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Conditioning Channel Meanders
to Well Observations1

Dean S. Oliver2

Assessment of uncertainty in the performance of fluvial reservoirs often requires the ability to generate
realizations of channel sands that are conditional to well observations. For channels with low sinuosity
this problem has been effectively solved. When the sinuosity is large, however, the standard stochastic
models for fluvial reservoirs are not valid, because the deviation of the channel from a principal
direction line is multivalued. In this paper, I show how the method of randomized maximum likelihood
can be used to generate conditional realizations of channels with large sinuosity. In one example,
a Gaussian random field model is used to generate an unconditional realization of a channel with
large sinuosity, and this realization is then conditioned to well observations. Channels generated in
the second approach are less realistic, but may be sufficient for modeling reservoir connectivity in
a realistic way. In the second example, an unconditional realization of a channel is generated by a
complex geologic model with random forcing. It is then adjusted in a meaningful way to honor well
observations. The key feature in the solution is the use of channel direction instead of channel deviation
as the characteristic random function describing the geometry of the channel.
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INTRODUCTION

In many parts of the world, oil is found in reservoirs whose porosity and per-
meability are largely controlled by the location of paleochannels, and associated
facies. These facies are often deposited in a nearly impermeable background, and
so connectivity of reservoir between wells and the ability to recover oil is largely
determined by the geometry and location of the channel sands. These sands may
be observed in only a few locations, but accurate modeling of flow requires the
generation of reservoir models that honor the well observations at wells, and are
plausible between wells. Because the locations of the channel cannot be observed
between wells and because many plausible channels could honor the observations,
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it is usually desirable to generate many realizations, all of which are conditional
to the well observations.

Stochastic models for channel geometry range from complex mechanistic
models devised by sedimentologists, to purely geostatistical Boolean and indicator
models. Typically, the location of a channel center in a Boolean model is described
by a principal direction line whose angle and intercept are random variables, and
by random variables that describe the deviation of the channel center from the
principal direction line. Examples of this approach to modeling channel geometry
can be found in the papers by Georgsen and Omre (1993), Georgsen and others
(1994), and Deutsch and Wang (1996).

It is important for assessment of uncertainty in reservoir performance that
channel realizations be conditioned to well observations. To solve the complete
conditioning problem, one must address the three-dimensional aspects and prob-
lems associated with the presence of multiple channels. In this paper, I address
only the conditioning of a single channel, but one might look at Georgsen and
others (1994) to see how this algorithm could be used as part of a more complete
package. One efficient method for conditioning the centerline location of a sin-
gle channel of the type described in the previous paragraph is to use sequential
Gaussian simulation to generate a 1D random field of channel deviations along
the principal direction line, conditional to known deviations at the well locations
(Shmaryan and Deutsch, 1999; Viseur, Shtuka, and Mallet, 1998). Holden and
others (1998) and Skorstad, Hauge, and Holden (1999) describe a method that
uses the Metropolis–Hastings algorithm for conditioning. In this approach, condi-
tioning points are first drawn near the wells, and then the location of the channel at
other locations is found by drawing Gaussian random fields for channel deviations
conditioned on the known locations. The Metropolis–Hastings algorithm is used
to decide whether or not to accept the proposed reservoir. In conditioning channel
geometry to pressure data, Bi, Oliver, and Reynolds (2000) also made use of the
fact that the deviation of the channel and width and thickness were single-valued
functions of distance along the principal direction line.

The problem with channel simulation approaches that are based on a repre-
sentation of the channel variables as single valued functions along a line in space
is that they are unable to represent channel meanders of high sinuosity as shown
in Figure 1. This shape could not be represented as a random deviation from a
principal direction line.

