seismic
data decreases as a consequence. The influence of seismic data usually dimini-
shes as more previously simulated values in the search neighborhood are used
as conditioning data. This can be seen in the later section of case study. For this
algorithm, there is no other free parameter to impose a higher weight on seismic
data.

Integrating Seismic Data as Collocated Block Value

Seismic data have limited vertical resolution, and so only provide estimates
of the 2D areal distribution of vertical lithofacies proportions. In the kriging ex-
pression (2), the processed seismic data of lithofacies proportions(x; k) at the
horizontal locationx = (x, y) of the 3D grid locationu = (x; z) is added as a
“block average” value (Abrahamsen and others, 1996; Behrens, Macleod, and
Tran, 1996; Haas and Natinger, 1996; Journel 1999; Journel and Huijbregts, 1978,
p. 305), wherez represents the vertical coordinate of the locationu. The 2D seis-
mic values(x; k) is common to all lithofacies indicator variablesi (u; k) along the
vertical line atx but its correlation withi (u; k) is specific to the lithofaciesk and
the coordinatez of u = (x; z). Its relation to the vertical average of the indicator
variablei (u; k) is approximated as

s(x; k) ≈ 1

nz

nz∑
1

i (x, z; k) (6)

wherenz is the number of vertical cells penetrated by vertical or horizontal wells.
Although this relation is not directly supported by physics for the original data
from seismic survey, geophysicists can process the seismic volume of amplitude
and derive a map informing areal lithofacies proportions, based on calibration
between seismic data and lithofacies proportion at well locations (Yao and Chopra,
2000).
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The kriging estimate is then written as

i ∗(u; k)− pk =
n∑
α=1

λα(u; k)[i (uα; k)− pk] + λ0[s(x; k)− pk] (7)

The seismic datas(x; k) are introduced through an additional term in the krig-
ing expression. Because of the linearity of expression (6), the correlation between
s(x; k) and any valuei (u; k) is simply

C̄I (uα, x; k) = Cov{I (uα; k), S(x; k)} = 1

nz

nz∑
z=1

CI {I (x, z; k), S(x; k)}

wherenz is the number of vertical cells penetrated by vertical or horizontal wells
at horizontal locationx.

The corresponding kriging system derived from (7) is
n∑
β=1

λβCI (uβ − uα; k)+ λ0C̄I (uα, x; k) = CI (u− uα; k), α = 1, . . . ,n

n∑
β=1

λβC̄I (uβ, x; k)+ λ0 Var{S(x; k)} = C̄I (u, x; k)
(8)

where

Var{S(x; k)} = 1

n2
z

nz∑
z=1

nz∑
z′=1

CI {I (x, z; k), I (x, z′; k)}

This calculated theoretical seismic data variance Var{S(x; k)} needs to be increased
by the relevant amount of noise or obtained from the experimental variance.

If all the estimated nodesu = (x, z) at the samex but differentz locations
utilize the same data configuration, then the vertical average of the resulting
3D estimated valuesi ∗(u; k) identify the 2D conditioning seismic data, that is,
1
nz

∑nz
z=1 i ∗(x, z; k) = s(x; k), ∀x. The proof for this exactitude property is pro-

vided by Journel (1999). However, in a sequential simulation paradigm where
previously simulated values are added as conditioning data for the nodes to be
simulated later, it is difficult to keep the same data configuration for all nodes
along the same vertical line. As simulation proceeds, more previously simulated
nodes close to the current node are to be used as conditioning data. If the verti-
cal range of the variogram model is relatively short compared with the horizontal
range the weightλ0 applied to the block values(x; k) may be small, resulting in an
estimated average value1nz

∑nz
z=1 i ∗(x, z; k) that is not very well correlated with the

input seismic datas(x; k). Therefore, the correlation between the 2D proportion
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values calculated from the 3D models and the input seismic proportion map also
depends on the range of the indicator variogram model, as in the algorithm inte-
grating seismic data as local mean.

