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On Visualization for Assessing Kriging Outcomes1

James R. Carr2

Extant opinion about kriging is that all weights should be positive. Visualizations rendered by converting
kriged grids to digital images are presented to show that negative weights may be beneficial to some
spatial problems. In particular, variogram models with zero-valued nuggets, already well known to
minimize smoothing through kriging, result in a visual resolution substantially superior to that from
kriging with a variogram model having a nonzero nugget value in application to satellite acquired data.
Negative weights are more likely when using variogram models with zero-valued nuggets, but resultant
visualizations often show a smoother transition between extreme data values. This is true even when a
variogram model having a nugget value of zero is not optimum with respect to mean square error, as
is demonstrated using a nitrate data set. An analogy to digital image processing is used to suggest that
the influence of negative weights in kriging is similar to a high-boost kernel.
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INTRODUCTION

Positive [ordinary] kriging (Barnes and Johnson, 1984) involves a double con-
straint on kriging weights,

∑
λ = 1, moreoverλi ≥ 0, i = 1, 2, . . . , N (closest

surrounding estimation locations; see also Chiles and Delfiner, 1999, p. 225).
Incentive for this work was Schaap and St. George (1981). Motivation is the
avoidance of negative kriging weights that may impart unwanted artifacts in an
estimated map. In particular, the range of estimates may, in some cases, exceed that
of the sample data. Other authors addressing the issue of negative kriging weights
include Szidarovsky, Baafi, and Kim (1987). Herzfeld (1989) provided an update
to Barnes and Johnson (1984) by achieving the constraint of nonnegative weights
through quadratic programming.

Negative kriging weights occur more frequently when using low-valued
nuggets, zero-valued nuggets in particular. Unusual, estimated values often oc-
cur from negative kriging weights when a datum exists within the local estimation
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window that has a value much different than any of the other data falling within the
estimation window. This is a particular consequence that prompted the advent of
positive kriging. If, however, the range within the kriging neighborhood is small,
unusual estimates are less likely. In this case, negative kriging weights do not yield
unusual estimates.

Visualizations are presented of two, different data sets to investigate the in-
fluence of negative kriging weights. Sampling geometry, data distribution, and
variogram behavior distinguish these two sets of data.

APPLICATION TO DIGITAL SATELLITE IMAGE DATA

One of the most geometrically regular spatial data sets is that which is acquired
by a scanner onboard an airborne or spaceborne platform. Visual demonstrations of
kriging are forwarded based on a portion of a 1984 Landsat TM image of northern
Mineral County, Nevada (Path 42, Row 33; July 7). Band 2 (visible green) data are
chosen arbitrarily for demonstration. Original sampling resolution is 30 m× 30 m,
consequently block sampling support is indicated. Each image pixel represents an
average brightness, expressed as an integer value in the range [0, 255]. A spatial
data set is developed by resampling the original image data to 120 m× 120 m by
taking every fourth pixel along a row, then taking every fourth row of resampled
pixels. A text file of pixel values andx, y coordinates is created of these resampled
pixel values using a program, VisualData (Carr, 2002). The goal is to attempt the
restoration of the original image data through kriging by interpolating to yield a
30 m× 30 m grid size. Visual comparison to the original image is used to assess
the quality of interpolation via kriging for a range of variogram models.

Histogram analysis of these data suggests that a normal distribution model
represents their distribution well (Fig. 1). Variogram analysis (Fig. 2) of the re-
sampled image suggests a spherical model with a nugget equal to 20% of the sill
value and a range of 240 pixels. Despite what the variogram suggests, experiments
are designed to interpolate these data using nugget values ranging from 0 to 100%
of the sill value. Four outcomes are visually compared to the original image data
(Fig. 3(B) through (E)).

What is remarkable about this visual comparison is how strikingly clear the
interpolation is that is based on a zero-valued nugget (Fig. 3(B)), whereas visualiza-
tions developed using nonzero nugget values are visually blurred (smoothed) and
only subtly distinguishable (Fig. 3 (C) through (E)). This observation is supported
by graphing mean square error versus nugget (Fig. 4). Error increases sharply with
nugget from 0 to 20%. Thereafter, error is less affected by increases in the nugget
value. A zero-valued nugget is optimum for these data, even though negative krig-
ing weights are more likely, moreover variography suggests that a nonzero nugget
value equal to approximately 20% of the sill value should be modeled.
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Figure 1. (A) Histogram of visible green reflectance, 10,000 total pixels. (B) Probability plot of
z-scores of data quantiles (actual) versusz-scores of quantiles from a normal distribution model
(theory).