In this paper, I will show how the method of randomized maximum likelihood
can be used to generate conditional realizations of channels with large sinuosity.
In one example, the original (unconditional) realization of a channel is generated
by a complex geologic model with random forcing. It is then adjusted in a mean-
ingful way to honor well observations. In the second example, I demonstrate the
possibility of generating channels with large sinuosity from a gaussian random
field model, and conditioning these to well observations. Channels generated in
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Figure 1. Highly sinuous channel meanders (Howard, 1996) for which the standard
stochastic fluvial models are not appropriate. Copyright John Wiley & Sons Limited.
Reproduced with permission.

the second approach are less realistic, but may be sufficient for modeling reservoir
connectivity in a realistic way.

MEANDER GEOMETRY

Langbein and Leopold (1966) proposed that the geometry of a channel mean-
der might be modeled as a random walk in which the change in channel direction
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Figure 2. Numerical simulation of a meandering channel (Howard, 1996). Black dots indicate the
locations to be used as well observations.

in each increment of length is a normally distributed random variable with zero
mean. Then, if the channel is constrained to pass through two locations and the
length of the channel is fixed, the most probable shape for the channel is described
by θ (s) = sin(s), wheres is the distance along the channel andθ is the channel
direction at that point. Langbein and Leopold (1966) cited a number of channels
for which this seemed to be an appropriate mathematical model.

Others have noted that while individual bends in a freely meandering river
may be modeled by a sine-generated curve, the actual geometry over several wave-
lengths is far too complex to be described by such a simple model (Furbish, 1991).
In general, authors who wish to generate realistic meanders resort to geologic
modeling in which sediment transport, erosion, channel cutoff, and crevasse and
levee formation are based on statistically sampled discharge and duration of annual
floods. Examples of this type of simulation can be found in Sun and others (1996)
or Gross and Small (1998). The meanders in Figure 2 are the result of a simulation
by Howard (1996).

The difficulty with this type of modeling is in obtaining a realization that
is conditional to well observation. The computational expense of generating a
single unconditional realization is simply too great to permit conditioning to be
done in a trial-and-error manner, and the stochastic forcing does not seem to adapt
easily to a Markov chain Monte Carlo approach. In general terms, the choice for
stochastic models of channel meanders seems to be between simple models that
can be conditioned to well observations but are not plausible, or complex models
that cannot be conditioned. In this paper, I present a method for conditioning
realizations from complex stochastic models using the method of randomized
maximum likelihood (Oliver, He, and Reynolds, 1996).

The method of randomized maximum likelihood is an approximate method
for generating conditional realizations. Qualitatively, the method consists of the
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following steps: (1) generation of an unconditional realization of the model vari-
ables, (2) generation of a realization of the data fromN[dobs, σD], (3) generation
of a set of model variables that is as close as possible to the model generated
in Step 1 and for which the observations would be as close as possible to those
generated in Step 2, and (4) a decision as to whether or not the realization gen-
erated is acceptable or not. Although the criterion for this decision could be
made rigorous as described in Oliver, He, and Reynolds (1996), an ad hoc ac-
ceptance criterion in which realizations that do not adequately match the data
are rejected is usually employed. For Gaussian models the choice of a measure
of closeness is usually clear, but for non-Gaussian models reparameterization
of the model is sometimes required. The realizations will all be plausible and
all will honor the data; the approximation is that by using a simplified accept/
reject criterion in Step 4 the ensemble of realizations may not be a good rep-
resentation of the pdf of conditional channel realizations. If the prior for the
model variables is Gaussian, and if the data are linearly related to the model
variables, the method of randomized maximum likelihood is known to sample
correctly by accepting all proposed realizations. If either of the conditions is
not met, the sampling is only approximate, although Oliver, He, and Reynolds
(1996) showed that even for very nonlinear relationships, the sampling can be
quite good. Preliminary work by the authors on single-phase flow problems seems
to indicate that the bias introduced by the approximate acceptance test may be
small.

One key requirement for the application of randomized maximum likeli-
hood is the identification of variables whose density function is approximately
multinormal. As mentioned earlier, Langbein and Leopold (1966) proposed that
channel direction might be considered to be a random function of distance along
the channel. This suggests that channel direction might be a good candidate for
approximation as a Gaussian random variable. We can investigate the reasonable-
ness of this suggestion by digitizing the channel of Figure 2, passing a cubic spline
through the points on the path, then resampling the channel direction at equally
spaced increments along the path. The series of channel directions obtained in this
way is shown in Figure 3 as a function of distance.

