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Conditional Simulation of Nongaussian
Random Functions1

Xavier Emery2

This paper presents a conditional simulation procedure that overcomes the limits of gaussian mod-
els and enables one to simulate regionalized variables with highly asymmetrical histograms or with
partial or total connectivity of extreme values. The philosophy of the method is similar to that of
sequential indicator technique, but it is more accurate because it is based on a complete bivari-
ate model by means of an isofactorial law. The resulting simulations, which can be continuous or
categorical, not only honor measured values at data points, but also reproduce the mono and bivari-
ate laws of the random function associated to the regionalized variable, that is, every one or two-
point statistic: histogram, variogram, indicator variograms. The “sequential isofactorial” method
can also be adapted to conditional simulation of block values, without resorting to point–support
simulations.

KEY WORDS: sequential indicator simulation, isofactorial models, disjunctive kriging, bivariate
distribution.

INTRODUCTION

Geostatistical simulation techniques construct regionalized variables which show
the same features as the one under study, notedz(x) hereafter. Such a construction
is based on the interpretation ofz(x) asonerealization, or outcome, of a random
functionZ(x), and consists in generatingotherrealizations that constitute possible
and equiprobable images of the reality (Journel and Huijbregts, 1978). For practical
applications, conditional simulations are built, which honor measured values at
sampling sites and reproduce the structural patterns ofz(x).

Each simulation can be manipulated as if it were the real regionalized variable
and be processed through a nonlinear operator. Consequently, any quantity, not
only the regionalized variable itself, can be evaluated thanks to a set of conditional
simulations (many simulations are necessary to obtain a sensible average value and
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a range of possible situations). For example, in the mining field, the probability
that the grade of a given block exceeds a cutoff can be estimated by the empirical
frequency of simulated block values over such a cutoff. Another application of
simulations is the assessment of the uncertainty attached to the quantity being
studied, for example, via confidence intervals.

Countless geostatistical simulation techniques have been developed. Most
of them rely on the gaussian probability law: decomposition of the covariance
matrix, sequential gaussian simulation, turning bands, and spectral methods, to
name a few (Alabert, 1987; Davis, 1987; Deutsch and Journel, 1998; Lantu´ejoul,
1993; Matheron, 1973a). In the general case, the studied variableZ(x) has to
be transformed into a gaussian oneY(x); such a transformation is referred to as
“gaussian anamorphosis” or “normal score transform.” At the end of the pro-
cedure, the inverse anamorphosis is applied to go back to the initial variable
(Journel and Huijbregts, 1978). Using the gaussian probability law is very con-
venient, because it depends on few parameters (actually, it is enough to spec-
ify a single covariance function, because the gaussian transformed variable has
a zero mean). However, several limitations restrict the generality of gaussian
techniques:

• the gaussian anamorphosis may be arduous, especially when the regional-
ized variable under study has a highly skewed histogram or presents a high
proportion of zero values or “ties” (Rivoirard, 1994);
• realizations of gaussian processes exhibit a symmetry with respect to the

median value: the spatial patterns concerning low values also arise for high
values;
• the occurrence of extreme values is purely random (this is known in min-

ing geostatistics as thedestructuration of high gradesproperty). Gaussian
models cannot describe phenomena where extreme values are spatially
connected (Goovaerts, 1997; Matheron, 1982).

When gaussian simulation techniques are unsatisfactory, it is necessary to
resort to either postprocessing algorithms in order to improve the obtained realiza-
tions, or nongaussian simulation methods, which allow for instance a clustering
of extreme values. The problem of the latter is that they are time-consuming and
approximate: in general, they are limited to the reproduction of part of the mono
and bivariate laws (e.g., the histogram and covariance of the variable and/or some
of its indicators) instead of the entire spatial law. The most widely used nongaus-
sian algorithm is sequential indicator method (Alabert, 1987; Deutsch and Journel,
1998; Goovaerts, 1997; Journel, 1989), which is summarized in next section. Other
simulation techniques are available when dealing with random sets and categor-
ical variables: truncated plurigaussian method (Le Loc’h and others, 1994), and
object-based algorithms like the Boolean models and their extensions (Chil`es and
Delfiner, 1999; Lantu´ejoul, 1997).
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THE SEQUENTIAL INDICATOR SIMULATION METHOD

This method is an iterative procedure, where each target point is successively
simulated, taking into account the initial data values and the previously simulated
values. More precisely, for each point being simulated, an estimation of its local
cumulative density function is built, conditioned to both initial data values and
already simulated values. This construction is achieved by way of an indicator
kriging followed by a postprocessing step. The simulated value is drawn at random
from the probability law corresponding to its local cumulative density function;
for instance, it can be obtained from a uniformly distributed value in [0,1] by the
inversion method.