The visual quality of kriging applied to satellite data using a zero-valued
nugget was discovered accidentally in the writing of Carr (2002). Therein, a
Matlab routine, pkrige (Middleton, 2000) was applied to the estimation of satellite
data to demonstrate Matlab applications for visualizations of kriging. The manner

Figure 2. Variogram of visible green reflectance. Parameters of a
spherical model fit to the data variogram are shown above the plot.
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Figure 3. (A) Original image data, pixel resolution of 30 m. (B) Windows bitmap image of kriged
estimates based on a zero-valued nugget applied to 4× resampled pixel values. (C) Windows
bitmap image of kriged estimates based on a nugget equal to 10% of the sill value. (D) Nugget
value is 20% of the sill value. (E) Nugget value is equal to the sill value. (F) Difference image
created by subtracting the bitmap image based on a nugget value equal to 10% of the sill value
from that image created using a zero-valued nugget; this residual image is a visualization of
higher spatial frequencies that are present in image (B), yet are filtered from image (C). Kriging
neighborhood (N) is 10 for each image (B)–(E).
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Figure 4. A plot of the change in mean square error (MSE) as the nugget
value is increased from zero to the sill. In this particular case of Landsat
TM data (visible green reflectance), a zero-valued nugget is associated
with least error. Kriging neighborhood (N) is 10 for all nugget values.

in which the spherical model was embedded in this code resulted in a zero nugget
value, even though a nonzero value was initially specified. A correction to pkrige
is presented in Carr (2001). Nonetheless, the original Matlab code led to the devel-
opment of a remarkable visualization identical to that shown earlier (Fig. 3(B)).

Inferences Drawn From Digital Image Processing

One kernel, or collection of weights, that is used in the spatial convolution
filtering of digital images effects ahigh boost. Low spatial frequencies are not
removed by this kernel. Instead, high spatial frequencies, such as lines and edges,
are amplified. The visual outcome is a “crispening” or “sharpening” of the image.
One example of a high-boost kernel is shown below (a 3×3 kernel size is assumed).

−1/9 −1/9 −1/9

−1/9 27/9 −1/9

−1/9 −1/9 −1/9
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Notice that outside weights are negative. The central weight is positive. Moreover,
the sum of these [nine] weights exceeds one.

In contrast, alow-passkernel, one that substantially removes high spatial
frequencies, is associated with weights that sum to one. One example of a low-
pass kernel is as follows.

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Kriging, a weighted average in which weights sum to one (assuming this
constraint is applied), is also a low-pass filter. The larger the nugget value is,
the more severe is the filter. The optical result is a blurring of the original data
(Fig. 3(C) through (E)).

Carr and Myers (1984) showed how to use the variogram with nonzero nugget
values to design low-pass kernels for applications in digital image processing
wherein noise attenuation is desirable with minimal blurring. Using a nugget value
of zero and a 3× 3 geometric configuration yields the following kernel (assuming
a 3× 3 size, moreover assuming a cross-validation-type application, estimation
location is at center of 3× 3 region; a range of 10.0 is used).

−0.0047 0.2547 −0.0047

0.2547 0 0.2547

−0.0047 0.2547 −0.0047

This kernel exhibits characteristics of both a low-pass and high-boost kernel. Al-
though these weights sum to one, this outcome is likened to a high-boost kernel
because central weights sum to a value greater than one, whereas more distant
weights are negative. This combination of negative and positive weights tends to
increase the numerical differences between pixels. The optical result is a boosting
of high spatial frequencies (edges) in data, thus minimizing smoothing. Visually,
this has the effect of crispening, or sharpening the kriging outcome (Fig. 3(B)).
Higher spatial frequencies are preserved better than when kriging with a larger
nugget. A difference image developed by subtracting the kriged result using a 10%
nugget (Fig. 3(C)) from the result obtained using a zero-valued nugget (Fig. 3(B))
reveals the substantial amount of higher spatial frequencies preserved when using
a zero-valued nugget (Fig. 3(F)).

