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Summary

This paper reports the second part of the study carried out by the authors on the under-
ground explosion-induced stress wave propagation and damage in a rock mass. In the
accompanying paper reporting the first part of the study, equivalent material properties
were used to model the e¤ects of existing cracks and joints in the rock mass. The rock mass
and its properties were treated as deterministic. In this paper, existing random cracks and
joints are modeled as statistical initial damage of the rock mass. In numerical calculation,
an anisotropic continuum damage model including both the statistical anisotropic initial
damage and cumulative damage dependent on principal tensile strain and stochastic critical
tensile strain is suggested to model rock mass behavior under explosion loads. The statisti-
cal estimation of stress wave propagation in the rock mass due to underground explosion is
evaluated by Rosenblueth’s point estimate method. The suggested models and statistical
solution process are also programmed and linked to Autodyn3D as its user’s subroutines.
Numerical results are compared with the field test data and those presented in the accom-
panying paper obtained with equivalent material property approach.

1. Introduction

The general behavior of a rock mass is usually anisotropic owing to naturally
occurring network of flaws, joints and planes of weakness in it. Discontinuities
such as cleavage cracks and defects involved in a rock mass can be characterized
by their orientations, spacing, and number of discontinuities; and they have sig-
nificant influence on the deformation and strength, stress wave propagation, and
failure characteristics of a rock mass (Grady and Kipp, 1987). In order to estimate
the e¤ects of these discontinuities, much work has been done experimentally and
theoretically on the description and calculation of behavior of a rock mass with
cracks. For experimental study, King et al. (1986) measured the amplitudes and



travel times of high frequency seismic stress waves which propagate parallel and
perpendicular to columnar discontinuities in basalt, and noted lower particle
velocities and greater high frequency attenuation in the direction perpendicular to
the discontinuities than in the direction parallel to them. Many authors have also
carried out analytical and numerical studies of rock discontinuity e¤ects on stress
wave propagation. In general, there are two approaches. One is to model the dis-
continuity by using discrete element method (Chen and Zhao, 1998; Hart, 1993) or
block theory (Wang and Garga, 1993). And another is to examine the compre-
hensive e¤ects of discontinuities by using the equivalent material properties of the
rock mass (Kawamoto et al., 1988; Toi and Atluri, 1990; Taylor et al., 1986; Yang
et al., 1996; Liu and Katsabanis, 1997). Usually the first method is used to model a
few large discontinuities, while the second approach is adopted when the discon-
tinuities are dense and have uncertain properties.

Recently, a few researchers used theory of continuum damage mechanics on
modelling rock mass responses to either static or dynamic loads (Hao et al., 1998;
Wu et al., 1999; Zhang and Valliappan, 1990b; Zhang and Valliappan, 1998a,b).
In these studies, the discontinuities in the rock mass are modelled as initial damage
before loading. Wu et al. (2000) used the P and S wave velocities measured at the
granite site under consideration in a field seismic survey to derive a statistical iso-
tropic initial damage model for the rock mass. They subsequently applied the sta-
tistical initial damage model in a stochastic analysis of isotropic rock damage to
underground blasting loads (Wu et al., 1999). Although reasonably good predic-
tions of the stress wave propagation and rock damage were achieved in that study,
the assumption of isotropic damage of the rock mass can be further improved.
This is because discontinuities in a rock mass normally show some predominant
orientations although the distributions of flaws and cracks in space, their size and
orientations are basically random. This phenomenon makes the initial damage
anisotropy. In addition, the isotropic measure of damage is unable to account for
the dynamic change in direction of the maximum damage distribution relative
to that of the maximum principal tensile strain, especially in cases where non-
proportionality in strain histories is present. Sometimes even though the rock mass
is initially isotropic, its behavior may change to anisotropy during a damage pro-
cess. Thus it is necessary to develop a random anisotropic damage model to ana-
lyze blasting-induced stress waves in a rock mass.