Remarks

1. The sequential indicator method provides conditional simulations, which
honor measured values at data sites, up to the resolution given by the
indicator coding.

2. In theory, the sequential paradigm requires estimating each local cumu-
lative density function fromall the already simulated values. In prac-
tice, only those located in a neighborhood of the target site are retained.
Hence, spatial variability is not reproduced perfectly, especially for long
distances. Some procedures have been proposed to correct this problem;
for instance, when simulating the nodes of a regular grid, the simulation
can be achieved on a coarse grid first, and then be refined (concept of
multiple grid) (Deutsch and Journel, 1998; Goovaerts, 1997).

3. In order to avoid artifacts in the final simulation, it is advisable to simulate
the target sites in a random sequence.

4. The reproduction quality of the histogram ofZ(x) depends on the dis-
cretization level (number of indicators) and on the choice of the postpro-
cessing procedure that follows indicator kriging. Typically, about 10 indi-
cators are selected, for example, the deciles of the distribution ofZ(x). As
regards the bivariate law, the algorithm does not ensure the reproduction
of the covariance function ofZ(x); only the covariances of the indica-
tors used to determine the local cumulative density functions are honored
approximately.

The main advantage of the sequential indicator method is its flexibility, be-
cause it does not rely on the gaussian assumption. The features of the regionalized
variable are not described by a single covariance function any more, but by the
covariances of indicators associated to several thresholds; as a consequence, it may
take a spatial correlation of extreme values into account. The indicator formalism
also facilitates the coding of measurement uncertainty and secondary information.
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As a counterpart, the implementation requires a major effort for inference and
structural analysis (additionally, it is difficult to build a theoretically coherent set
of indicator variogram models, because these variograms are not independent and
cannot be chosen among all types of models). Furthermore, the sequential indicator
algorithm is time-consuming, as each simulated site requires the kriging of several
indicators, and approximate, due to several factors: the discretization in indicators,
the limitation of the kriging neighborhood, the separate kriging of each indicator
and its postprocessing. A method which aims to improve the reproduction of the
bivariate law of the regionalized variable is presented in the following section.

SEQUENTIAL ISOFACTORIAL SIMULATION

It is possible to model the entire bivariate law when it is isofactorial, that
is, when there exists a complete family of factors spatially uncorrelated. Some
well-known examples are the bigaussian, bigamma, hermitian, Laguerre-type, and
beta laws, as well as discrete laws such as the binomial, negative binomial, and
Poisson (Chil`es and Delfiner, 1999; Matheron, 1973b, 1975, 1976, 1984). The
general form of an isofactorial bivariate probability density function between two
valuesY(x1) andY(x2) is

f (y1, y2) = f (y1) f (y2)
∑
p≥0

Tp χp(y1)χp(y2)

where f (y) represents the marginal probability density ofY(x); (Tp)p is a series
of real coefficients whose values are contained in the interval [−1; 1]; and (χp)p

are the factors of the isofactorial law (χ0 ≡ 1).
Tp—one should actually writeTp(x1, x2)—is the correlation coefficient be-

tweenχp[Y(x1)] andχp[Y(x2)]. When considered as a function ofx1 andx2, or
more simply ofx2− x1, Tp turns out to be the correlogram of the factor of order
p. It can be deduced fromT1, which, in most cases, is nothing but the correlogram
of Y(x) (the relationship betweenT1 andTp depends on the chosen isofactorial
law). In brief, the structural analysis ofY(x) is enough to specify the correlograms
of all the factors of the bivariate law. Using a single correlogram is not a severe
limitation, because other structural patterns of the regionalization are described by
simple scalar parameters, according to the selected model.

