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Multidimensional Self-Affine Distribution
With Application in Geochemistry1

Shen Wei2,3 and Zhao Pengda3

In this paper, we present the conception of the multidimensional self-affine distribution and show
that the multidimensional self-affine distribution possesses the fractal property of scale-invariance
under truncation, which means that theoretical study of fractals has expanded from univariate cases
to multivariate cases. Application of the multidimensional self-affine distribution is illustrated by
means of geochemical Au and Ag elements data sets. The fractal dimension is a parameter which can
quantitatively explain the variation of geochemical elements data on some orientation. This method
is applied to Au data and Ag data, but also suited for other geochemical elements data or geological
data. Theory of multivariate fractal can be applied for the study of change courses of fractal system,
that is, fractal dynamics.
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INTRODUCTION

The term fractal was founded by the Mathematician Mandelbrot (1983). A fractal
is an object made of parts similar to the whole in some way, either exactly the
same except for scale or statistically the same. The character of self-affine fractal
is anisotropic with varying fractal body, that is, different orientations have different
scale factors, while self-similar fractal is a special case of self-affine fractal, that
is, different orientations have the same scale factor.

The chaos dynamic mechanism of enrichment or migration of geochemi-
cal elements in the crust and the interaction of nonlinear process in geological
environment may be an essential cause of uneven distributions of geochemical
elements, which results in fractal structure of geochemical elements, ore reserves,
and their spatial distributions. Many geological phenomena possess scale similarity

1Received 3 January 2000; accepted 12 January 2000.
2Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences,
550002 Guiyang, People’s Republic of China; e-mail: shenweihome@263.net

3Institute of High and New Techniques Applied to Land Resources, China University of Geosciences,
Xueyuan Road 29, 100083 Beijing, People’s Republic of China.

109

0882-8121/02/0200-0109/1C© 2002 International Association for Mathematical Geology



P1: FYJ

Mathematical Geology [mg] pp376-matg-367311 February 14, 2002 8:37 Style file version June 30, 1999

110 Wei and Pengda

(scale-invariance) properties. They include rock fragments, faults, earthquakes,
volcanic eruptions, mineral resources, and oil pools.

The concept of fractals has been developed and applied for the study of the
spatial distribution of physical and chemical quantities and entities with properties
of self-similarity or statistical self-similarity (Agterberg, 1994; Cheng, 1997a,b;
Cheng and Agterberg, 1996a,b; Feder, 1988; Mandelbrot and Evertsz, 1991;
Schertzer and Lovejoy, 1991; Stanley and Meakin, 1988). Multifractal models
also have been used in geoscience to characterize various geological and geophys-
ical quantities such as gold concentration values in rocks, and density of mineral
deposits in a mineral district (Agterberg, Cheng, and Wright, 1993; Cheng and
Agterberg, 1996a,b; Cheng, Agterberg, and Ballantyne, 1994). Meng and Zhao
(1991) considered that geochemical data (for example Au data or Ag data) have
fractal structure. Cheng, Agterberg, and Ballantyne (1994) studied separation of
geochemical anomalies from background by fractal methods.

The current paper consists of four sections: (1) review of theory of multi-
fractals; (2) definition of a self-affine fractal; (3) multidimensional self-affine dis-
tribution; and (4) this method and example of geochemical Au and Ag elements
date sets in Shangdong province, People’s Republic of China.

REVIEW OF THEORY OF MULTIFRACTALS

The concept of multifractals has been developed and applied recently in
physics and chemistry where this approach was shown to be useful for the study
of the spatial distribution of physical and chemical quantities with geometrical
support. For a continuous random variable this support may consist of cells created
by a partitioning ofk-dimensional spaceRk (k = 1, 2, or 3). Suppose that each cell
is regarded as a set. Then the measurements are assumed to be the intersections of
the sets for the cells with a set of spatial objects; for example, points, line segments,
or area objects (polygons inR2).

Multifractals are intertwined (spatially) fractals with a continuous spectrum
of fractal dimensions (Agterberg and others, 1996; Evertsz and Mandelbrot, 1992;
Feder, 1988; Hentschel and Procaccial, 1983; Stanley and Meakin, 1988). From
the multifractal model, fractal models can be derived which may have different
fractal dimensions including the box-counting, information, and correlation or
cluster dimensions. In general, different fractal sets, defined on the same complex
geometrical pattern with the property of self-similarity, can be interrelated by
multifractal theory.