Although we do not need to create the unconditional realizations from a
Gaussian simulation, we can obtain a measure of distance between models by ex-
amining the statistics of the channel direction. Figure 4(A) shows the histogram of
channel directions at uniform distances along the channel. The univariate distribu-
tion of channel directions is clearly not Gaussian as it lacks extreme values, but it
appears to be sufficiently close to Gaussian that a normal score transform appears
to be unnecessary for conditioning of the channel. Figure 4(B) shows the variance
between channel directions at various lag distances is very well approximated by a
Gaussian covariance functionCθ (s) = σ 2

θ exp[−3(s/a)2] with varianceσ 2
θ = 4.55

and rangea = 20.3.
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Figure 3. Deviation of the channel direction from the mean for the channel realization in Figure 1.

The channel direction can be written as the sum of a mean directionθ̄ and a
fluctuating direction fielduθ , i.e.,

θ (s) = θ̄ + uθ (s) (1)

wheres is the distance along the channel path. Let us assume that the uncertainty
in the mean channel direction can be represented as a Gaussian random variable
with meanµθ̄ and varianceσ 2

θ̄
. We will also assume that the fluctuating direction

field can be represented as a Gaussian random field with covarianceCθ (s− s′)
between the direction atsand the direction ats′. To completely specify the channel
centerline geometry, thex − y location of the centerline at one value ofs must
be specified; so let us specify thaty(0)= y0 and x(0)= 0, and that the prior

Figure 4. The histogram of channel direction (A) and the covariance of channel direction (B).
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uncertainty iny0 is Gaussian with meanµy and varianceσ 2
y0

. Our mathematical
model of the channel meander geometry is thus specified by two random variables
y0 andθ̄ and a random functionuθ (s).

We define the modelm, the prior modelmprior, and the prior model covariance
as follows:

m =

 y0

θ̄

uθ (s)

 mprior =

µy

µθ̄

µθ

 (2)

CM =

σ
2
y0

0

σ 2
θ̄

0 Cθ

 (3)

Thex − y location of the channel at any distances along the channel path is given
by the following functions

x(s) =
∫ s

0
cosθ (s′) ds′ =

∫ s

0
cos[θ̄ + uθ (s

′)] ds′ (4)

y(s) = y0+
∫ s

0
sinθ (s′) ds′ = y0+

∫ s

0
sin[θ̄ + uθ (s

′)] ds′ (5)

If the i th channel observation is made in a well located atxi , yi , then the data
for conditional simulation of channels toN well observations is a 2N-vector of
locations of channel observations, i.e.,

dobs= [xobs,1 yobs,1 · · · xobs,N yobs,N ]T (6)

These measurements could be considered to be uncertain, either because the actual
location of the well is slightly uncertain, or because the position of the channel
center with respect to the well is uncertain. We will represent this uncertainty via
the data covariance matrixCD.

Because of the simplicity of this model, it cannot capture all of the features
of actual channel meanders. In particular, it is likely that a realization of channel
from this model may intersect itself if the sinuosity is large. In more sophisticated
geological models, channel cutoff can occur, and loops may be abandoned. On
the basis of the analysis of complex channels, however, it may be reasonable
to assume that the covariance of channel direction is adequate for defining the
“distance” between different channel realizations. For arbitrary stochastic models
the definition of a small adjustment to the model is not always clear, but for the
model I have defined here, the definition is obvious. If one wanted to generate a
conditional realization, one would simply solve for a realizationmc that would
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minimize the following objective function

S(m) = 1

2
(m−muc)

TC−1
M (m−muc)+ 1

2
(g(m)− duc)

TC−1
D (g(m)− duc) (7)

wheremuc is an unconditional realization of the channel model parameters,duc is
a realization of the channel well locations,C−1