In practice, a transformation—or anamorphosis—of the raw variableZ(x) is
necessary to turn it into a variableY(x) which follows an isofactorial law. Under
this assumption, any functionϕ[Y(x)] can be estimated by disjunctive kriging
(Matheron, 1973b, 1976; Rivoirard, 1994). It requires expandingϕ[Y(x)] in a
series of factors

ϕ [Y(x)] =
∑
p≥0

ϕp χp[Y(x)]
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and estimating separately each factor by simple kriging

{ϕ [Y(x)]}DK =
∑
p≥0

ϕp{χp[Y(x)]}SK

In many cases, disjunctive kriging only requires estimating the first factors
(to fix ideas, about 10), because the high degree factor covariances often tend to
a nugget effect, so that the simple kriging of these factors becomes equal to their
mean, which is 0. However, this property does not hold any more in some particular
cases with a strong connectivity of high values (mosaic model for instance); the
way in which convergence problems can be dropped in practical calculations will
be seen later.

When a discretization of theY(x) values is considered, disjunctive kriging
amounts to a full indicator simple cokriging (Rivoirard, 1994) and provides theo-
retically more accurate results than indicator kriging or its variants.

Theϕp coefficients are obtained from the relationship

ϕp =
∫
ϕ(y)χp(y) f (y) dy

Now, the disjunctive kriging estimator can be written as

{ϕ[Y(x)]}DK =
∫
ϕ(y) f (y)

∑
p≥0

χp(y){χp[Y(x)]}SK dy

=
∫
ϕ(y) fDK(x; y | (n)) dy (1)

with fDK(x; y | (n)) = f (y)
∑
p≥0

χp(y){χp[Y(x)]}SK

(the symbol (n) refers to then data used in the simple kriging).
This formula is comparable with the one of the conditional expectation of

ϕ[Y(x)]

{ϕ[Y(x)]}CE =
∫
ϕ(y) f (x; y | (n)) dy

where f (x; y | (n)) stands for the conditional probability density.
By analogy, the functionfDK(x; y | (n)) in Equation (1) has the meaning of

a conditional probability density. It is calledpseudo density of disjunctive kriging
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(Matheron, 1976). It can be associated to a pseudo cumulative density function

FDK(x; y | (n)) =
∑
p≥0

{χp[Y(x)]}SK
∫ y

−∞
f (u)χp(u) du (2)

which is a “pseudo probability” that the value ofY(x) is less than they threshold,
conditionally to the data values used in the simple kriging systems. As the first
factor,χ0, is equal to 1, Equation (2) can also be written as

FDK(x; y | (n)) = F(y)+
∑
p≥1

{χp[Y(x)]}SK
∫ y

−∞
f (u)χp(u) du (3)

FDK appears as the prior cumulative density functionF(y), corrected by a
series of terms that reflect the intensity of conditioning; these terms will be small
in zones where data are scarce.

The integrals can be expressed analytically by means of the factors and can be
calculated exactly. AlthoughFDK is equal to 0 in−∞ and to 1 in+∞, it may not be
a cumulative density function, because it is not necessarily monotonous. However,
it can be postprocessed into a “real” cumulative density function, conditioned by
the data used in the simple kriging of the factors.

This statement enables one to build a sequential simulation algorithm identical
to the sequential indicator one, except it usesFDK as the local cumulative density
function instead of estimating it by indicator kriging. The application of such a
procedure directly gives conditional simulations, which reproduce the monovariate
law (histogram) and the bivariate law (variogram, indicator variograms. . .) of the
regionalized variable. As in the sequential indicator algorithm, it is advisable to
simulate the target sites in a random sequence, and restrict the conditioning data
(initial data and already simulated values) to those contained in a neighborhood of
the site being simulated.

Remarks

1. Like the sequential indicator method, this technique has great flexibility:
the various isofactorial models can describe satisfactorily most practi-
cal situations. For instance, in the Laguerre-type model, which uses the
gamma law instead of the gaussian law, some parameters help to control
the skewness of the distribution and the connectivity of the extreme values.
Such structural patterns can therefore be reflected in the simulations.