Supposeµ(S) represents the measure of a set S inRk, k = 1, 2, or 3. The
spaceRk can be subdivided into cells of the same linear sizeε (equal intervals in
R1, squares of sideε in R2). The measureµ(S) can be regarded as the total mass
or the combined length of all line segments considered. The study region may be
subdivided into square cells with length of sideε; local fracture intensity can be
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represented by the measureµi (ε) on the intersection of S with thei th cell of sizeε.
The partition functionχq(ε) of orderq for cell sizeε (Evertsz and Mandelbrot,
1992) is defined as

χq(ε) =
N(ε)∑
i=1

µ
q
i (ε), (1)

whereN(ε) is the total number of cells of sizeε. If the measureµi (ε) satisfies
the multifractal model, the partition function of Eq. (1) has a simple power-law
relation with cell sizeε for anyχq(ε) with −∞ ≤ q ≤ ∞, or

χq(ε) ∝ ετ (q), (2)

where∝ represents proportionality, andτ (q) is the mass exponent of orderq. The
value ofq is not an integer number necessarily. Equation (2) implies approximate
self-similarity (scale-independence) forµi (ε) and its spatial variability.

The box-counting dimension can be derived fromχ0(ε), which represents the
total number of cells with sizeε, and is equal to−τ (0). Because the total mass in the
study region should be independent ofε, orµ(S)= χ1(ε), it follows thatτ (0)= 0
(principle of conservation of total mass). If the assumption of multifractality is
satisfied, the log–log plotχq(ε) versusε consists of a number of different straight
lines, one for every value ofq used. The slopes of these lines would be obtained
also for a simple fractal model, but then all values ofτ (q) = −τ (−q + 2) for any
value ofq.

If ε is small, the relationµ(ε) = εα representing self-similarity of the measure
itself can used to define the singularity exponentα in the immediate vicinity of any
point in the study area. All small areas with the same value ofα form a fractal set
with dimensionf (α). Evertsz and Mandelbort (1992) discuss that, for multifractals
with self-similar patterns of change,α is a function ofq, and be obtained from

α(q) = dτ (q)

dq
. (3)

For a simple fractal,α(q) would be the same for all values ofq. The multifractal
spectrumf (α) = f {α(q)} follows from

f (α) = qα(q)− τ (q). (4)

The function f (α) can be interpreted as the negative of the Legendre transform of
τ (q) (Evertsz and Mandelbrot, 1992). As mentioned already, each point along
the curve for the spectrumf (α) represents the fractal dimension of a subset
of S with approximately the same singularity exponentα. The maximum value
fmax{α(0)} = −τ (0), which is reached forq = 0, corresponds to the box-counting
fractal dimension. For a two-dimension set,fmax{α(0)} ≤ 2. The valuef {α(1)}
for q = 1 is the entropy dimension. The clustering of separate correlation of
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continuous random variables for cells are determined primarily by the second-
order mass exponentτ (2). The correlation dimensionf {α(2)} follows fromα(2)
andτ (2).

DEFINITION OF A SELF-AFFINE FRACTAL

A statistically self-similar fractal is by definition isotropic (Turcotte, 1997). In
two dimensions defined byx andy coordinates the results do not depend on the geo-
metrical orientation of thex- andy-axes. A formal definition of a self-similar fractal
in a two-dimensionalxy-space is thatf (r x, r y) is statistically similar tof (x, y)
wherer is a scaling factor. This is quantified by applications of the fractal relation

N = Cr−D, (5)

where r is a characteristic linear dimension,D = fractal dimension (real
number> 0),C = constant of proportionality (prefactor parameter),N = N(≥r )
(number of objects with characteristic linear dimension≥r ). The number of boxes
with dimensionsx1, y1 required to cover a rocky coastline isN1; the number of
boxes with dimensionsx2 = r x1, y2 = r y1 required to cover a rocky coastline is
N2. If the rocky coastline is a self-similar fractal, we haveN2/N1 = r−D.

A formal definition of a self-similar fractal in an-dimensionalx1 · · · xn-space
is that f (r x1, . . . , r xn) is statistically similar tof (x1, . . . , xn) wherer is a scaling
factor.