Integrating Seismic Data With the Markov-Bayes Algorithm

Similar to sequential indicator simulation (sisim) with prior local mean, sisin
with the Markov-Bayes algorithm (Zhu and Journel, 1993) also requires that seis-
mic data have the same resolution as the geological model. Hence, the 2D seismic
proportions need to be duplicated vertically to match the small scale of 3D geolog-
ical model. However, contrary to sisim with local mean, the local prior probability
datay(u; k) is used as secondary data in an indicator cokriging system (Deutsch
and Journel, 1998), that is,

i ∗(u; k)− pk =
n∑
α=1

λα(u; k)[i (uα; k)− pk] + ν(u; k)[y(u; k)− pk] (9)

with ν(u; k) being the weight applied on the seismic data.
The corresponding kriging system is

n∑
α=1

λα(u; k)CI (uα1 − uα; k)+ ν(u; k)CIY (uα1 − u; k) = CI (uα1 − u; k)

α1 = 1, . . . ,n(u)
n∑
α=1

λα(u; k)CIY (uβ1 − uα; k)+ ν(u; k)CY(0;k) = CY I (0;k)

(10)

This cokriging system calls for one autocovariance model ofCI (h; k), one cross-
covariance model ofCIY (u; k), and the autocovariance value ofCY(0;k). The
modeling can be alleviated by a Markov-type hypothesis, leading to the following
relation (Zhu and Journel, 1993):

CY(h; k)

{
= B(k)CI (h; k) h = 0

= B2(k)CI (h; k) h > 0
(11)

and

CIY (h; k) = B(k)CI (h; k) (12)

whereB(k) is defined as the difference between the two conditional expectations:

B(k) = m(1)(k)−m(0)(k) ∈ [−1, 1], k = 1, . . . , K
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with

m(1)(k) = E{Y(u; k) | I (u; k) = 1} ∈ [0, 1]

m(0)(k) = E{Y(u; k) | I (u; k) = 0} ∈ [0, 1]

The parameterB(k) can be obtained by the calibration between collocated
hard indicator data and soft probability data. It measures how well the softy data
separate the two cases:i = 1 andi = 0, that is, the accuracy of the soft data. If
B(k) = 1, thenCY(h; k) = CIY (h; k) = CI (h; k), there is no updating of the soft
datay(u; k), hencei ∗(u; k) = y(u; k).

If B(k) = 0, thenCIY (h; k) = 0, and the soft data will receive 0 weight.
As opposed to sisim with local mean or sisim with block cokriging, one

flexibility gained with the Markov-Bayes algorithm is that the weight on the soft
dataν(u; k) is dependent both on the indicator variogram model and the calibration
coefficientB(k). To increase the contribution of seismic data, which is desired in
some cases, theB(k) can be adjusted to a high value to achieve higher weight on the
secondary seismic data. In the extreme case, whenB(k) = 1, the prior proportion
from seismic data is not updated, so the final lithofacies model is drawn from
the seismic-derived proportion. The vertical averaged lithofacies proportions from
the 3D lithofacies model honor the seismic proportions. This can be seen in the
following case study.

CASE STUDY AND COMPARISON

For this case study, a synthetic data set generated from a North Sea clastic
reservoir is used (Journel and others, 1998). The area of the modeling field is
5050× 6550 ft2.

The good-quality sand (pay lithofacies) in this reservoir is deposited in chan-
nels. Based on 20 wells, the volume proportion of channel sand relative to the total
model is 33%. Mudstone and other lithofacies constitute the remaining model vol-
ume 67%. The average gross thickness of the reservoir is 20 ft, with lithofacies
description in cores available at a 1 ftinterval. Thus, the modeling grid vertical reso-
lution was set at 1 ft. This grid includes 101×131 horizontal nodes with a 50 ft spac-
ing. The available information includes the 20 wells with lithofacies indicator data
and synthetic seismic data. The synthetic seismic data were generated as follows: a
3D lithofacies model from the study given in Journel and others (1998) is taken to
calculate the average lithofacies proportion along the vertical lines. The resulting
2D sand proportion map was then smoothed through moving average. Therefore,
the seismic data in this case inform the lithofacies proportions areally. This study
assumed they are very accurate and need to be honored as well as possible.

Figure 1 shows maps of sand proportion from seismic data (Fig. 1(A)) and the
well locations (Fig. 1(B)). The scatterplot between the prior seismic-derived sand
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Figure 1. Seismic map of lithofacies proportions and the 20 well locations. (A) Sand proportion
map from seismic data; (B) location map of 20 wells; (C) histogram of sand proportions from seismic;
(D) scatterplot between seismic derived proportion and well averaged sand proportion.

proportion and the collocated 20-well proportion data indicates a linear correlation
at 0.935 (Fig. 1(D)), although the standard deviation of the sand proportion in
seismic data is smaller compared to that from well data (0.13 vs. 0.17, Fig. 1(C))
due to the smoothing of seismic data. This correlation coefficient is much higher
than in real situations, which is expected to be reproduced by the different methods.

