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Coregionalization by Linear Combination
of Nonorthogonal Components1

J. A. Vargas-Guzmán,2,3 A. W. Warrick, 3 and D. E. Myers4

This paper applies the relationship between the matrix multivariate covariance and the covariance of
a linear combination of a single attribute to analyze modeling with nested structures. This analysis
for modeling of covariances is introduced to the multivariate case for nonorthogonal vector spatial
components. Results validate the classic linear model of coregionalization for a more general case of
nonorthogonality, that produces additional terms including cross-covariance in the nested structures.
Linear combinations of nested structures have been applied in the frequency domain to a more general
case where the coefficients are nonconstant but valid transfer functions. This allows for a tool for
the production of cross-covariance and covariance models that are convolutions of valid models. An
example for modeling of the hole effect is illustrated.
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INTRODUCTION

For covariance modeling purposes, the stationary and ergodic random function
Z(x) may be assumed to be the sum of linearly independent or spatially orthogonal
componentsZu(x) (e.g., Journel and Huijbregts, 1978; Sandjivy, 1984). This is

Z(x) =
m∑

u=1

aZu(x) (1)

Modeling of covariances is usually performed with nested structures, each one
corresponding to a spatial componentZu(x) as

C(h) =
m∑

u=1

a2
ucu(h) (2)
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wherea2
u are regionalization constant coefficients andcu(h) are valid elementary

covariance models that have zero lag distance covariance equal to one and must be
positive definite. Nested structures in the model of Equation (2) hold for indepen-
dent spatial componentsZu(x) in Equation (1). Choosing a combination of valid
elementary models is somewhat arbitrary and subjective and may or may not have
a relationship with the studied phenomena.

An extension to the case of several attributes modeled with a vector ran-
dom functionZ(x) is the linear model of coregionalization (LMC) (Journel and
Huijbregts, 1978, p. 171). This is

C(h) =
m∑

u=1

Bucu(h) (3)

whereBu are positive-definite coregionalization matrices. Then, the nested struc-
tures in Equation (3) are multivariate and assume the vector random function is

Z(x) =
m∑

u=1

Zu(x) (4)

where the spatial components or vectorsZu(x) are independent to each other.
Notice that eachZu(x) is made of intrinsically correlated attributes (Wackernagel,
1995).

From a practical point of view, the spatial components may be thought as
a way for modeling realities that physically exist and add to the total observed
phenomena even though frequently they might not be identified in a unique way.
Moreover, it may be reasonable to assume that in a natural process the unknown
spatial components may be cross-correlated to each other. For example, cumu-
lative spatial events on time are correlated to each other. More important is that
negative cross-correlations may appear and produce more complicated shapes in
the sample covariance function of the resulting random function. In this case, it
may be reasonable that the sample covariance could be modeled with the inclusion
of cross-covariances in the nested structures.

This paper derives the model of regionalization starting from positive-definite
multivariate matrix of covariance functions fornonorthogonal spatial components
and the corresponding nested covariance for their linear combination. In this way,
the cross-covariances between linearly combined random functions are included
and the method is extended to the multivariate case of a vector random function.
The approach is analyzed for linear combinations in the frequency domain, leading
to a generalization using linear filters. This frequency domain version of the LMC
opens new possibilities for modeling cross-correlated spatial components and al-
lows for studying the conditions for valid covariances of linear combinations. The
purpose is to show the limitations of LMC and introduce more advanced modeling
possibilities.
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COVARIANCES OF LINEAR COMBINATIONS
FOR A SINGLE ATTRIBUTE

Linear Combinations

From Myers (1983), the covarianceCW(h) of a linear combination of random
functions is related to the corresponding matrix covarianceC(h) as

CW(h) = ATC(h)A (5)

whereA is a column vector of coefficients in the linear combination

W(x) = ATZ(x) (6)

From Myers (1982) the covariance of a sum of two random functions is

CW(h) = C1(h)+ C2(h)+ 2C12(h) (7)

A related concept is the multivariate covariance (Bourgault and Marcotte, 1991).
This is

G(h) = Trace[VTC(h)V] (8)

whereVTV = M is an Euclidean metric. They present a method for identification
of orthogonal spatial components. A question to be answered is about the validity
of the covariances of linear combinations.