A statistically self-affine fractal is not isotropic. A formal definition of a
self-affine fractal in a two-dimensionalxy-space is thatf (r x, r H y) is statisti-
cally similar to f (x, y) whereH is known as the Hausdorff measure; In the box-
counting method square boxes become more and more rectangular as their size is
increased.

A formal definition of a self-affine fractal in an-dimensionalx1· · ·xn-space
is that f (r d1x1, . . . , r dn xn) is statistically similar tof (x1, . . . , xn) wheredi (i =
1, . . . ,n) are constants.

MULTIDIMENSIONAL SELF-AFFINE DISTRIBUTION

N-Dimensional Self-Affine (I-Type) Distribution

The random variablesX1, X2, . . . , Xn have then-dimensional self-affine
(I-type) distribution if their probability density function is of form

fX1,...,Xn(x1, . . . , xn) =
n∏

j=1

aj k
aj

j x
−(aj+1)
j

(aj > 0; xj > kj > 0; j = 1, 2, . . . ,n), (6)
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whereaj ( j = 1, 2, . . . ,n) are shape parameters andkj ( j = 1, 2, . . . ,n) are scale
parameters.

The n-dimensional self-affine (I-type) cumulative distribution function of
random variablesX1, X2, . . . , Xn is

FX1,...,Xn(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn)

=
∫ x1

−∞
· · ·
∫ xn

−∞
fX1,...,Xn(x1, . . . , xn) dx1 · · · dxn

=
n∏

j=1

[
1−

(
xj

kj

)−aj
]

(aj > 0; xj > kj > 0; j = 1, 2, . . . ,n), (7)

As a consequence of (7), the complementary cumulative distribution function
of random variablesX1, X2, . . . , Xn is

P(X1 ≥ x1, . . . , Xn ≥ xn) =
∫ +∞

x1

. . .

∫ +∞
xn

fX1,...,Xn(x1, . . . , xn) dx1 · · ·dxn

=
n∏

j=1

(
xj

kj

)−aj

(aj > 0; xj > kj > 0; j = 1, 2, . . . ,n). (8)

Under lower truncation, that is, (aj > 0; xj > k′j > kj > 0; j = 1, 2, . . . ,n),
we obtain

P(X1 ≥ x1, . . . , Xn ≥ xn | X1 ≥ k′1, . . . , Xn ≥ k′n)

=
∏n

j=1(xj /kj )−aj∏n
j=1(k′j /kj )−aj

=
n∏

j=1

(
xj

k′j

)−aj

(aj > 0; xj > k′j > kj > 0; j = 1, 2, . . . ,n), (9)

which is itself an-dimensional self-affine (I-type) distribution with scale parameter
k′j ( j = 1, 2, . . . ,n). Thus, the originaln-dimensional self-affine (I-type) distribu-
tion is self-similar under lower truncation.

Another important additional property of the conditioned or truncated variable
is that it is scale invariant in the sense that its distribution does not depend upon
the original scale parameterkj ( j = 1, 2, . . . ,n). The n-dimensional self-affine
(I-type) distribution characterizes this property. The proof of this can be based
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on the necessary condition of scale-invariance under lower truncation (aj > 0;
xj > k′j > kj > 0; j = 1, 2, . . . ,n) which implies then-dimensional self-affine
(I-type) distribution

P(X1 ≥ x1, . . . , Xn ≥ xn | X1 ≥ k′1, . . . , Xn ≥ k′n)

= P(X1 ≥ cx1, . . . , Xn ≥ cxn | X1 ≥ ck′1, . . . , Xn ≥ ck′n)

(aj > 0; xj > k′j > kj > 0; j = 1, 2, . . . ,n), (10)

wherec can be any positive number. Then-dimensional self-affine (I-type) distri-
bution of the rescaled truncation variable is independent ofc.

From Eq. (6) we have the marginal density function

fX j (xj ) = aj k
aj

j x
−(aj+1)
j ( j = 1, 2, . . . ,n) (11)

and the marginal cumulative distribution function

FX j (xj ) = 1−
(

xj

kj

)−aj

(aj > 0; xj > kj > 0; j = 1, 2, . . . ,n). (12)

In fact, Eqs. (11) and (12) are the Pareto probability density function and the
Pareto distribution function, respectively (Johnson and Kotz, 1970, p. 234 or see
Appendix A).