Increasing the nugget value from 0 to 100% of the sill value eliminates neg-
ative weights, moreover causes weights to become equal. This is demonstrated in
the following kernels (again assuming the same type of cross-validation procedure
that is used earlier).
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Nugget= 10% of the sill:

0.0644 0.1856 0.0644
0.1856 0 0.1856
0.0644 0.1856 0.0644

Nugget= 20% of the sill:

0.0886 0.1614 0.0886
0.1614 0 0.1614
0.0886 0.1614 0.0886

Nugget= 50% of the sill:

0.1135 0.1365 0.1135
0.1365 0 0.1365
0.1135 0.1365 0.1135

Nugget= 100% of the sill:

0.1250 0.1250 0.1250
0.1250 0 0.1250
0.1250 0.1250 0.1250

These kernels will vary with the range of the variogram model. Shorter ranges
result in a larger numerical difference among kernel weights; longer ranges yield
more parity among weights for larger nuggets. But, the relative outcomes remain
the same, with zero-valued nuggets yielding a mixture of positive and negative
weights. Nonzero nugget values yield positive weights. These kernels also show
how rapidly weights change as the nugget is increased.

APPLICATION TO DATA EXHIBITING SPATIALLY
IRREGULAR SAMPLING

Data associated with nitrate contamination of ground water in Washoe Valley,
southern Washoe County, Nevada due to septic tank effluent are chosen for this
demonstration (Zhan and McKay, 1998). These data are spatially, irregularly sam-
pled and are associated with a highly skewed distribution (Fig. 5). Both Chiles and
Delfiner (1999, p. 224) and Barnes and Johnson (1984, p. 231) acknowledge that
negative weights can exacerbate geometric problems attributable to sampling, un-
usual data values in the local kriging neighborhood, and kriging implementation.
These nitrate data are chosen as a test because their sampling is spatially random,
coinciding with domestic water wells, and values often change rapidly over small
spatial distances.

A comparison of visualizations (Figs. 6 and 7) based on zero-valued and
nonzero-valued nuggets shows that unwanted artifacts are not introduced into the
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Figure 5. (A) Histogram of data associated with nitrate contamination of ground water, Washoe
Valley, Nevada. (B) Probability plot ofz-scores: data quantiles versus normal distribution quantiles.
A normal distribution model does not represent the data distribution well.

Figure 6. Windows bitmap image of kriged estimates of nitrate con-
tamination. A nugget value of zero is used for estimation. Note the
fairly smooth transition from higher (white) to lower (black) data val-
ues within the zone of highest sampling density (near the highest zone
of nitrate contamination). Kriging neighborhood (N) is 10.
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Figure 7. Kriged estimates of nitrate contamination, nugget value is
equal to one-third the sill value. Transition from higher to lower data
values is not as smooth, showing stepwise discontinuity. This visual
artifact is most probably attributable to the small kriging neighborhood
(N). Step discontinuities occur as sample data drop in or out of this
neighborhood. Despite this visual artifact, analysis of mean square
error (Fig. 9) shows that this image is associated with lower error in
comparison to that which is obtained using a nugget value of zero.
Kriging neighborhood (N) is 10.

final map. Moreover, the map based on a zero-valued nugget images the high
zone of nitrate concentration more distinctly than does that which is based on
nonzero nugget value. Furthermore, the transition from higher to lower data zones
is smoother when using zero-valued nugget in comparison to the map that is based
on nonzero nugget value. But, quantitative analysis of kriging performance shows
that a zero-valued nugget is not optimal for these data (Fig. 8). In distinct contrast
to the Landsat TM data, that which is associated with smallest mean squared error
when modeling a zero-valued nugget and increasing error with nugget, these nitrate
data exhibit the opposite result, with decreasing error with increasing nugget. The
variogram (Fig. 9) is associated with a substantial nugget, suggesting either a high
level of noise or limited to no representation in the spatial data of microspatial
scales. That image (Fig. 7) which is based on a nugget value of approximately
33% of the sill value is a more accurate representation of these data, even though
the visualization it rendered is, subject to personal preference, less appealing.
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Figure 8. Variogram for nitrate data. Note the fairly large
nugget value for these data.