Figure 2 shows the experimental vertical indicator variograms of channel sand
calculated from the lithofacies indicator data along the wells, indicating a vertical

Figure 2. Experimental indicator variogram of sand
lithofacies in the vertical direction, calculated from
the 20 wells.
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range of about 4 ft. Due to the sparsity of lateral data (only 20 well locations), the
horizontal ranges were obtained from geological interpretation, with 700 ft range
in N60◦W direction and 7000 ft range in N30◦E direction. The semivariogram
model is

γ (h) = 0.22Sph

√( h1

7000

)2

+
(

h2

700

)2

+
(

hz

4

)2
 (13)

The study objectives are as follow:

• integrate the seismic information using the three different algorithms;
• determine how much weight is applied to the prior seismic information

from solving the kriging system;
• check how well the correlation between the vertically averaged lithofacies

proportion from 3D lithofacies model and prior seismic derived proportion
is reproduced;
• check sensitivity of the contribution of seismic information with regard to

the range of the variogram model.

Using the given semivariogram model in (13), different realizations can be
generated from the previously described three algorithms. For the Markov-Bayes
algorithm, the calibration between the 20 wells and collocated seismic data pro-
vides coefficientB = 0.265 for both sand and shale lithofacies.

Figure 3 shows the weights applied on the seismic proportions versus the
number of previously simulated values for different algorithms. Typically, as the
simulation proceeds, in the search neighborhood, most of the conditioning data
are previously simulated values that are very close to the node being simulated.
Given the long range spatial structure of channels, the weights given to these
neighboring data are very high, leaving only a small portion of weight to the

Figure 3. Kriging weight applied to the seismic proportion data versus the number of previously
simulated nodes: (A) sisim with seismic data as local mean; (B) sisim with seismic data as block
value; (C) sisim with seismic data integrated through Markov-Bayes algorithm.
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seismic data. For sisim with local mean (Fig. 3(A)), the weight given to seismic
data is close to 0, with most of them even below 0. Hence, the seismic data do
not contribute much to modeling, given the positive correlation between seismic
data and well proportions. Although sisim with local mean is easy to implement,
it is not widely applied due to this disadvantage, especially at an early appraisal
stage of the reservoir when the seismic data need to be fully accounted for. For
sisim with seismic data integrated as block values, the weights applied on seismic
data decrease systematically as the sequential simulation process advances. Most
of the weights are near 0. For the Markov-Bayes algorithm, the weights on the
seismic data as covariates are significantly higher than those from the other two
algorithms. Moreover, all the weights are greater than 0 even when the number of
previously simulated values is large. The comparison of these weights shows that
the seismic proportion contributes most in the Markov-Bayes algorithm, whereas
it contributes least in the sisim with local mean algorithm. In a recent paper, Yao
and Chopra (2000) show that for sisim with seismic block value, the contribution
of seismic data increases as the number of previously simulated values retained
for kriging decreases.

Figure 4 shows the scatterplot between the sand proportion calculated from
the vertical average of the simulated 3D lithofacies model and the input seismic
proportions. Again, the Markov-Bayes algorithm provides the largest correlation
coefficient (0.78) while sisim with local mean gives the smallest correlation coeffi-
cient (0.43). However, none of them meet our objective to reproduce the scatterplot
from calibration data shown in Figure 1 (0.935).

For visualization purposes, the sand proportions from the vertical averages
of these 3D models are shown in Figure 5, to be compared with the input seismic
proportion map of Figure 1(A). Again, the proportion map using sisim with local
mean does not honor well the high- or low-sand proportion patches observed in
the seismic proportion map. Note also that the curvilinear structure or crisp shape
of channels observed in Figure 1(A) is not reproduced by the sequential indicator
simulation algorithms.