The expectation or mean of the marginal distribution function (12) are

E(X j ) = aj kj (aj − 1)−1 (aj > 0; xj > kj > 0; j = 1, 2, . . . ,n), (13)

The variance of the marginal distribution function (12) are

D(X j ) = aj k
2
j (aj − 2)−1(aj − 1)−2 (aj > 0; xj > kj > 0; j = 1, 2, . . . ,n).

(14)

Since fX1,...,Xn(x1, . . . , xn) = fX1(x1) · · · fXn(xn) the random variablesX1,

X2, . . . , Xn are independent variables.

N-Dimensional Self-Affine (II-Type) Distribution

The random variablesX1, X2, . . . , Xn have then-dimensional self-affine
(II-type) distribution if their probability density function is of form

fX1,...,Xn(x1, . . . , xn) =
n∏

j=1

aj k
−aj

j x
aj−1
j (aj > 0; 0< xj < kj ; j = 1, . . . ,n),

(15)
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whereaj ( j = 1, 2, . . . ,n) are shape parameters andkj ( j = 1, 2, . . . ,n) are scale
parameters.

The n-dimensional self-affine (II-type) cumulative distribution function of
random variablesX1, X2, . . . , Xn is

FX1,...,Xn(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn)

=
∫ x1

−∞
. . .

∫ xn

−∞
fX1,...,Xn(x1, . . . , xn) dx1 · · ·dxn =

n∏
j=1

(
xj

kj

)aj

(aj > 0; 0< xj < kj ; j = 1, . . . ,n). (16)

Then-dimensional self-affine (II-type) complementary cumulative distribu-
tion function of random variable (X1, X2, . . . , Xn) is

P(X1 ≥ x1, . . . , Xn ≥ xn) =
∫ +∞

x1

· · ·
∫ +∞

xn

fX1,...,Xn(x1, . . . , xn) dx1 · · ·dxn

=
n∏

j=1

[
1−

(
xj

kj

)aj
]

(aj > 0; 0< xj < kj ; j = 1, . . . , n). (17)

Under upper truncation, that is, (aj > 0; 0< xj < k′j < kj ; j = 1, 2, . . . ,n),
we obtain

P(X1 ≤ x1, . . . , Xn ≤ xn | X1 ≤ k′1, . . . , Xn ≤ k′n)

=
∏n

j=1(xj /kj )aj∏n
j=1(k′j /kj )aj

=
n∏

j=1

(
xj

k′j

)aj

(aj > 0; 0< xj < k′j < kj ; j = 1, 2, . . . ,n), (18)

which is itself an-dimensional self-affine (I-type) distribution with scale parameter
k′j ( j = 1, 2, . . . ,n). Thus, the originaln-dimensional self-affine (II-type) distri-
bution is self-similar under upper truncation.

P(X1 ≤ x1, . . . , Xn ≤ xn | X1 ≤ k′1, . . . , Xn ≤ k′n)

= P(X1 ≤ cx1, . . . , Xn ≤ cxn | X1 ≤ ck′1, . . . , Xn ≤ ck′n)

(aj > 0; 0< xj < k′j < kj ; j = 1, 2, . . . ,n), (19)

wherec can be any positive number.
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From the above equation we can see that then-dimensional self-affine
(II-type) distribution of the rescaled truncation variable is independent ofc.

From Eq. (15) we have the marginal density function

fX j (xj ) = aj k
−aj

j x
aj−1
j ( j = 1, 2, . . . ,n) (20)

and the marginal cumulative distribution function

FX j (xj ) =
(

xj

kj

)aj

(aj > 0; 0< xj < kj ; j = 1, 2, . . . ,n). (21)

In fact above Eqs. (20) and (21) are the power-function probability density
function and the power-function distribution function, respectively (Johnson and
Kotz, 1970, p. 247 or see Appendix B).

The expectation or mean of the marginal distribution function (21) are

E(X j ) = aj kj (aj + 1)−1 (aj > 0; 0< xj < kj ; j = 1, 2, . . . ,n). (22)

The variance of the marginal distribution function (21) are

D(X j ) = aj k
2
j (aj + 2)−1(aj + 1)−2 (aj > 0; 0< xj < kj ; j = 1, 2, . . . ,n).

(23)

Since fX1,...,Xn(x1, . . . , xn) = fX1(xn) · · · fXn(xn) the random variables
X1, X2, . . . , Xn are independent variables.