2. With respect to the sequential indicator method, the computation time is
similar (it requires the kriging of several factors, instead of the kriging of
several indicators). However, the isofactorial procedure is more precise,
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because it is based on thecompletebivariate law, and determines the
entire local cumulative density function, avoiding the discretization into
indicators.3 Moreover, it requires less inference effort, as shown further in
the application, and the use of an isofactorial law ensures the coherence
of the model (coherence between the indicator covariances).

3. When extreme values are highly correlated, convergence problems in the
factorial expansions may occur. The velocity with which the factor co-
variances converge to a nugget effect may be very slow, so that a sim-
ple truncation of the expansions to a limited number of factors can result
problematic. In practice, in such a case, observation shows that the kriging
weights vary when estimating the first factorsχp, p = 1, . . . , Pmax− 1,
and then become stable (usually,Pmax≤ 15). For the practical evalua-
tion of the local cumulative density function, the following fairly accurate
formula avoids convergence problems

FDK(x; y | (n)) ≈ F(y)

[
1−

∑
α

λPmax
α

]
+
∑
α

λPmax
α I (xα; y)

+
Pmax−1∑

p=1

∑
α

(
λp
α − λPmax

α

)
χp[Y(xα)]

∫ y

−∞
f (u)χp(u) du

(4)

where{xα, α = 1, . . . ,n} stand for the data points;I (xα; y) is the indicator
associated to they threshold in sitexα

I (xα; y) = 1 if Y(xα) < y, 0 otherwise

λ
p
α are the simple kriging weights for the factorχp

{χp[Y(x)]}SK =
∑
α

λp
α χp[Y(xα)]

Equation (4) has the advantage of being exact in both limiting cases:
(a) in case of a total destructuration of extreme values, the factor covari-

ances tend to a pure nugget effect, and the kriging weightsλ
p
α quickly

converge to 0 asp increases, so that Equation (3) truncated at order

3Considering the definition of disjunctive kriging as an indicator cokriging, it can be said that the se-
quential isofactorial method uses an infinite number of indicators, and determines the local cumulative
density function by afull indicator cokriging, instead of a separate kriging.
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p = Pmax is met

FDK(x; y | (n)) = F(y)+
Pmax−1∑

p=1

{χp[Y(x)]}SK

×
∫ y

−∞
f (u)χp (u) du (5)

(b) in case of a total structuration, the factors have the same covariance
function and the kriging weights do not change with the orderp; in
this case,FDK(x; y | (n)) is obtained by simple kriging of the indicator
associated to they threshold

FDK(x; y | (n)) = I (x; y)SK

= F(y)

[
1−

∑
α

λ1
α

]
+
∑
α

λ1
α I (xα; y) (6)

The idea for obtaining of Equation (4) originates from Rivoirard (1994)
when dealing with stationarity problems in disjunctive kriging. It comes
from Equation (3) and can be written as

FDK(x; y | (n)) = F(y)+
∑
p≥1

∑
α

λp
α χp[Y(xα)]

∫ y

−∞
f (u)χp (u) du

Splitting the series into a partial sum until orderPmax− 1 and a sum from
orderPmax to infinite, and considering that, forp ≥ Pmax, the correlogram
Tp varies very slowly with respect top (empirical observation), so that
the kriging weights are almost equal to those of orderPmax, one obtains

FDK(x; y | (n)) ≈ F(y)+
Pmax−1∑

p=1

∑
α

λp
α χp[Y(xα)]

∫ y

−∞
f (u)χp (u) du

+
∑
α

λPmax
α

∑
p≥Pmax

χp[Y(xα)]
∫ y

−∞
f (u)χp (u) du

≈ F(y)

[
1−

∑
α

λPmax
α

]
+

Pmax−1∑
p=1

∑
α

(
λp
α − λPmax

α

)
× χp[Y(xα)]

∫ y

−∞
f (u)χp (u) du

+
∑
α

λPmax
α

∑
p≥0

χp[Y(xα)]
∫ y

−∞
f (u)χp (u) du
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Now, for a data pointxα, the (pseudo) cumulative density function is a
step function. Hence

FDK(xα; y | (n)) =
∑
p≥0

χp[Y(xα)]