The first anisotropic initial damage model for the rock mass was suggested by
Kawamoto et al. (1988). They counted the number of cracks, measured directions
and cross-section area of the cracks in a 15 m � 15 m � 15 m rock specimen
sampled from a rock mass, and used the concept of damage mechanics to derive
the initial damage of the rock mass. Zhang and Valliappan (1990a) used the data
reported by Kawamoto et al. (1988) to derive a statistical initial damage for the
rock mass. It was found that the statistical initial damage obeys a beta distribu-
tion. They subsequently used that statistical initial damage model in analyzing a
rock slope stability (Zhang and Valliappan, 1990b). In the later study, however,
anisotropic damage evolution and propagation were not considered. Recently,
Swoboda et al. (1998) also derived an anisotropic initial damage model for a rock
mass by measuring the existing crack sets in it. Based on the field and laboratory
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measured data, a statistical anisotropic initial damage model and statistical mate-
rial properties of the granite mass at the site under study were derived by the
authors (Wu et al., 2001). It was found that the anisotropic initial damage also
obeys beta distributions, anisotropic elastic moduli follow normal distributions.

In this paper, an anisotropic constitutive model with statistical initial damage
and cumulative damage is presented to model rock damage resulting from impul-
sive loading. The statistical initial damage and material properties derived earlier
(Wu et al., 2001) are used here. The randomness of the initial damage, which
relates to the elastic and shear modulus, and the randomness of critical tensile
strain, which relates to the rock material sti¤ness and strength degradation, are
included in numerical calculations. The variations of other parameters, such as the
material constant ai, the mass density, and Poisson’s ratio are, however, neglected
as they have little e¤ects on the response of a rock mass under dynamic loading
(Yang et al., 1996). The statistical estimation of stress wave propagation and
damage in the rock mass due to underground explosion is evaluated by the Rosen-
blueth’s point estimate method (1975, 1981).

The present statistical damage model has also been implemented in Auto-
dyn3D (1997) as its user defined subroutines. The numerical results of peak parti-
cle velocities and peak particle accelerations obtained by the Rosenblueth’s point
estimate method (1975, 1981) are compared with those obtained by using deter-
ministic method with equivalent material properties in Part I as well as the field
measured data. The e¤ects of statistical variations of anisotropic initial damage
and critical tensile strain of the rock mass on their dynamic responses and damage
zones are discussed.

2. Anisotropic Damage Model and Constitutive Law

Because initial damage exists in the rock mass, the sti¤ness of the rock mass is
reduced before loading. Under dynamic loading, the initial damage will evolve
and propagate and new ones will be generated. In the accompanying paper (Hao
et al., 2002), only anisotropic cumulative damage is defined while the e¤ects of
anisotropic initial damage are considered by using equivalent material properties.
In this paper, cumulative damage is assumed to evolve from statistical initial dam-
age. If the maximum tensile strain is less than the stochastic critical strain ecri, there
is only initial damage Ds

i in the rock mass. If the maximum tensile strain exceeds
ecri, the material properties will continue to degrade with the cumulative damage.
Thus, the damage variable of the rock mass per volume V0 under explosion loads,
which includes both the initial damage and cumulative damage, is then

DiðDs
i ; ecri; ei; tÞ ¼ 1 � ð1 �Ds

i Þð1 �Dd
i ðtÞÞ

¼ 1 � ð1 �Ds
i Þ exp½�aiðei � ecriÞbiV0t�; ð1Þ

where Dd
i ðtÞ is cumulative damage whose definition is similar to that derived in the

accompanying paper (Hao et al., 2002) except it is a stochastic number depending
on the statistical variations of ecri; D

s
i is the anisotropic initial damage in the rock

mass.
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3. Statistical Estimation of Damage Material Properties Under Consideration