The multidimensional self-affine distribution can be applied to the case of
anisotropic fractal bodies, that is, different orientations have different scale factors.
The vertical coordinate is statistically related to the horizontal coordinate but
systematically has a small magnitude. Vertical cross sections of this type are often
examples of self-affine fractals.

APPLICATION: GEOCHEMICAL Au AND Ag ELEMENTS DATA

We now apply the variogram method and the multidimensional self-affine
(II-type) distribution to geochemical Au and Ag elements data sets in Shangdong
province, People’s Republic of China. There are 21334 samples of Au and 21334
samples of Ag.

The variogram method is widely used in the determination of the fractal
dimension of surfaces (Burrough, 1981) and appears to have properties—in par-
ticular its ease of use—which make it a preferred method over spectral analysis
(Carr and Benzer, 1991; Klinkenberg and Goodchild, 1992). Although it has been
much less commonly applied to strictly linear phenomena, the method is very easy
to implement when analyzing self-affine profiles. By sampling a large number of
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pairs of points (of differing spacings) along the profile and computing the differ-
ences in their vertical values (e.g.,z values) the fractal dimension is derived easily
from the log–log plot of expected differences inzsquared versus distance between
the point pairs.

A semivariogram quantifies the spatial correlation of a set of measurements
by examining the variability of pairs of measurements in terms of the separation
distance. The semivariogram is defined as

γ (h) = [E(Z(x)− Z(x + h))2]

2
, (24)

Whereγ (h) is the semivariogram at separation or lag distancesh, Z(x) (a second
order stationary random function) is the value at a pointx in the region,Z(x + h)
is the value at a distanceh from x, andE is the expected value of the quantity in
brackets.

A small value of semivariogram indicates that pairs of measurements for a
particular separation distance are similar, or have low variability. High values of
semivariogram indicate that the values of measurements in the lag pairs are, on
average, very dissimilar.

Let Z(x) be a second order stationary random function (for example,Z(x) is
a sample or measurement of geochemical elements in a two-dimensional space).
We have the following equation

γ (h) = [E(Z(x)− Z(x + h))2]

2
= ChD (h > 0; 0< D < 2), (25)

whereC and D are unknown parameters. The functionγ (h) is also called the
fractal variance function, that is, the power semivariogram. In fact, Eq. (25) is
a nonlinear regression model with unknown parametersC and D. By means
of nonlinear least-square regression analysis (Shen, 1997), we can evaluate the
estimates of the parametersC and D from the data sets (h1, h2, . . . , hn) and
(γ̂ (h1), γ̂ (h2), · · · , γ̂ (hn)) which are obtained by experimental semivariograms

γ̂ (h j ) = 1

2n(h j )

n(h j )∑
i=1

[Z(xi + h j )− Z(xi )]
2, ( j = 1, 2, · · · , n), (26)

where Z(xi ), for i = 1, 2, . . . , N, is a sampling of sizeN andn(h j ) is the number
of pairs of variables at distanceh j ( j = 1, 2, . . . ,n) apart.

EstimateD̂ is called the generalized fractal dimension (Shen and Zhao, 1998).
In fact, the parameterD is a shape parameteraj − 1 of then-dimensional self-
affine (II-type) density function. Fractal dimensionD is an index which controls
the variation or trend of variableZ(x) on certain orientation. The greater the fractal
dimensionD, the greater the variation of variableZ(x) for h > 1. For example, the
variation of thickness of seam is lower than that of the grade of metallic ore deposits.
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Figure 1. Empirical data is shown as the solid points and a fractal
variance function (the power semivariogram) fitting the data shown
by the solid line. (A) Plot of fitting a fractal variance function to Au
date eastward, (B) Plot of fitting a fractal variance function to Au
date northward, (C) Plot of fitting a fractal variance function to
Ag date eastward, and (D) Plot of fitting a fractal variance function
to Ag date northward.

Figure 1(A)–(D) are plot of fitting a fractal variance function to geochemi-
cal Au elements data eastward, northward, geochemical Ag elements date east-
ward, and northward, respectively, in Shangdong province, People’s Republic of
China.
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Figure 1. (Continued)

Note that orientations above don’t require orthogonality (eastward, northward)
and may be arbitrary orientations.