×
∫ y

−∞
f (u)χp (u) du= I (xα; y)

which completes the explanation for using Equation (4).
4. The sequential isofactorial method enables one to simulate block values

without resorting to point–support simulations, thanks to the so-called dis-
crete isofactorial models. These models assume that the point and block
distributions follow, after anamorphosis, isofactorial laws, and that the dis-
tribution between points and blocks follows an asymmetrical isofactorial
law. Such a law is defined by two families of factors:χ (1)

p andχ (2)
p , respec-

tively associated to the points and the blocks; as an operating rule, two
factors are spatially uncorrelated when they have different degrees. It is
then possible to determine all the correlation functions between point and
block values, which allows the estimation of the block factors by cokriging
from known point and block values. The conditional cumulative density
function of a blockv is derived as

FDK(v; y | (n)) = Fv(y)+
∑
p≥1

{
χ (2)

p (Yv)
}SCK

∫ y

−∞
fv(u)χ (2)

p (u) du (7)

whereYv stands for the transformed value of blockv (i.e., after anamor-
phosis); fv andFv are the standard and cumulative prior density functions
of Yv; and the SCK index refers to simple cokriging from initial point–
support values and already simulated block values.

This approach—direct conditional simulation of block values—is
not possible with the sequential indicator algorithm, unless strong and
awkward approximations are made (e.g., affine correction to obtain a
block local cumulative density function from a point–support one). It can
be achieved in a gaussian context, via any simulation algorithm, using
the discrete gaussian model (Rivoirard, 1994), which actually belongs to
the family of isofactorial models.

5. The drawbacks of the sequential isofactorial procedure are similar to those
of the sequential indicator method: the computation time is high—though
acceptable—and some approximations are indispensable: restriction of the
kriging neighborhood and postprocessing of the pseudo local cumulative
density functions.
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A Word on Stationarity

Particular attention should be paid to the assumption of stationarity. As it has
been presented, the isofactorial method requires the regionalized variable under
study to be a realization of a stationary process, because it makes use of a simple
kriging with zero mean. Such an assumption is a rather demanding prerequisite
and the question of weakening it should be examined.

On the one hand, there is no convenient way of checking the stationarity of a
regionalized variable: it is a theoretical notion and may be acceptable despite the
appearance (refer for instance to the “proportional effect” property which occurs
with lognormally distributed variables and is compatible with the assumption of
strict stationarity). On the other hand, it is possible, in point–support simulations
only, to use an ordinary kriging of the factors instead of a simple kriging, although
this approach leads to theoretical difficulties (Rivoirard, 1994). A research topic
could deal with the capability of transferring the possible nonstationarity into the
anamorphosis function instead of the transformed variable.

EXAMPLES

To illustrate what has been said, Figure 1 displays six bidimensional realiza-
tions of isofactorial models, represented in gray-scale maps:

(a) Bigaussian model(Fig. 1(A)). It is a restriction of the multigaussian model
and has the same limitations (symmetry with respect to the median value,
spatial uncorrelation of extreme values); the factors are the normalized
Hermite polynomials (Matheron, 1973b, 1976; Rivoirard, 1994)

χp(y) = 1√
p! e−y2/2

dp

dyp

(
e−y2/2

)
, with p ∈ N

(b) Hermitian model(Fig. 1(B)). It generalizes the bigaussian model, be-
cause it considers an additional coefficient which measures the destruc-
turation of high values (Chil`es and Delfiner, 1999; Matheron, 1975,
1976). This destructuration coefficient can be specified by comparing
the variogram of the gaussian variable with its madogram (first order
variogram).

(c) Bigamma model(Fig. 1(C)). It is based on the gamma law, which depends
on a parameter ruling its asymmetry. It can describe regionalized variables
with a highly skewed distribution, for which the gaussian transformation
fails (Hu, 1988; Matheron, 1973b, 1984). The factors associated to the
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Figure 1. Realizations of (A) bigaussian, (B) hermitian, (C) bigamma, (D) Laguerre-type, (E) mo-
saic, and (F) orthogonal indicator residuals processes.
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bigamma law of parameterα are the normalized Laguerre polynomials
of orderα

χp(y) =
√

0(α)

p!0(α + p)

1

e−yyα−1

dp

dyp
(e−y yp+α−1), with p ∈ N

(d) Laguerre-type model(Fig. 1(D)). It generalizes the bigamma model by
adding a coefficient which controls the destructuration of extreme values
(Chilès and Delfiner, 1999; Matheron, 1975); Figure 1(D) considers a
positively skewed distribution as well as a partial connectivity of high
values.