M is the inverse of the covariance
operator (Oliver, 1998), andg(m) represents the relationship between theoreti-
cal data and the model variables given by Eqs. (4) and (5). The expectation of
duc is dobs, and the covarianceCD is the data error covariance matrix. If the
observation errors are small, then it is possible to usedobs in place ofduc in
Eq. (7). That model that minimizes Eq. (7) can be thought of as the one that
is closest to the unconditional realization in the sense that (mc−muc)TC−1

M
(mc−muc) is small, and approximately honors the data (i.e., (g(mc)− duc)TC−1

D
(g(mc)− duc) is small). The real purpose, then, for specifying an approximately
Gaussian model and for estimating the covariance was to define the meaning of
one channel realization being similar (close in model space) to another channel
realization.

In general, the fastest and most efficient method of minimizing the objective
function in Eq. (7) is to use information about the sensitivity of the data with
respect to the model variablesy0 and θ̄ , and the functionuθ (s). From Eq. (4), it
can be easily seen that small changes in the average channel direction and small
changes in the fluctuating direction function affect thex location of the channel in
the following way.

δx(si ) ≈ −δθ̄
∫ si

0
sinθ (s) ds−

∫ si

0
sinθ (s′) δuθ (s′) ds′

= −δθ̄
∫ si

0
sinθ (s) ds−

∫ ∞
0

[1− H (si − s′)] sinθ (s′) δuθ (s′) ds′ (8)

whereH (s) is the Heaviside step function. The sensitivity of they location of the
channel atsi is similar, except that they location is also sensitive toy0,

δy(si ) ≈ δy0+ δθ̄
∫ si

0
cosθ (s) ds+

∫ si

0
cosθ (s′) δuθ (s′) ds′

= δy0+ δθ̄
∫ si

0
cosθ (s) ds+

∫ ∞
0

[1− H (si − s′)] cosθ (s′) δuθ (s′) ds′

(9)

For convenience, I define the sensitivity matrix or operatorG to be the gradient of
the theoretical data with respect to the model variables,G = (∇mg(m)T)T. From
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Eqs. (8) and (9), the sensitivity matrix is

G =



0 −∫ s1

0 sinθ (s) ds − sin[θ (s)][1 − H (s− s1)]

1
∫ s1

0 cosθ (s) ds cos[θ (s)][1 − H (s− s1)]
...

...
...

0 −∫ sN

0 sinθ (s) ds − sin[θ (s)][1 − H (s− sN)]

1
∫ sN

0 cosθ (s) ds cos[θ (s)][1 − H (s− sN)]


(10)

In case it is not obvious, the elements in the first two columns ofG are scalars,
and the elements in the last column are functions ofs.

The minimum of Eq. (7) will occur when the gradient of the objective function
with respect to the model variables vanishes. To find the model that minimizes
Eq. (7) we need to solve

∇mS(m) = C−1
M (m−muc)+ GTC−1

D (g(m)− duc)

= 0 (11)

for m. In most cases, the number of channel observations will probably be quite
small while the model space is infinite dimensional, or at least quite large. A
Newton method is an appropriate choice for minimization in this case. For this
problem, the following form of the Gauss–Newton equations (McLaughlin and
Townley, 1996; Tarantola, 1987) is appropriate:

mn+1(s) = muc(s)− CMGT[CD + GCMGT]−1[g(mn)− duc− G(mn −muc)]

(12)

In order to use Gauss–Newton, we need to compute the productGCMGT. We begin
with the computation ofGCM.

GCM =



0 −σ 2
θ̄

∫ s1

0 sinθ (s) ds −∫ s1

0 sin[θ (s)]Cθ (s− s′) ds

σ 2
y0

σ 2
θ̄

∫ s1

0 cosθ (s) ds
∫ s1

0 cos[θ (s)]Cθ (s− s′) ds
...

...
...