The site under consideration consists of a quarry site with mainly unweathered
granite. A detailed geological investigation which includes seismic surveys, visual
inspection of rock mass, deep coring, color TV imaging and impression packer tests
in boreholes, had been carried out due to some underground construction activ-
ities (Soil and Foundation Ltd., 1996). Much information about the properties of
the granite has been provided by the investigations and survey studies. The data
from the investigations were used in a statistical analysis of the properties of the
rock mass in a previous study (Wu et al., 2001). Owing to the random distri-
butions of cracks in a rock mass in sizes, directions and spacing, the properties of
rock mass need to be evaluated by using the methods of statistical analysis. In a
previous study (Wu et al., 2001), a three-dimensional geometric model of cracks
has been established in terms of the statistical orientations, spacing and normal-
ized size of cracks in the rock mass based on the field and laboratory data (Soil and
Foundation Ltd., 1996). The definition of damage tensor for one crack is given by
the following equation (Wu et al., 2001):

½D� ¼ o

n1n1 n1n2 n1n3

n2n1 n2n2 n2n3

n3n1 n3n2 n3n3

2
4

3
5; ð2Þ

in which n ¼ ½l;m; n�T is the direction vector of damage tensor D of the crack
plane, and o is the characteristic damage value which is based on the length,
spacing, dip, and dip direction of cracks on rock specimens. The dip, dip direction,
spacing, and normalized size of cracks of the granite were obtained from cores.
Based on the model, probabilistic distribution laws of geometric parameters of
cracks at the granite site were derived. The distribution of anisotropic initial dam-
age of the granite mass is derived and found having a beta distribution according
to these statistical distributions and using Monte-Carlo simulation method based
on Eq. (2). It is found that the mean and standard deviation of initial damage in
three directions in the rock mass are mðDs

1Þ ¼ 0:162, sðDs
1Þ ¼ 0:091, mðDs

2Þ ¼ 0:124,
sðDs

2Þ ¼ 0:069, and mðDs
3Þ ¼ 0:222, sðDs

3Þ ¼ 0:122, respectively, where 1, 2, and 3
indicate radial, lateral and vertical ðx; y zÞ directions as defined by Hao et al.,
(2002). The initial damage variable Ds

i was found to have the beta distribution
with probability density function and cumulative distribution function

f ðDs
i Þ ¼

1

Bðai; biÞ
Dsai�1

i ð1 �Ds
i Þ

bi�1 ð3Þ

and

F ðDs
i Þ ¼

1

Bðai; biÞ

ðDs
i

0

xai�1ð1 � xÞbi�1
dx; ð4Þ

where ai is a parameter of size; bi is a parameter of shape; Bðai; biÞ is the beta
function and

Bðai; biÞ ¼
ð1

0

xai�1ð1 � xÞbi�1
dx: ð5Þ
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For the site under consideration, it has a1 ¼ 2:49, b1 ¼ 12:90, a2 ¼ 2:71, b2 ¼ 19:11,
and a3 ¼ 2:35, b3 ¼ 8:25 (Wu et al., 2001).

Based on the laboratory test data (Soil and Foundation Ltd., 1996), a previous
study also found the damaged elastic modulus of the site having a normal distri-
bution with mean mðEÞ ¼ 73:9 GPa and standard deviation sðEÞ ¼ 12:14 GPa;
and static tensile strength ssti follows a gamma distribution with k ¼ 69:7 and
l ¼ 3:99 (Wu et al., 2000). In the present study, the elastic modulus of the
undamaged rock material is estimated by the 95 percentile confidence level as
mðEÞ þ 1:645sðEÞ ¼ 93:87 GPa.

Because damage is dependent on the critical tensile strain, and critical tensile
strain in three principal directions can be estimated by

ecri ¼ ssti=Eð1 �Ds
i Þ

2: ð6Þ
Using the statistical distributions of ssti and Ds

i , statistical data of ecri can be
obtained by Monte-Carlo simulation. Simulated results in this paper indicate that
the probability distribution of random critical tensile strain ecri has a normal dis-
tribution

f ðecriÞ ¼
1

sðecriÞ
ffiffiffiffiffiffi
2p

p e�ðecri�mðecriÞÞ2=ð2s2ðecriÞÞ; ð7Þ

with mean and standard deviation equal to mðecr1Þ ¼ 0:265 � 10�3 and sðecr1Þ ¼
0:068 � 10�3, mðecr2Þ ¼ 0:253 � 10�3 and sðecr2Þ ¼ 0:048 � 10�3, and mðecr3Þ ¼
0:307 � 10�3 and sðecr3Þ ¼ 0:109 � 10�3, respectively. Those normal distributions
are examined by the method of Kolmogorov-Smirnov statistical goodness-of-fit
test with a confidence level of 95%, indicating a good fit of the distribution func-
tion to the simulated data.