(e) Mosaic model(Fig. 1(E)). Actually, it is a particular case of the her-
mitian and Laguerre-type models, where there is no destructuration of
extreme values, as opposed to the bigaussian or bigamma models, where
the destructuration is total (Matheron, 1982); the image appears as more
“ordered.”

(f ) Orthogonal indicator residuals model(Fig. 1(F)). This model describes
categorical variables without edge effects when going upwards or down-
wards (Rivoirard, 1989); only the mosaic model combines the absence of
edge effects in both senses.

No initial data are considered in the simulations, which arenot conditional.
The realizations share the same covariance (an exponential model); however,
their bivariate laws are different. They illustrate the flexibility of the sequen-
tial isofactorial method, which can reproduce a great variety of structural
characteristics.

APPLICATION TO A MINING DATASET

In this section, the sequential isofactorial method is applied to a dataset from
a gold deposit. It deals with 3810 composite samples of 5 m length (Fig. 2),
with their gold grade (unit: g/t). Because of the irregular sampling, a decluster-
ing variable is taken into account in the calculation of the data histogram and
the associated statistics (Fig. 3). This variable is determined by the cell method
(Deutsch and Journel, 1998), with a reference cell of size 40 m× 40 m ×
5 m; these dimensions correspond approximately to the mean separation between
samples.

The histogram shows a strong asymmetry as well as “ties” in its origin, which
would make approximate any attempt of gaussian anamorphosis and clumsy the
use of a gaussian model. To describe the gold grade, a Laguerre-type model is
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Figure 2. Base map of the samples (perspective view).

Figure 3. Declustered histogram of the gold data (restricted to the values between
0 and 4 g/t).
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considered because it incorporates two specific parameters which will be quite
pertinent in this study:

• a skewness coefficient, notedα;
• a destructuration coefficient, notedβ.

Determination of the Point–Support Model

First, an anamorphosis is achieved in order to transform the initial variable
Z(x) into a variableY(x) which follows a gamma distribution (Fig. 4). Now,
this distribution depends on a skewness coefficient, which controls its form. In this
case, the valueα = 0.5 has been retained, because the corresponding anamorphosis
leaves unchanged the ratio between the mean and the median; in addition, such a
coefficient value is compatible with the presence of ties in the histogram origin, as
it is less than 1. This and other criteria for choosing the skewness coefficient are
presented in Hu (1988).

The empirical anamorphosis, which is a step function, is usually modeled via
an expansion in a series of factors (Laguerre polynomials). The key parameter in
this modeling is the choice of the limits of the raw variable, here [0,100 g/t].

The destructuration coefficient can be identified thanks to a plot of the experi-
mental values of the first order variogram or “madogram,”γ1(h), versus those of the
second order variogram,γ (h) (Fig. 5(A)); to improve the identification of such a
coefficient, calculations along one direction of high continuity were superimposed
to omnidirectional calculations.

In theory, these variograms are linked through the relation

γ1(h) = 0(α + 1/2)0(β)√
π0(α)0(β + 1/2)

0(βγ (h)/α + 1/2)

0(βγ (h)/α)
(8)

where0 stands for the Euler function which interpolates the factorial.
The coefficientβ has to be found so that Equation (8) is verified approximately

by the experimental points in Figure 5(A). A coefficient equal to 0.4 leads to a
satisfactory fitting (Fig. 5(B)).

The structural analysis of the gamma variableY(x) has to be performed to
complete the point–support model. This variable shows an anisotropy whose mi-
nor range direction is oriented 30◦ from the vertical axis, whereas the orthogonal
plane is quite isotropic. Such an anisotropy orientation is corroborated by geolog-
ical information. The correlogram model (Fig. 6) contains a nugget effect and a
spherical structure (the use of a correlogram is due to the lack of robustness of
the classical variogram, because of the strong asymmetry of the gamma variable
distribution and the presence of extreme values).
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Figure 6. Experimental and modeled correlograms along the principal anisotropy
directions.