Nested Structures and the Frequency Domain

Bochner’s Theorem for Nested Structures

The following analysis in the frequency domain validates modeling with
nested structures and shows the possibilities of using it. Recall that the inverse
Fourier transform of the spectrum or spectral density functions(ω) is the covariance
C(h), andω is the frequency. Then

C(h) =
∫

eiωhs(ω) dω (9)

This is Bochner’s theorem expressed as a Riemann integral, and for positive-
definite covariance, onlys(ω) > 0 shall be allowed (e.g., Bochner, 1949; Cressie,
1993). Following the Stieltjes representation Equation (9) may be written as

C(h) =
∫

eiωh dS(ω) (10)
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whereS(ω) is the spectral distribution function. Because of the condition above,
S(ω) has the property thatdS(ω)/dω > 0 for everyω. An additional condition is∫

dS(ω) <∞ (11)

and

s(ω) = dS(ω)

dω
(12)

The Fourier–Stieltjes representation of a random functionZ(x) is

Z(x) =
∫

eiwx dZ(ω) (13)

(e.g., Priestley, 1981).
Considerm random functionsZu(x) each one having a Fourier–Stieltjes rep-

resentation as

Zu(x) =
∫

eiwx dZu(ω) (14)

Let su(ω) be the spectral density function or spectrum of au spatial component
Zu(x). Equation (9) is still consistent if the total spectrum is split intom spectra
for independent nested spatial components as in Equation (2). Then

C(h) =
m∑

u=1

[∫
eiωhsu(ω) dω

]
(15)

Equation (15) assures that the nested structures provide positive-definite covari-
ances if cross-covariances between nested random functions are zero. Moreover,
it also provides methodology for generating covariances as linear combinations or
nested structures.

The Role of Transfer Functions

Let suZ(ω) be the complex cross-spectrum between one spatial component
Zu(x) and the random functionZ(x) respectively. Then, the transfer function is
the linear relationship between two random functions computed as the ratio of the
cross-spectrum and the spectrum. This is

Tu(ω) = suZ(ω)

su(ω)
(16)
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In general, the linear combination of spatial components can be generalized in
the frequency domain introducing transfer functionsTu(ω) instead of constant
coefficients. Then

dZ(ω) =
m∑

u=1

Tu(ω) dZu(ω) (17)

wheredZ(ω) is the Fourier–Stieltjes representation ofZ(x). We introduce the case
where the spatial componentsZu(x) are not independent, and the transfer functions
need to be computed in an analogous way to a linear regression in the frequency
domain. This projection is valid since frequencies are independent of each other.
Let suZ(ω) be the complex column vector of spectra of allm spatial components
dZu(ω) versusdZ(ω). That is each term comes from

suZ(ω) = E [dZ(ω) dZu(ω)]

dω
(18)

and letsuv(ω) be the square matrix of spectra between them nested spatial com-
ponents. Each term is as

suv(ω) = E[dZu(ω) dZ∗v (ω)]

dω
(19)

Next for the sake of simplicity we consider Hermitian matrices and a regression
in the frequency domain gives a vector of smoothing transfer functions.

Proposition 1. If the orthogonal projection of spatial component random func-
tions on a linear combination is applied in the frequency domain we have a direct
linear relationship, and the transfer function is

Tu(ω) = [suv(ω)]−1 suZ(ω) (20)

Conditions for Valid Correlated Nested Structures

The above result is valid under two conditions that relate random variables at
each frequency.

Proposition 2. The cross-spectrum between the linear combination and the nested
component must assure smoothing in Equation (16); then it is bounded because
of Schwarz inequality, which is suZ(ω) ≤ √su(ω)s(ω). And the cross-spectrum
between a pair of nested components that assures the solution of Equation (20) is
bounded as suv(ω) ≤ √su(ω)sv(ω). The above allows for a result as given in the
following proposition.
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Proposition 3. Equation (15) can be generalized as

C(h) =
m∑
v=1

m∑
u=1

[∫
eiωhTu(ω)Tv(ω)suv(ω) dω

]
(21)

Since the spatial components are nonorthogonal and have cross-covariances,
Equation (21) is an extension of Bochner’s theorem for a linear combination
of random functions which forms a multivariate space where spectral structures
follow Schwarz inequality in the frequency domain.

As reported in Chiles and Delfiner (1999), the use of Schwarz inequality
may encounter limitations in the spatial domain. Notice that Schwarz inequality in
the spatial domain may not always guarantee positive definite multivariate covari-
ance matrices. However, it does in the frequency domain because the frequencies
are mutually independent.