According to the damage definition given in Eq. (1), there are two random
variables, namely, the initial anisotropic damage Ds

i and critical tensile strain ecri.
Based on the Rosenblueth’s method, mean and standard deviation of anisotropic
damage variable can be obtained by

fmðDiÞgDs
i
; ecri ¼

1

4
ðfDigþþ þ fDig�� þ fDigþ� þ fDig�þÞ ð8Þ

fs2ðDiÞgDs
i
; ecri ¼ fmðD2

i Þg � fm2ðDiÞg; ð9Þ
where

fDigGG ¼ fDiðmðDs
i ÞG sðDs

i Þ; mðecriÞG sðecriÞ; ei; tg: ð10Þ
The estimators of mean and standard deviation of damaged material properties
E �
i , n�ij and G �

ij are then

mðE �
i Þ ¼ Ei½1 � sðDiÞ�2 þ Eis

2ðDiÞ ð11Þ

sðE �
i Þ ¼ Ei½1 � sðDiÞ�sðDiÞ ð12Þ

mðn�ijÞ ¼ nij
½1 � sðDiÞ�½1 � sðDjÞ�
½1 � sðDjÞ�2 � s2ðDjÞ

i0 j ð13Þ

sðn�ijÞ ¼ nij
f½1 � sðDiÞ�2s2ðDjÞ þ ½1 � sðDjÞ�2s2ðDiÞg1=2

½1 � sðDjÞ�2 � s2ðDjÞ
i0 j ð14Þ
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mðG �
ij Þ ¼

1

2
GijðDþþ

ij þ Dþ�
ij þ D�þ

ij þ D��
ij Þ ð15Þ

sðG �
ij Þ ¼ Gijf½ðDþþ

ij Þ2 þ ðDþ�
ij Þ2 þ ðD�þ

ij Þ2 þ ðD��
ij Þ2�

� 1

4
½Dþþ

ij þ Dþ�
ij þ D�þ

ij þ D��
ij �2g1=2; ð16Þ

where

DGG
ij ¼ f½1 � mðDiÞ�G sðDiÞg2f½1 � mðDjÞ�G sðDjÞg2

f½1 � mðDiÞ�G sðDiÞg2 þ f½1 � mðDjÞ�G sðDjÞg2
: ð17Þ

Based on the Rosenblueth’s point estimate method (see appendix A Eqs. (A13)–
(A17)), the expected matrix and standard deviation matrix corresponding to the
damaged anisotropic constitutive relation as given in the accompanying paper
(Hao et al., 2002) can be derived as

mðS �
ij Þ ¼ Sij

½1 � mðDiÞ�½1 � mðDjÞ� þ sðDiÞsðDjÞdij
f½1 � mðDiÞ�2 � s2ðDiÞgf½1 � mðDjÞ�2 � s2ðDjÞg2

i; j ¼ 1; 2; 3 ð18Þ

sðS �
ij Þ ¼ Sij

� fð1 þ dijÞf½1 � mðDiÞ�2s2ðDiÞ þ ½1 � mðDjÞ�2s2ðDjÞg þ s2ðDiÞs2ðDjÞð1 � dijÞg1=2

f½1 � mðDiÞ�2 � s2ðDiÞgf½1 � mðDjÞ�2 � s2ðDjÞg2

i; j ¼ 1; 2; 3; ð19Þ

where dij ¼ 0 for i0 j and dij ¼ 1 for i ¼ j.