To study the sensitivity of the contribution of seismic data relative to the
range of the spatial structure of lithofacies, we artificially decreased the horizontal
range of the variogram model in (13) to 1000 ft, 100 ft in the horizontal major
directions, and kept the vertical range at 4 ft. By decreasing the range, the kriging
weights on the previously simulated values are expected to decrease, so the weight
on the seismic data is expected to increase in all three algorithms. Figure 6 shows
the plot of weights on seismic data versus the number of previously simulated
values. Compared to Figure 3, it indeed shows higher weights on the seismic data,
although more scattered. Similarly, Figure 7 shows the scatterplot between the
vertically averaged sand proportion from the 3D model and the seismic derived
proportion. The correlation coefficients have been increased in all cases compared
to Figure 4. Figure 8 provides a visual comparison to the seismic proportion map in
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Figure 5. Facies proportion maps calculated from the 3D lithofacies models generated through dif-
ferent algorithms: (A) sisim with seismic data as local mean; (B) sisim with seismic data as block
value; (C) sisim with seismic data integrated in Markov-Bayes algorithm.

Figure 1. This illustrates that as the facies indicator variogram range decreases, the
seismic proportion contributes more to the modeling of lithofacies. However, in real
practice, it is not appropriate to decrease the range arbitrarily. In fluvial reservoirs,
the channel sand usually has greater spatial continuity in the paleocurrent direction,
which should be honored in the model. Simultaneously, useful information from
seismic needs to be fully incorporated due to the sparse sampling from well data.
Neither sisim with seismic data as local mean nor sisim with seismic data in block
cokriging can take full account of the seismic information without an artificial
decrease of the variogram range.

The only algorithm that has the flexibility of increasing the seismic contribu-
tion without decreasing the variogram range is Markov-Bayes algorithm, that is,
by tuning theB coefficient. Figure 9 shows the result usingB = 0.6 while keep-
ing the range of 7000, 700, and 4 ft. The weights are higher and the correlation
with the seismic derived proportion is increased as well, compared to Figures 3(C)
and 4(C).

Figure 6. Similar to Figure 3, except that the horizontal variogram ranges are 10 times less. (A) Sisim
with seismic data as local mean; (B) sisim with seismic data as block value; (C) sisim with seismic
data integrated in Markov-Bayes algorithm.
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Figure 8. Similar to Figure 5, except that the horizontal variogram ranges are 10 times less. (A) Sisim
with seismic data as local mean; (B) sisim with seismic data as block value; (C) sisim with seismic
data integrated in Makov-Bayes algorithm.

CONCLUSIONS AND DISCUSSION

This paper explores the integration of seismic data for building 3D geological
models of lithofacies. The sequential indicator simulation algorithm is modified
to integrate seismic lithofacies proportions using three different algorithms: as
local mean, as collocated block value, and as covariate with the Markov-Bayes
algorithm. The contribution of seismic information was compared for each of
the three algorithms, and the sensitivity of the contribution relative to the spatial
continuity range of lithofacies was studied.

For lithofacies distributions having short range of continuity, sisim with local
mean can account for the seismic information reasonably well. Also, the advantage
of sisim with local mean is the easy implementation and short cpu time in solving
for the kriging weights, but there may be some vertical banding in some cases.
For lithofacies distributions having long range of continuity, the Markov-Bayes
algorithm can take full account of the seismic information through a tuning of the

Figure 9. Similar to Figure 3(C) and Figure 4(C), except that theB value is 0.60. (A) Kriging
weight applied to the seismic proportion data versus the number of simulated values; (B) scatterplot
of sand proportions calculated from the 3D facies model versus the input seismic proportion map.
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calibration coefficientB values. For lithofacies distributions with long continuity
range in the vertical direction, sisim with collocated block value will have a higher
contribution from the seismic data, but at the cost of greater cpu time due to the
calculation of block covariances and one additional equation in the kriging system.

All of these algorithms can be extended to simulate a continuous variable,
such as porosity. For example, the seismic data may provide vertically averaged
porosity values over the whole field. The same observation and conclusions drawn
in this case study are expected to hold for such continuous variables.

REFERENCES

Abrahamsen, P., Hektoen, A. L., Holden L., and Munthe, K. L., 1996, Seismic impedance and porosity:
Support effect,in Baffi, S., ed., Geostatistics Wollongong 96, Vol. 1: Kluwer, Dordrecht, p. 489–
500.