0 −σ 2
θ̄

∫ sN

0 sinθ (s) ds −∫ sN

0 sin[θ (s)]Cθ (s− s′) ds

σ 2
y0

σ 2
θ̄

∫ sN

0 cosθ (s) ds
∫ sN

0 cos[θ (s)]Cθ (s− s′) ds


(13)
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The productGCMGT is formed by taking the product of Eq. (13) and the transpose
of the matrix in Eq. (10). The formula for the general case is fairly complex, and
so here I will simply write out the elements of the matrix for a problem with two
channel observations.

[GCMGT]11 = σ 2
θ̄

[∫ s1

0
sinθ (s) ds

]2

+
∫ s1

0
ds
∫ s1

0
ds′ sin[θ (s)]

×Cθ (s− s′) sin[θ (s′)]

[GCMGT]12 = −σ 2
θ̄

∫ s1

0
sinθ (s) ds

∫ s1

0
cosθ (s) ds−

∫ s1

0
ds
∫ s1

0
ds′ sin[θ (s)]

×Cθ (s− s′) cos[θ (s′)]

[GCMGT]13 = σ 2
θ̄

∫ s1

0
sinθ (s) ds

∫ s2

0
sinθ (s) ds+

∫ s1

0
ds
∫ s2

0
ds′ sin[θ (s)]

×Cθ (s− s′) sin[θ (s′)]

[GCMGT]14 = −σ 2
θ̄

∫ s1

0
sinθ (s) ds

∫ s2

0
cosθ (s) ds−

∫ s1

0
ds
∫ s2

0
ds′ sin[θ (s)]

×Cθ (s− s′) cos[θ (s′)]

[GCMGT]22 = σ 2
y0
+ σ 2

θ̄

[∫ s1

0
cosθ (s) ds

]2

+
∫ s1

0
ds
∫ s1

0
ds′ cos[θ (s)]

×Cθ (s− s′) cos[θ (s′)]

[GCMGT]23 = −σ 2
θ̄

∫ s1

0
cosθ (s) ds

∫ s2

0
sinθ (s) ds−

∫ s1

0
ds
∫ s2

0
ds′ cos[θ (s)]

×Cθ (s− s′) sin[θ (s′)]

[GCMGT]24 = σ 2
y0
+ σ 2

θ̄

∫ s1

0
cosθ (s) ds

∫ s2

0
cosθ (s) ds+

∫ s1

0
ds

×
∫ s2

0
ds′ cos[θ (s)]Cθ (s− s′) cos[θ (s′)]

[GCMGT]33 = σ 2
θ̄

[∫ s2

0
sinθ (s) ds

]2

ds+
∫ s2

0
ds
∫ s2

0
ds′ sin[θ (s)]

×Cθ (s− s′) sin[θ (s′)]

[GCMGT]34 = −σ 2
θ̄

∫ s2

0
sinθ (s) ds

∫ s2

0
cosθ (s) ds−

∫ s2

0
ds
∫ s2

0
ds′ sin[θ (s)]

×Cθ (s− s′) cos[θ (s′)]
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[GCMGT]44 = σ 2
y0
+ σ 2

θ̄

[∫ s2

0
cosθ (s) ds

]2

+
∫ s2

0
ds
∫ s2

0
ds′ cos[θ (s)]

×Cθ (s− s′) cos[θ (s′)] (14)

The matrix is symmetric, and so the lower elements need not be computed.
Computation of the data mismatch vector on the right side of Eq. (12) is

again straightforward if the value ofs at the observation locations is known.
For simplicity, the results are again presented for the case of two observations
only.

g(mn)− duc− G(mn −muc) =

x1(mn)− x1,uc+ (θ̄n − θ̄uc)
∫ s1

0 sinθn(s) ds+ ∫ s1

0 sinθn(s)
(
un
θ (s)− uθ,uc(s)

)
ds

y1(mn)− y1,uc−
(
yn

0 − y0,uc
)− (θ̄n − θ̄uc)

∫ s1

0 cosθn(s) ds− ∫ s1

0 cosθn(s)
(
un
θ (s)− uθ,uc(s)

)
ds

x2(mn)− x2,uc+ (θ̄n − θ̄uc)
∫ s2

0 sinθn(s) ds+ ∫ s2

0 sinθn(s)
(
un
θ (s)− uθ,uc(s)