As has been shown above, the Fourier–Stieltjes representation provides a
more complete view of the problem of nested structures. This has been shown
to be the same as linear combinations of random functions in the frequency
domain. A simplification of Equation (21) for independent spatial compo-
nents is

C(h) =
m∑

u=1

[∫
eiωhT2

u (ω)su(ω) dω

]
(22)

To check for the conditions in the propositions above some tools are suggested.
The coherency should be bounded and play the role of linear correlation for each
frequency. For symmetric matrices of nested structures, a verification tool is that
all eigenvalues must be positive and larger than zero. Proposition 3 may lead to
use of a fast Fourier transform to obtain valid covariances.

From Bochner (1949), the inverse Fourier transform of a Hermitian ma-
trix of joint spectra is a positive definite matrix of covariance. The numerical
application of Bochner’s theorem for numerical modeling of covariances has
been introduced by Yao and Journel (1998). As a fundamental difference, the
approach proposed here is based on standard valid models for covariance
functions.

The Spectrum of the Linear Combination With Constant Coefficients

For the scalar linear model of regionalization, or commonly used nested
structures, the transfer functions are constant for all frequencies. As an example,
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consider the case of constant transfer functions for just two nested structures. This
implies the relationship

s(ω) = a2su(ω)+ b2sv(ω)+ ab suv(ω)+ ba svu(ω) (23)

which after inverse Fourier transform yields a linear model of regionalization that
includes cross-covariances. Exclusion of the cross-spectra reduces Equation (23)
to the classic model with orthogonal nested structures. Notice that such a limitation
of using constants is overcome if modeling is done numerically, if not analytically,
in the frequency domain.

Covariances for Nonorthogonal Nested Structures

Covariance of a Single Attribute

In the spatial domain the above model of regionalization involves valid con-
volutions. Thus, covariances made of nesting linear filter transformations in the
frequency domain are transformed into the physical space. The simplest case as
explained before is using constant transfer functions to avoid convolutions in the
spatial domain.

First consider the classic case ofm spatially nonorthogonal scalar random
functions or spatial componentsZu(x), whereu ={1, 2,. . . , m}. The random func-
tions are second-order stationary and they have the following covariance matrix

Cs(h) =

 C11(h) C12(h) · · · C1m(h)
...

...
...

Cm1(h) Cm2(h) · · · Cmm(h)

 (24)

For example,C11(h) is the covariance for the first spatial component. The off diag-
onal terms are cross-covariances between the spatial components. The covariance
for a single attribute modeled with nested structures is

C(h) = ATCs(h)A (25)

whereA is a column vector of coefficients. This is an application of Equation (5)
to nested structures. A simple example for just two nested structures is

C(h) = [a b]T

[
c1(h) c12(h)
c21(h) c2(h)

] [
a
b

]
(26)
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This yields,

C(h) = ac1(h)+ bc2(h)+ 2abc12(h) (27)

This result looks the same as the classic covariance for the sum of two random
functions but in this case is expressed as a model including cross-covariance in the
nested structures. This last formula shows that two nonorthogonal random func-
tions can be modeled adding the cross-covariance. Notice Equation (27) is valid
only under the propositions above. The asymmetry of the cross-covariance matrix
may be considered, and the covariance is

C(h) = ac1(h)+ bc2(h)+ abc12(h)+ bac21(h) (28)

The multivariate covarianceG(h) as Equation (8) is equivalent to the classic
use of nested structures. The particular case whereCs(h) is a diagonal matrix
reduces Equation (27) to a model of independent nested structures.

COVARIANCES OF LINEAR COMBINATIONS FOR
MULTIPLE ATTRIBUTES

The Multivariate Case and the Frequency Domain

The Complete Matrix of Spectra for the Spatial Components

A second-order stationary vector random functionZ(x) can be represented by
the Fourier–Stieltjes integraldZ(ω) extending Equation (13). A complete matrix
of multivariate spectrass(h) can be introduced made of matrices of spectra for
each of thep attributes, and composed by the spatial components. This is

ss(h) =



 s1
11(ω) s1

12(ω) · · · s1
1m(ω)

...
...

...
s1
m1(ω) s1

m2(ω) · · · s1
mm(ω)

 · · ·
 s1p

11 (ω) s1p
12 (ω) · · · s1p

1p(ω)
...

...
...

s1m
m1(ω) s1m

m2(ω) · · · s1m
mp(ω)


...

...
...

sp1
11 (ω) sp1

12 (ω) · · · sp1
1p(ω)

...
...

...

sp1
m1(ω) sp1

m2(ω) · · · sp1
mm(ω)

 · · ·
 sp

11(ω) sp
12(ω) · · · sp

1p(ω)
...