mðS �
44Þ ¼ S44

½1 � mðD2Þ�2 þ s2ðD2Þ
f½1 � mðD2Þ�2 � s2ðD2Þg

þ ½1 � mðD3Þ�2 þ s2ðD3Þ
f½1 � mðD3Þ�2 � s2ðD3Þg

( )
ð20Þ

sðS �
44Þ ¼ 2S44

½1 � mðD2Þ�2s2ðD2Þ
f½1 � mðD2Þ�2 � s2ðD2Þg

þ ½1 � mðD3Þ�2s2ðD3Þ
f½1 � mðD3Þ�2 � s2ðD3Þg

( )1=2

ð21Þ

mðS �
55Þ ¼ S55

½1 � mðD3Þ�2 þ s2ðD3Þ
f½1 � mðD3Þ�2 � s2ðD3Þg

þ ½1 � mðD1Þ�2 þ s2ðD1Þ
f½1 � mðD1Þ�2 � s2ðD1Þg

( )
ð22Þ

sðS �
55Þ ¼ 2S55

½1 � mðD3Þ�2s2ðD3Þ
f½1 � mðD3Þ�2 � s2ðD3Þg

þ ½1 � mðD1Þ�2s2ðD1Þ
f½1 � mðD1Þ�2 � s2ðD1Þg

( )1=2

ð23Þ

mðS �
66Þ ¼ S66

½1 � mðD1Þ�2 þ s2ðD1Þ
f½1 � mðD1Þ�2 � s2ðD1Þg

þ ½1 � mðD2Þ�2 þ s2ðD2Þ
f½1 � mðD2Þ�2 � s2ðD2Þg

( )
ð24Þ

sðS �
66Þ ¼ 2S66

½1 � mðD1Þ�2s2ðD1Þ
f½1 � mðD1Þ�2 � s2ðD1Þg

þ ½1 � mðD2Þ�2s2ðD2Þ
f½1 � mðD2Þ�2 � s2ðD2Þg

( )1=2

: ð25Þ
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4. Statistical Dynamic Response Analysis

In statistical analysis, the upper and lower limit states of damage can be estimated
by

mðD1ÞG sðD1Þ; mðD2ÞG sðD2Þ; mðD3ÞG sðD3Þ; ð26Þ
The upper and lower limit damage states are associated with the larger and smaller
sti¤ness loss. The upper and lower limit states of damaged sti¤ness may be eval-
uated by

½KijðDÞ�GGG ¼ ½KijðmðD1ÞG sðD1Þ; mðD2ÞG sðD2Þ; mðD3ÞG sðD3ÞÞ� ð27Þ
where ½KijðDÞ�þþþ is the upper limit state of damaged sti¤ness; and ½KijðDÞ���� is
the lower limit state of damaged sti¤ness.

It can be noted that if the sti¤ness is in the upper limit state, the displace-
ment should be smaller. It will be larger if sti¤ness is in the lower limit state. By
using Eq. (1) in the accompanying paper (Hao et al., 2002) with di¤erent com-
binations of damaged sti¤ness matrix, the corresponding displacements fugþþþ,
fugþþ�; . . . ; fug��� can be obtained.

Based on the Rosenblueth’s method, the mean and variance of displacements
corresponding to the mean and mean plus or minus standard deviation of initial
damage and critical tensile strain can be expressed as

fmðUÞgD1;D2;D3
¼ 1

8
ðfUgþþþ þ fUgþþ� þ    þ fUg���Þ ð28Þ

fs2ðUÞgD1;D2;D3
¼ fmðU 2Þg � fm2ðUÞg: ð29Þ

5. Numerical Results

To demonstrate the statistical method presented in the previous sections, the same
field blasting tests at the granite site as presented by Hao et al. (2002) are simulated.