)
ds

y2(mn)− y2,uc−
(
yn

0 − y0,uc
)− (θ̄n − θ̄uc)

∫ s2

0 cosθn(s) ds− ∫ s2

0 cosθn(s)
(
un
θ (s)− uθ,uc(s)

)
ds


(15)

Finally, we need to compute the vector of functions,CMGT = [GCM]T. Thus,
when there are two observations of channel location, we see from Eq. (13) that
this becomes

CMGT =


0 −σ 2

θ̄

∫ s1

0 sinθ (s) ds −∫ s1

0 sin[θ (s)]Cθ (s− s′) ds

σ 2
y0

σ 2
θ̄

∫ s1

0 cosθ (s) ds
∫ s1

0 cos[θ (s)]Cθ (s− s′) ds

0 −σ 2
θ̄

∫ s2

0 sinθ (s) ds −∫ s2

0 sin[θ (s)]Cθ (s− s′) ds

σ 2
y0

σ 2
θ̄

∫ s2

0 cosθ (s) ds
∫ s2

0 cos[θ (s)]Cθ (s− s′) ds


T

(16)

The equations are easier to understand if we take them one bit at a time. For
example, let us use Eq. (12) to compute the new value ofy0 andθ̄ for the case in
which channel observations are available ats1 ands2,

yn+1
0 = y0,uc− σ 2

y0
[ 0 1 0 1]a (17)

θ̄
n+1

= θ̄uc−σ 2
θ̄

[−∫ s1

0 sinθn(s) ds
∫ s1

0 cosθn(s) ds −∫ s2

0 sinθn(s) ds
∫ s2

0 cosθn(s) ds
]

a

(18)
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where

a = [CD + GCMGT]−1[g(mn)− duc− G(mn −muc)] (19)

is a 4-vector when the channel has been observed at two well locations.

EXAMPLES

Gaussian Random Field

In this first example, I illustrate the possibility of using the Gaussian assump-
tion on channel direction both for generating the unconditional realization of chan-
nel meanders, and for conditioning the channel to well observations. Equations 4
and 5 are used to compute the realization of channel locationx(s), y(s) from
realizations of channel directionθ (s).

I started by creating an unconditional realization of a random channel direc-
tion function with a mean of 0, and a Gaussian covariance function. The realization
of the channel (Fig. 5) starts at the origin, although this is clearly not necessary. I
assumed for this example that the true channel had been observed at the locations
(7, 0.) and (15, 0.). The channel realization must be modified in some reasonable
way to make it pass through the observation locations.

In order to apply Eqs. (8) and (9), one must select values ofs at the condi-
tioning locations. For this example, I assumed that we want to move the closest
point on the channel to the observation location. A nonlinear minimization found

Figure 5. An unconditional Gaussian realization of a meandering channel with well obser-
vation locations (black dots).
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Figure 6. The conditional and unconditional Gaussian realizations of a meandering channel showing
the adjustment in location required.

the two nearest values to be ats1 = 19.76 ands2 = 28.71. These locations and the
local adjustments are shown by the arrows in Figure 5. Once the values ofs have
been determined it is possible to computeGCMGT with the use of Eq. (15).

Only two Gauss–Newton iterations were required to match the data to four
significant digits. The final match (a conditional realization) is shown as the dotted
curve in Figure 6. The stochastic character of the curve seems to be largely un-
changed; i.e., the conditioning process has not introduced any obvious additional
roughness into the channel meander.

Recall that the direction of the channel was modified, after which the new
channel location was determined by integrating Eqs. (4) and (5). The actual cor-
rection to the channel direction is shown in Figure 7. Note that the magnitude of
the correction to the channel direction is generally of the order of 0.2 but reaches
a maximum magnitude of 0.55 between the two observation locations. Thus the
problem is fairly linear. The second thing to note is that the correction toθ is largely
confined to the region between the origin and the last channel observation. This
is reasonable as changing the direction downstream of the observation locations
should not affect the location upstream (Fig. 8).