The Figure 1(A)–(D) suggests that the fractal dimension (D = 0.142) for
Au elements data eastward is more than that (D = 0.116) of northward, that is, the
variation of Au elements data eastward is higher than that of northward, and that
the fractal dimension (D = 0.182) for Ag elements data northward is more than
that (D = 0.084) of eastward, that is, the variation of Ag elements data northward
is higher than that of eastward.
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From Eq. (20) (in two-dimension case) we have

(a) The marginal density function of the 2-dimensional self-affine (II-type)
distribution of Au elements data eastward

fWE(x1) = 0.0473x0.142
1 (0< x1 < 16); (27)

(b) The marginal density function of the two-dimensional self-affine (II-type)
distribution of Au elements data northward

fNS(x2) = 0.0498x0.116
2 (0< x2 < 16); (28)

(c) The marginal density function of the two-dimensional self-affine (II-type)
distribution of Ag elements data eastward

fWE(x1) = 0.0531x0.084
1 (0< x1 < 16); (29)

(d) The marginal density function of the two-dimensional self-affine (II-type)
distribution of Ag elements data northward

fNS(x2) = 0.0437x0.182
2 (0< x2 < 16). (30)

Supposing the variablesX1 (eastward) andX2 (northward) are independent,
from Eqs. (27) and (28) we can obtain the two-dimensional self-affine (II-type)
distribution function of Au elements dataX1 (eastward) andX2 (northward)

fWE,NS(x1, x2) = 0.00236x0.142
1 x0.116

2 (0< x1 < 16; 0< x2 < 16) (31)

and from Eqs. (29) and (30) the two-dimensional self-affine (II-type) distribution
function of Ag elements dataX1 (eastward) andX2 (northward)

fWE,NS(x1, x2) = 0.00232x0.084
1 x0.182

2 (0< x1 < 16; 0< x2 < 16). (32)

From equations above we can analyze the distribution of geochemical ele-
ments data and the variation (or trend) of geochemical elements data in a two-
dimensionalx1x2-space.

CONCLUSIONS

The conception of the multidimensional self-affine distribution (I-type and
II-type) is presented in this paper. We prove that the original n-dimensional
self-affine (I-type) distribution is self-similar under lower truncation, the
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original n-dimensional self-affine (II-type) distribution is self-similar under up-
per truncation and then-dimensional self-affine (I-type or II-type) distribution
is the distribution which the rescaled truncation variable has a distribution inde-
pendent of any positive numberc. The variogram method and the multidimen-
sional self-affine (II-type) distribution are applied for geochemical Au and Ag
elements data sets in Shangdong province, People’s Republic of China. The frac-
tal dimensionD is an index which can quantitatively explain the variation or
trend of variableZ(x) on certain orientation. The method above is applied to Au
data and Ag data but also suited for other geochemical elements data or geo-
logical data.
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APPENDIX A: THE PARETO DISTRIBUTION AND ITS MOMENTS

The Pareto probability density function ofX is

f (x) = akax−a−1 (a > 0; x ≥ k > 0), (A1)

wherea is a shape parameter andk is a scale parameter.
The Pareto distribution function ofX is

F(x) = P(X ≤ x) =
∫ x

−∞
f (x) dx = 1−

(x

k

)−a
(a > 0; x ≥ k > 0). (A2)

Providedr is less thana, ther th moment about zero is

µ′r =
akr

(a− r )
(A3)

The expected value or mean ofX is

E(X) = ak(a− 1)−1 (a > 1). (A4)

The variance ofX is

D(X) = ak2(a− 2)−1(a− 1)−2 (a > 2). (A5)
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APPENDIX B: THE POWER-FUNCTION DISTRIBUTION
AND ITS MOMENTS

If X has the probability density function (the Pareto density function)

f (x) = akax−a−1 (a > 0; x ≥ k > 0), (B1)

thenY = X−1 has the density function

g(y) = akaya−1 (a > 0; 0< y ≤ k−1). (B2)

The power-function distribution function ofY is

G(y) = P(Y ≤ y) =
∫ y

−∞
g(y) dy= (ky)a (a > 0; 0< y ≤ k−1). (B3)

This distribution, which is a special Pearson Type I distribution, is called the power-
function distribution. Ther th moment about zero is, of course, simply the negative
moment of the corresponding Pareto distribution, so that

µ′r =
ak−r

(a+ r )
. (B4)

The expected value isak−1(a+ 1)−1 (a > 0) and the variance isak−2(a+ 2)−1

(a+ 1)−2 (a > 0).