Figure 1 shows the comparisons of the calculated mean peak particle velocities
(PPV) and the peak particle accelerations (PPA) in the rock mass (free field) at
di¤erent scaled distances in the Y direction by two di¤erent methods. The thin line
shows the response values obtained by using the equivalent material properties,
whereas the bold dotted line shows the mean responses calculated by using Rosen-
blueth’s method. The corresponding best fitted curves of the field measured data
in the Y direction are also shown for comparison in the figure. As shown in the
figure, the di¤erences for PPV between the numerical results obtained by statistical
approach and deterministic approach are not significant. It also shows that the
results for PPA from the statistical analysis have similar slope as the field mea-
sured data, whereas those from the deterministic approach display a more rapid
attenuation with the scaled distance. Considering the many uncertainties involved
in the explosion process and rock mass, numerical results, simulated by both deter-
ministic and statistical methods are reasonably good. However, it seems that the
statistical approach gives relatively better prediction of PPA. This is probably be-
cause it considers the e¤ects of existing cracks and discontinuities in the rock mass
in a more sophisticated way than using the equivalent material properties.
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Figure 2 shows the calculated mean damage zone around the charge hole in
the rock mass using Rosenblueth’s method when charge weight is 50 kg. It should
be noted that the critical damage value of 0.632 suggested by Liu and Katsabanis
(1997) considers only the evaluated damage due to external loading, whereas the
damage value shown in the figure includes the accumulated damage, i.e., initial
damage and damage evolution owing to blasting loads. If the critical evolutionary
damage value of 0.632 is assumed, the critical accumulated damage can be esti-
mated by Eq. (1). Using the mean initial damage values, the estimated critical
values in the three directions are Dc1 ¼ 0:69, Dc2 ¼ 0:68 and Dc3 ¼ 0:71, respec-
tively. When damage value shown in the figure is larger than those critical values,
the rock mass is considered failed. As shown in the figure, the intensive damage
zone extends in the X direction 1.32 m, Y direction 1.18 m and no intensive damage
of rock mass in the vertical direction due to the cylindrical shape charge hole. The
damage zone in the X direction is larger than that in the Y direction because the X
direction has more significant initial damage as discussed above. It should also be
noted that the intensive damage zones estimated by the present model are deeper

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Comparisons of attenuation of PPV and PPA in the Y direction
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into the rock mass in both the X and Y directions as compared to those assessed in
the accompanying paper (Hao et al., 2002).

One advantage of conducting statistical analysis is that it allows probabilistic
confidence estimation of the responses besides the mean responses. Figure 3 shows
the estimated attenuation PPV curves obtained with fmðDÞG sðDÞgDi ; ecri

in both
the X and Y directions. As shown, the responses in both directions corresponding
to the mean minus and plus one standard deviation di¤er by about 30%.

Figure 4 shows the estimated attenuation PPA curves obtained with
fmðDÞG sðDÞgDi ; ecri

. It shows that the lower (mean minus one standard devia-
tion) and upper (mean plus one standard deviation) limit responses in the X and
Y directions obtained by considering the statistical variations di¤er by about 25%.

 

 

Fig. 2. Distribution of damage variable D around the charge hole (charge weight 50 kg)

 

 

 

 

 

 

Fig. 3. Upper and lower limit states of PPV in the X and Y directions
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Figure 5 shows a comparison of the calculated damage along a horizontal
plane in both the X and Y directions at the same depth as the explosive in the rock
mass under fmðDÞgDi ; ecri

and fmðDÞG sðDÞgDi ; ecri
when charge weight is 50 kg. It

should be noted that the initial mean damage, initial mean plus and minus one

 

 

 

 

 

 

Fig. 4. Upper and lower limit states of PPA in the X and Y directions

 

 

 

 

Fig. 5. Estimated damage value along a horizontal plane in the rock mass corresponding to
fuðDÞgDi ; ecri

and fmðDÞG sðDÞgDi ; ecri
in the X and Y directions (charge weight 50 kg)
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standard deviation damage in the X direction are respectively 0.162, 0.251 and
0.071, and those in the Y direction are 0.124, 0.193 and 0.055. It should also be
noted that the maximum damage values around the charge hole are calculated to
be 1.0 indicating excessive damage in the rock mass around the charge hole. The
intensive damage zones, say 0.69 and 0.68 in the X and Y directions, under mean,
mean minus and mean plus one standard deviation, are respectively about 1.32 m,
1.51 m and 1.21 m deep into the rock mass in the X direction, and 1.18 m, 1.42 m
and 1.01 m deep into the rock mass in the Y direction. It should be noted that
these values only indicate that rock mass has lost its sti¤ness by about 68%,
whereas the exact depth of crack extension into the rock mass is not known. The
respective damage zones generated in the rock mass corresponding to the above
three cases are shown in Fig. 6.