Figure 9. Plot of mean square error (MSE) versus nugget
value for nitrate. Larger nuggets yield less error.
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DISCUSSION

Mean Squared Error

Earlier figures (Figs. 4 and 9) demonstrate the influence of nugget value as a
percentage of total sill on mean squared error. In the case of the Landsat TM data,
best estimation performance is realized when the nugget value is zero. In contrast,
best estimation performance is realized for the nitrate data when the nugget and sill
values are equal. These conclusions resulted from using the 10 nearest neighboring
sampling locations when kriging each point, both data sets.

This invokes an obvious question. What happens to error when more neigh-
boring data locations are included when kriging each point? Several experiments
are conducted as a test (Tables 1 and 2). Note that experiments on the Landsat
TM data rely on 6× (every sixth pixel and every sixth row) resampled data. Both
experiments (Tables 1 and 2) yield results that are similar to the relative kriging
performance that is based on using the 10 closest sampling locations.

Nitrate Data and the Robustness of Kriging

A highly skewed distribution is indicated for the nitrate data (Fig. 5).
Application of kriging to such data seems contraindicated. Yet, kriging is adaptable
to nonnormal data distributions provided the kriging neighborhood is constricted.
The fact that kriging with zero nugget is the poorest model for these data is not
related to their distribution. Rather, the variogram (Fig. 8) indicates a substantial
nugget value. In fact, an argument can be made for a nugget-effect variogram
model for these data. Indeed, estimation results (Fig. 9 and Table 2) show that a
nugget-effect model is best for these data.

Visualization and the Human Mind

This paper emphasizes visualization when evaluating the outcome of spatial
analysis. Aesthetic qualities of a resultant image, moreover their consequential

Table 1. Mean Squared Error as a Function of Kriging Neighborhood,
Landsat TM Data

Nugget (% sill)

Neighborhood (N) 0 20 40 60 100

10 52 52 53 54 54
25 52 54 57 59 62
50 52 53 58 62 71
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Table 2. Mean Squared Error as a Function of Kriging Neighborhood,
Nitrate Data

Nugget (% sill)

Neighborhood (N) 0 20 40 60 100

25 993 849 807 784 770
50 1002 855 812 788 796

appeal to a viewer, can be a function of the brain’s reaction to an image and
not due to actual components of data displayed in the image. One way to test
whether the difference between two images is substantial is to subtract one image
from another and examine the resultant difference image. Such a difference image
is shown earlier (Fig. 3(F)). Subtle differences in information content between
images can substantially influence a brain’s reaction to them.

CONCLUSION

A zero-valued nugget suggests that the spatial data it represents are error-free
(not contaminated by white noise). Restating this implication, such a nugget value
suggests that all spatial scales down to the most minute are sampled sufficiently
and consequently are represented in the sample data. It is such a nugget value
that, depending on sampling geometry and number of nearest, neighboring data
locations that are used for estimation, causes negative weights to be associated with
data locations in the kriging neighborhood that are more distant from the estimation
location. The very closest data locations are boosted in value by positive weights
that collectively sum to a value exceeding one. This is analogous to high-boost
filtering in digital image processing that results in a sharpening of an image due
to amplification of higher spatial frequencies.

A zero-valued nugget further suggests that high spatial frequencies in a set
of data are an actual characteristic of a spatial phenomenon and not noise. Conse-
quently, theN collective weights representing a mixture of positive and negative
values work to boost these high frequencies. Visually, this weighting scheme yields
a much sharper image of the actual data. In the case of the Landsat TM data, the
visual outcome is substantially better in comparison to outcomes resulting from
larger nugget values. But, in the case of the nitrate data, boosting high frequencies
results in diminished estimation quality. For these data, the higher the nugget value
is, the lower is the mean squared error. The variogram for these data indicates a
substantial nugget value. This implies that smaller scale spatial variability is not
well represented in the sample data, consequently weighting these data during
estimation as if these smaller scales are present results in higher error.

That negative weights may occur in kriging for certain variogram parameters
must be understood, moreover accommodated. Artifacts in a kriging outcome may
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be attributable to negative weights. These artifacts may also be related to sampling
geometry and how kriging is implemented for data estimation. For some data sets,
such as the Landsat TM data, a zero-valued nugget with associated negative kriging
weights can substantially improve the visual outcome of estimation.
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