Conditioning of a Geological Model

Now we can illustrate the process on a more complex channel. Instead of gen-
erating an unconditional realization of a channel from a simple Gaussian process
as in the first example, here we choose to condition a channel meander (Fig. 2) that
was described in Howard (1996). The exact details of the geological modeling are
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Figure 7. The correction to the channel direction as a function of distance along the channel.
Data were recorded ats≈ 20 ands≈ 30.

not important for this paper; it should suffice to say that erosion and transport of
sediment were modeled. We assume that the model contains sufficient parameters
to create plausible channels for the location of interest. It is unable, however, to
create realizations that are conditional to well observations.

In order to create conditional realizations from a complex model using the ran-
domized maximum likelihood method, we must first identify a parameterization of

Figure 8. The original channel meander (solid curve) and the realization conditioned to well
observations (dashed curve). The heads of the arrows show observation locations and the tails
show the locations of unconditional channel that were moved to the observation.
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the channel for which the variables can be approximated by Gaussian random fields.
We can clearly see that deviation from a principal direction line is not suitable, as it
is multivalued. The channel directions, on the other hand, appeared to be suitable.
The direction field was shown in Figure 3 and the covariance and histogram were
shown in Figure 4. The only use of these moments is to create a measure of the
mismatch between two models, i.e.,O(m1,m2) = 1

2(m1−m2)TC−1
M (m1−m2),

so that in the process of honoring data, we can ensure that the conditioned channel
is as close as possible to the unconditioned model.

We assume that the channel has been observed at three locations as indicated
by the dots in Figure 2. There are several ways to adjust the channel in an attempt to
honor the observations. First, the entire channel can be shifted down by adjusting
the value ofy at the origin. Second, the average orientation of the channel can be
adjusted, and third, the channel direction can be adjusted continuously along the
channel. The goal is to honor the observations while making the smallest possible
adjustment in the least-squares sense. The most effective way to do this is to
make all three types of adjustment simultaneously.

DISCUSSION AND CONCLUSIONS

Realistic channel meanders with high sinuosity are difficult to simulate
stochastically because, unless processes such as cut-off and fill are modeled, the
channel path could intersect itself. As a result, high sinuosity channel meanders
tend to be computationally expensive to simulate. It is even more difficult to gener-
ate realizations that are conditional to well observations, since channel location is
a dynamic function of time. What I have proposed in this paper is that the process
of conditioning the realization be separated from the process of generating the
unconditional channel meander, so that the method of generation of channels can
be somewhat arbitrary. In the process of conditioning the channel, we search for
a channel that is as similar as possible to the unconditional realization, while also
honoring the well observations. For highly sinuous meander channel, it appears
to be inappropriate to usex andy location of the channel center as a measure of
similarity. On the other hand, instantaneous channel direction may be sufficiently
close to a Gaussian distribution that its covariance can provide a useful penalty
term for defining the distance between the channel models. The identification of
a variable for which the covariance provides a useful measure of distance is a key
feature of the problem solution and is not limited to channel geometry.

The conditioning procedure itself was shown to be quite simple to apply. If
the channel directions had been approximated by a piecewise constant function,
instead of a cubic spline, all of the matrices would have been finite-dimensional,
and the computation would have required simple matrix multiplication instead
of integration. The conditional and unconditional channels are visually similar in
character. The main difference is that the conditional realization honors the data.
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If other observations, such as transient pressures or channel thickness mea-
surements, were available, the problem could be solved much as described by
Bi, Oliver, and Reynolds (2000). The primary difference would be to use channel
direction to parameterize the location of the channel center instead of deviation
from a principle direction line. The conditioning algorithm that was used in this
paper is known to sample correctly for problems with Gaussian priors and linear
data with normally distributed measurement and observation errors. It has been
shown to sample approximately the correct distribution when the relation between
the model variables and the data is highly nonlinear. The ability of this algorithm
to assess uncertainty accurately is unknown, but for small numbers of realizations
the difference may be of little practical consequence.
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