 

 

 

Fig. 6. Damage zone in the rock mass around the charge hole under fmðDÞgDi ; ecri
and fmðDÞG

sðDÞgDi ; ecri
(charge weight 50 kg)
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6. Conclusions

This paper presents a statistical method to analyze stochastic stress wave propa-
gation and damage zones generated in a rock mass due to underground explosion.
It models the existing discontinuities in the rock mass as statistical anisotropic
initial damage. The statistical anisotropic critical tensile strain is also included in
the model. The anisotropic statistical damage of rock mass under dynamic loading
is accumulated from the statistical initial damage. The results of numerical analy-
sis indicate that the method of combining the statistical initial damage and dy-
namic damage evolution can predict not only the stress wave intensities in a rock
mass, but also give a range of lower and upper limit states of peak values of stress
wave. It also estimates the lower and upper limit of damage zones generated by
the explosion in the rock mass. Although field observation indicates the reason-
ableness of the numerically estimated damage zones, more accurate calibration is
necessary by actually measuring the generated damage zone in the rock mass after
blasting tests.

References

Autodyn3D (1997): AUTODYN User Manual, Revision 3.0. Century Dynamics, San
Ramon, CA.

Chen, S. G., Zhao, J. (1998): A study on UDEC modelling of blast wave propagation in
jointed rock mass. Int. J. Rock Mech. Min. Sci. 35, 93–99.

Grady, D. E., Kipp, M. E. (1987): Dynamic rock fragmentation, In: Atkinson, B. K. (ed.)
fracture mechanics of rock, Chapter 10. Academic Press, London, 429–475.

Hao, H., Ma, G. W., Zhou, Y. X. (1998): Numerical simulation of underground explosions.
Fragblast, Int. J. Blasting Fragment. 2, 383–395.

Hao, H., Wu, C., Zhou, Y. X. (2002): Numerical analysis of blasting-induced stress wave in
anisotropic rock mass with continuum damage models. Part I: Equivalent material
property approach. Rock Mech. Rock Engng. 35(2).

Hart, R. D. (1993): An introduction to distinct element modelling for rock engineering. In:
Hudson, J. A. (ed.) Comprehensive rock engineering, vol. 2, Pergamon Press, Oxford,
245–261.

Kawamoto, T., Ichikawa, Y., Kyoya, T. (1988): Deformation and fracturing behaviour of
discontinuous rock mass and damage mechanics theory. Int. J. Numer. Anal. Met.
Geomech. 12, 1–30.

King, M. S., Myer, L. R., Rezowalli, J. J. (1986): Experimental studies of elastic-waves
propagation in a columnar-jointed rock mass. Geophys. Prospecting 34, 1185–1199.

Liu, L., Katsabanis, P. D. (1997): Development of a continuum damage model for blasting
analysis. Int. J. Rock Mech. Min. Sci. 34, 217–231.

Rosenblueth, E. (1975): Point estimates for probability moments. Proc., Natl. Acad. Sci. U.
S. A. 72, 3812–3814.

Rosenblueth, E. (1981): Two-point estimates in probability. Appl. Math. Model. 5, 329–335.

Soil and Foundation Ltd. (1996): Seismic survey and site investigation works at Mandai for
Lands and Estates Organization, Ministry of Defence. Vol. I, Site investigation. Minis-
try of Defence, Singapore.

H. Hao et al.106



Swoboda, G., Shen, X. P., Rosas, L. (1998): Damage model for jointed rock mass and its
application to tunnelling. Computers Geotechnics 22(34), 183–203.

Taylor, L. M., Chen, E. P., Kuszmaul, J. S. (1986): Micro-crack induced damage accumu-
lation in brittle rock under dynamic loading. Computer Meth. Appl. Mech. Eng. 55,
301–320.

Toi, Y., Atluri, S. N. (1990): Finite element analysis of static and dynamic fracture of brittle
micro-cracking solids. Int. J. Plasticity 6, 389–414.