...
...

sp
m1(ω) sp

m2(ω) · · · sp
mm(ω)




(29)
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Another matrix of cross-spectra between all spatial components for all attributes
versus the global vector random function is

ssZ(h) =



 s1
1Z(h)

...
s1
mZ(h)


... sp1

1Z(h)
...

sp1
mZ(h)




(30)

The Role of Transfer Functions

Considering the case where the realss(h) is Hermitian, a matrix of valid
transfer functions is

T(ω) = [ss(ω)]−1 ssZ(ω) (31)

Notice that this is an estimation to obtain a single scalar random function in the
frequency domain. The complete linear combination spectrum in the frequency
domain is

s(ω) = TTss(ω)T (32)

The corresponding covariance of the inverse Fourier transform of this linear com-
bination is a scalar measure that combines all attributes and all correlated nested
structures. See the analogy with the multivariate covariance in the spatial domain
(Bourgault and Marcotte, 1991).

Nested Structures for a Vector Linear Combination in the Frequency Domain

From the result obtained above it is obvious that combining the spectra by
blocks for the attributes including all spatial components may produce the matrix
of spectra for the vector random function. Equation (29) is split into blocks or the
transfer functions arrayed in an adequate way. This means each block is treated
separately for all nested structures. This is similar to the univariate case. Once
Equation (31) has been solved the matrix of transfer functions is split in vectors
for each attributeT i (ω) and then

si j (ω) = TT
i si j (ω)T j (33)
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wheresi j (ω) is one of the block matrices in Equation (29), and the resulting
cross-spectra is for the specific attributessi j (ω). If si j (ω) is in the diagonal,
T i = T j and the result is the spectrum for a given attribute. This result shows
that modeling of multivariate linear combinations requires a complete knowl-
edge of cross-covariances. Thus, the problem of computing valid matrices of co-
variances of a multivariate linear combination is conditioned to the solution of
Equation (31).

This is similar to the model in the physical spatial domain. In fact, when the
transfer functions are constant for all frequencies and the spectra for each spatial
scale proportional among all attributes, the problem is reduced to a linear model
of coregionalization for correlated spatial components.

General Form of the LMC

The linear combination, ofmnonorthogonal spatial component random func-
tions, is applied to a second-order stationary vector random function ofpattributes.
A covariance matrixCZ(h) of functions characterizes a second-order stationary
vector random function. Each vector spatial component is also characterized by a
matrix covarianceCu(h). The spatial components also have a covariance matrix
Cs(h) that is an array for blocks ofCu(h). This is

Cs(h) =

 C11(h) C12(h) · · ·C1m(h)
...

...
...

Cm1(h) Cm2(h) · · ·Cmm(h)

 (34)

The diagonal terms ofCs(h) are the multivariate matrices of covariances for one
spatial component, and the off diagonal terms the cross-covariance matrices for
two spatial components. The off diagonal terms are included to show the general
matrix of covariance for spatial components of linear combinations in space. This is

Cs(h) =




C1

11(h) C1
12(h) · · ·C1

1p(h)
...

...
...

C1
p1(h) C1

p2(h) · · ·C1
pp(h)

 · · ·


C1m
11 (h) C1m

12 (h) · · ·C1m
1p (h)

...
...

...

C1m
p1 (h) C1m

p2 (h) · · ·C1m
pp (h)


...

...
...

Cm1
11 (h) Cm1

12 (h) · · ·Cm1
1p (h)

...
...

...

Cm1
p1 (h) Cm1

p2 (h) · · ·Cm1
pp (h)

 · · ·


Cm
11(h) Cm

12(h) · · · Cm
1p(h)

...
...

...

Cm
p1(h) Cm

p2(h) · · · Cm
pp(h)




(35)
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Define a matrix of coefficients for each spatial componentAu. In general,Au

matrices do not need to be diagonal and the linear combination is equivalent to
rotation. Recall here that theZu(x) random functions spatial components are cross-
correlated at all lag distances.

A matrix (vector of matrices)A with the m coefficient matricesAu can be
constructed in the following way

A =


A1

A2
...

Am

 (36)

Now, extend the linear combinations relationship, given for a scalar attribute,
to the multivariate attribute case. Then, a matrix covariance for the vector linear
combination is obtained as

C(h) = ATCs(h)A (37)

or

C(h) = (A1 A2 · · ·Am)

 C11(h) C12(h) · · ·C1m(h)
...

...
...

Cm1(h) Cm2(h) · · ·Cmm(h)




A1

A2
...