Validation of the Isofactorial Property

The bivariate model can be validated by comparing several indicator vario-
grams with their theoretical expressions, which can be deduced from the correlo-
gram ofY(x) and the coefficientsα andβ (Fig. (7)).

The conformity between experimental and theoretical curves is satisfactory:
the bivariate model proves to be adequate. Note that, contrary to the bigaussian
model, here the first and third quartile variograms (Fig. 7(A) and (C)) are not iden-
tical any more, although they correspond to symmetrical low and high quantiles;
thus, the Laguerre-type model is able to take into account a greater correlation of
high values than of low values.

Point–Support Simulations

As the point–support isofactorial model is entirely specified, various sim-
ulations can be made thanks to the sequential isofactorial method (Fig. 8). The
images obtained have the same structural features as regards the anisotropy and
the connectivity of high values. Conditioning to data values is also visible, as they
globally show the same high grade and low grade areas.

The selective mining units correspond to blocks of size 4 m× 4 m ×
5 m. To obtain simulations of block values, a first solution consists in averaging
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Figure 7. Experimental and theoretical variograms of the cumulated indicators associated to (A) the
first quartile, (B) the median, and (C) the third quartile.

point–support simulations, which requires discretizing each block into several
points. Hereafter, a variant of the method is described: it allows one todirectly
simulate block values, without using point–support simulations, which consider-
ably alleviates the amount of calculations. As a counterpart, additional assumptions
are needed in order to build a change of support model.

Block Simulations

The change of support model assumes that point and block values follow, after
anamorphosis, isofactorial Laguerre-type laws, and that the law between points
and blocks is isofactorial and asymmetrical. Such a law is characterized by two
series of factors, which are Laguerre polynomials (Chil`es and Delfiner, 1999). To
ensure the coherence of the model, the positions of the samples must be randomized
inside the blocks. The modus operandi is similar to the one used in the well-known
discrete gaussian model(Rivoirard, 1994) and will not be detailed hereafter.
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Figure 8. Four conditional simulations of the point–support gold grade (representation of a horizontal
bench).

With respect to the point–support model, several additional parameters have
to be specified:

• the change of support coefficient, which measures the correlation between
a block value and the point–support values inside this block;
• the correlogram of block values after anamorphosis;
• the skewness coefficient of block values, which is partly undetermined.

Once known these parameters, all the covariance functions between point
and block factors are fully determined; the block associated factors can then be
estimated by simple cokriging from any set of point and block factor values.
Using this cokriging in the sequential algorithm for calculating the block local
cumulative density functions, enables one to build direct conditional simulations
of block values (Fig. 9).

Block simulations can help to estimate the transfer functions associated to re-
coverable reserves (e.g., tonnage and metal quantity above a given cutoff). Though
these functions can be evaluated analytically via disjunctive kriging, the advan-
tage of the simulations is their flexibility. Firstly, they allow to chose the quality
criterion for an estimation. For instance, each block can be classified into mineral
or waste by minimizing a loss function which takes into account economical and
practical parameters, whereas the estimations by disjunctive kriging are based on
the minimization of the mean squared error. Secondly, unlike disjunctive kriging,
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Figure 9. Four conditional simulations of the block–support gold grade (representation of a horizontal
bench).

simulations can be used to study several blockssimultaneously, for example, the
blocks of a same panel.

CONCLUSION

The sequential isofactorial method provides conditional simulations which
reproduce the mono and bivariate distributions of the variable under study, im-
proving the quality of algorithms based on an indicator discretization. It is quite
a flexible technique, because it allows the user to regulate features that cannot be
considered in the gaussian frame, namely the skewness of the distribution and/or
the connectivity of high values; it can be adapted to the simulation of continuous
or categorical variables, as well as direct simulation of block average values.

Like other sequential simulation techniques, some approximations are in-
evitable (restriction of the conditioning neighborhood, monotonicity correction of
the local cumulative density function), but the quality of the algorithm remains
excellent. As an example, Figure 10 compares the empirical and theoretical vari-
ograms and madograms (first order variograms) of the realizations corresponding
to the hermitian and Laguerre-type processes shown in Figure 1(B) and (D); be-
cause these processes have the same theoretical normalized variogram (an expo-
nential model) and the same destructuration coefficient, they also share the same
normalized madogram according to Equation (8).
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