Wang, B. L., Garga, V. K. (1993): A numerical method of modelling large displacements of
jointed rocks. Part I: Fundamentals. Can. Geotech. J. 30, 96–108.

Wu, C., Hao, H., Zhou, Y. (1999): Dynamic response analysis of rock mass with stochastic
properties subjected to explosive loads. Fragblast, Int. J. Blasting Fragment. 3, 137–153.

Wu, C., Hao, H., Zhou, Y. X. (2000): Statistical properties of the Bukit Timah Granite in
Singapore. J. Testing Evaluation ASTM 28(1), 36–43.

Wu, C., Hao, H., Zhao, J., Zhou, Y. X. (2001): Statistical analysis of anisotropic damage of
the Bukit Timah Granite. Rock Mech. Rock Engng. 34(1), 23–38.

Yang, R., Bawden, W. F., Katsabanis, P. D. (1996): A new constitutive model for blast
damage. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 33, 245–254.

Zhang, W., Valliappan, S. (1990a): Analysis of random anisotropic damage mechanics
problems of rock mass, Part I: Probabilistic analysis. Rock Mech. Rock Engng. 23, 91–
112.

Zhang, W., Valliappan, S. (1990b): Analysis of random anisotropic damage mechanics
problems of rock mass, Part II: Statistical estimation. Rock Mech. Rock Engng. 23,
241–259.

Zhang, W., Valliappan, S. (1998a): Continuum damage mechanics theory and application,
Part I: Theory. Int. J. Damage Mech. 7, 250–273.

Zhang, W., Valliappan, S. (1998b): Continuum damage mechanics theory and application,
Part II: Application. Int. J. Damage Mech. 7, 274–297.

Appendix A

Theory of Statistical Estimation

Rosenblueth (1975, 1981) developed a useful procedure for determining the
moments of a dependent variable in terms of functions of the moments of its in-
dependent variables. Rosenblueth’s procedure is briefly described in the following.

If F is a function related to random variables X1;X2; . . . ;Xn

F ¼ F ðX1;X2; . . . ;XnÞ: ðA1Þ

By definition:

F ¼ Fðmx1
; mx2

; . . . ; mxnÞ; ðA2Þ

Fiþ ¼ F ðmx1
; . . . ; mxi�1; mxi þ sxi ; mxiþ1; . . . ; mxnÞ; ðA3Þ

Fi� ¼ F ðmx1
; . . . ; mxi�1; mxi � sxi ; mxiþ1; . . . ; mxnÞ; ðA4Þ

mðFiÞ ¼
Fiþ þ Fi�

2
; ðA5Þ
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sðFiÞ ¼
Fiþ � Fi�

2
: ðA6Þ

Thus,

mðF Þ ¼ 1

F n�1

Yn
i¼1

mðFiÞ; ðA7Þ

s2ðF Þ ¼
Yn
i¼1

ð1 þ s2ðFiÞÞ � 1; ðA8Þ

where mð:Þ and sð:Þ are mean and standard deviation of ð:Þ respectively.
In the case of three variables F ¼ FðX1;X2;X3Þ

mðF Þ ¼ 1

8
ðFþþþ þ Fþþ� þ    þ F���Þ ðA9Þ

s2ðF Þ ¼ mðF 2Þ � m2ðF Þ ðA10Þ

where

mðF 2Þ ¼ 1

8
½ðFþþþÞ2 þ ðFþþ�Þ2 þ    þ ðF���Þ2� ðA11Þ

FGGG ¼ F ðmx1
G sx1

; mx2
G sx2

; mx3
G sx3

Þ: ðA12Þ

If matrix ½A� ¼ ½aij � is a random matrix, then its mean and standard deviation
matrices are

mð½A�Þ ¼ ½mðaijÞ� ðA13Þ

and

sð½A�Þ ¼ ½sðaijÞ�: ðA14Þ

According to the above definition,

½A�G ¼ mð½A�ÞG sð½A�Þ ðA15Þ

where

½A�G ¼ ½aGij � ðA16Þ

aGij ¼ mðaijÞG sðaijÞ: ðA17Þ
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