Am

 (38)

If an additional simplification is introduced by making the structures within each
vector spatial component proportional, the result is the matrix model introduced as
a “linear model of coregionalization for nonorthogonal spatial components.” It is a
more general case than the classic linear model of coregionalization LMC. To see
this, consider an example with just two spatial components and three attributes.
Assuming intrinsic correlation between attributes at a single nested structure.
This is

C(h) = [A1]TA1c1(h)+ [A2]TA2c2(h)+ [A1]TA2c12(h)+ [A2]TA1c21(h) (39)

The classic coregionalization matricesBu = [Au]T Au are identified. Now, we
introduce cross-coregionalization matrices for the cross terms and in general this is

Buv = [Au
]−1

Av (40)
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The functionsci j (h) are elementary covariances fori = j , and elementary cross-
covariances fori 6= j . Note that the classic linear model of coregionalization as-
sumes that the cross-covariances between the nested components are zero. This
is a condition that the spatial components need be directly and cross-attribute
orthogonal to make the classic LMC valid.

EXAMPLE

The following example illustrates a simple case of hole effect for one attribute
modeled with correlated nested structures I and II with multivariate matrix of cross-
covariance

C(h) =
[

cI (h) cI–II (h)
cII–I(h) cII (h)

]
The covariance functions arecI (h) = exp(−h/150), cII (h) = exp(−h/30)

and the cross-covariancecI–II (h) = −0.65 exp(−h/100) between the nested stru-
ctures is symmetric. Notice the covariances and cross-covariances are not propor-
tional. To check the matrix we proceed computing the real part of the spectra and
cross-spectra by Fast Fourier Transform for positiveh. Dividing the cross-spectra
by the product of the square root of the two spectra the computed coherency satis-
fies Schwarz inequality for frequencies (see Fig. 1). The nested model in this case
is the covariance of the sum. This is

cs(h) = exp

(−h

150

)
+ exp

(−h

30

)
− 0.65× 2 exp

(−h

100

)

Figure 1. Coherency for the two nested components.
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Figure 2. Power spectrum of the linear combination.

Following Bochner’s theorem, the spectrum of this covariance exists and is positive
for all frequencies. Notice that values close to zero are not exactly zeroes (see
Fig. 2). The corresponding variogram isγs(h) = 0.7− [cI (h)+ cII (h)+ 2cI–II (h)]
and is plotted in Figure 3. Notice that in general the hole effect may be valid up
to some negative linear correlation between the components. If the scalar unit
variances and the corresponding cross-covariance are replaced by matrices of

Figure 3. Variogram of the linear combination (hole effect).
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coregionalization the extension for a multivariate case of a vector random function
is straightforward, provided that the coherency as in Figure 1 is between−1 and
1 for all combinations of nested components and attributes.

DISCUSSION

This paper has developed a theory for the LMC which has been analyzed in-
cluding correlated spatial components. It provides additive hints about the strong
conditions of orthogonality that apply to the classic LMC. By considering lin-
ear combinations of correlated random functions, the model allows inclusion of
nonorthogonality between the spatial components. This has the importance that
negative cross-covariance may be included in the LMC.

The approach also uses the possibilities for more exact modeling by treating
spectra instead of covariances. This allows for transfer functions that constrain
models to valid positive definite matrices. Bochner’s theorem is also combined
with Schwarz’s inequality in the frequency domain providing guidelines for anal-
ysis of spectra. The use of the frequency domain shows possibilities for more
sophisticated numerical modeling and it also supports the classic LMC. Linear
combinations in the frequency domain and nonconstant transfer functions lead to
model covariances with nested convolutions. This comes from the linear filter with
transfer functions, and seems applicable to the generation of models of covariances
and cross-covariances. The case of constant transfer functions validates the classic
LMC, and in the case of correlated spatial components the LMC remains valid
with the addition of cross-covariance terms. New cross-regionalization matrices
are introduced generalizing the LMC.

In some real cases, a linear combination may be required to couple several
correlated attributes in a single model. For example, in mining two or more com-
modities may be linearly combined to provide an equivalent attribute that is used in
the economic evaluation. In hydrology, water content in the vadose zone changes
due to correlated events in time domain. In the oil industry data integration is fre-
quently done using linear combinations. In general, geological phenomena may
be due to the overlapping of some nonorthogonal events.

As a simple example the hole effect is modeled with two negatively correlated
nested components with different ranges. It shows that the validity of the covari-
ance of the sum or a linear combination is in general restricted to the formulated
propositions that integrate Bochner’s theorem with Schwarz inequality.
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