Behrens, R. A., Macleod, M. K., and Tran, T. T., 1996, Incorporating seismic attribute maps in 3D
reservoir models: Paper presented at the annual SPE meeting, Denver, CO, SPE paper no. 36499.

Deutsch, C., and Journel, A., 1998, GSLIB: Geostatistical software library and user’s guide, 2nd edn.:
Oxford University Press, New York, 368 p.

Deutsch, C. V., Srinivasan, S., and Mo, Y., 1996, Geostatistical reservoir modeling accounting for
precision and scale of seismic data: Paper presented at the SPE annual meeting, Denver, CO, SPE
paper no. 36497.

Deutsch, C., and Wang, L., 1996, Hierarchical object-based stochastic modeling of fluvial reservoirs:
Math. Geol., v. 28, no. 7, p. 857–880.

Fournier, F., 1995, Integration of 3D seismic data in reservoir stochastic simulations: A case study:
Paper presented at the annual SPE meeting, Dallas, TX, SPE paper no. 30564.

Georgsen, F., and Omre, H., 1993, Combining fiber processes and Gaussian random functions for
modeling fluvial reservoirs,in Soares, A., ed., Geostatistics-Troia: Kluwer, Dordrecht, p. 425–
440.

Goovaerts, P., 1997, Geostatistics for natural resources evaluation: Oxford University Press, New York,
483 p.

Gorell, S. B., 1995, Creating 3D reservoir models using areal geostatistical techniques combined with
vertical well data: Paper presented at the western regional meeting, Bakersfield, CA, SPE paper
no. 29670, p. 967–974.

Haas, A., and Dubrule, O., 1994, Geostatistical inversion: A sequential method of stochastic reservoir
modeling constrained by seismic data: First Break, v. 12, no. 11, p. 561–569.

Haas, A., and Natinger, B., 1996, Stochastic reservoir modeling constrained by well test permeability,
in Baffi, S., ed., Geostatistics Wollongong 96, Vol. 1: Kluwer, Dordrecht, p. 501–511.

Haldorsen, H. H., and Damsleth, R., 1990, Stochastic modeling: J. Pet. Technol., v. 42, no. 4, p. 404–412.
Journel, A., 1999, Conditioning geostatistical operations to non-linear volume averages: Math. Geol.,

v. 31, no. 8, p. 931–954.
Journel, A., and Alabert, F., 1989, Non-Gaussian data expansion in the earth science: Terra Nova, v. 1,

p. 123–134.
Journel, A., and Alabert, F., 1990, New method for reservoir mapping: J. Pet. Technol., v. 42, no. 2,

p. 212–218.
Journel, A., Gundeso, R., Gringarten, E., and Yao, T., 1998, Stochastic modeling of a fluvial reservoir:

A comparative review of algorithms: J. Pet. Sci. Eng., v. 21, p. 95–121.
Journel, A., and Huijbregts, Ch., 1978, Mining geostatistics: Academic Press, London, 600 p.



P1: GCR

Mathematical Geology [mg] pp429-matg-369677 March 26, 2002 11:24 Style file version June 30, 1999

Integrating Seismic Data for Lithofacies Modeling 403

Omre, H., Solna, K., and Tjelmeland, H., 1990, Calcite cementation description and production con-
sequences: Paper presented at the 1990 SPE annual technical conference and exhibition, New
Orleans, OK, SPE paper no. 20607.

Stoyan, D., Kendall, W., and Mecke, J., 1987, Stochastic geometry and its applications: Wiley, New
York, 436 p.

Tjolsen, C. B., Johnsen, G., Halvorsen, G., Rtseth, A., and Damsleth, E., 1995, Seismic data can
improve the stochastic lithofacies modeling significantly: Paper presented at the SPE annual
meeting, Dallas, TX, SPE paper no. 30567.

Xu, W., 1995, Stochastic modeling of reservoir lithofacies and petrophysical properties: Unpublished
doctoral dissertation, Stanford University, 214 p.

Yao, T., and Chopra, A., 2000, Integration of 2D seismic data into 3D lithofacies modeling: J. Pet. Sci.
Eng., v. 27, p. 69–84.

Zhu, H., and Journel, A., 1993, Formatting and integrating soft data: Stochastic imaging via the Markov-
Bayes algorithm,in Soares, A., ed., Geostatistics-Troia: Kluwer, Dordrecht, p. 1–12.


