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1. Introduction

Buckling is a type of failure that has been observed around underground openings
in highly stressed as well as in jointed rock masses. Slabs can be formed due to the
presence of joint planes parallel to the excavation surfaces in the case of highly
jointed rock masses, or under high compressive stress that acts parallel to the ex-
cavation boundaries in intact rock masses (Hoek and Brown, 1980). Two possible
mechanisms of slab formation are illustrated in Fig. 1. A combination of them can
be considered as a mechanism for slab formation and buckling in the case of
moderately jointed rock masses, with discontinuous structural features, under high
stress. Buckling and slabbing failure under such conditions has been observed in
underground mines in the Sudbury Basin in close proximity to mine openings
(Swan and Semadeni, 1992) and resulted in hazardous conditions for the mine
personnel due to rockburst activity (Fig. 1c). A relatively small confining pressure,
compared to in-situ stresses, provided by filling a stope or a pass is often adequate
to stop failure at the stope walls.

The mechanism for the formation of a slab that is exposed to buckling load is
not examined in this paper. For example, axial splitting has been the focus of ex-
tensive research in the past (Fairhurst and Cook, 1966; Dyskin and Germanovish,
1993), while numerical solutions for buckling have been provided by Papamichos
and Vardoulakis (1990); Hu (1997) and others. The analytical formulae for slab
buckling provided here are based on an eccentric loading approach as described
by Timoshenko (1976). It is assumed that buckling failure occurs towards the
opening. The focus of the analysis has been the examination of the e¤ect of small
confining pressures (in the order of 1 MPa) to control failure and the determina-
tion of the amount of energy stored in column under eccentric loading conditions.
Eccentricity is defined as the distance between the central axis of the column and
the applied load. In the classical Euler approach, it is assumed that no lateral



movement (i.e., zero deflection) occurs at the column under axial load until the
column buckles (Jaeger and Cook, 1976).

2. Analysis Using Euler’s Formula

Euler’s formula is a common analytical approach followed to examine buckling
failure. The critical load Pcr for a column to buckle under axial load (Fig. 2) can

Fig. 1. Mechanisms for slab formation and buckling in intact (a) and jointed (b) rock masses. (c)
buckling failure in a mine (after Swan and Semadeni, 2001)
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be determined using Euler’s formula (Gere and Timoshenko, 1990). For the fun-
damental case of a pinned-ended column (as opposed to clamped ended), where
the ends are free to rotate but are restrained from lateral displacement, the axial
stress sb under which a slab will buckle is given by the equation:

sb ¼
Pcr

A
¼ p2EI

Al2
¼ p2E

12ðl=tÞ2
; ð1Þ

where:

Pcr: the critical load;
E: Young’s Modulus;
l: the length of the column;
t: the thickness of the column;
w: the width of the column;
A: the cross section under loading, ðA ¼ wtÞ;
l=t: the slenderness ratio of the column;
I: the moment of inertia, (I ¼ wt3=12, for rectangular cross sections).

The above equation indicates that the buckling stress is a function of the modulus
of elasticity and the slenderness ratio. The e¤ect of these parameters on the deter-
mination of the buckling stress is shown in Fig. 2. It is evident that the smaller the
slenderness ratio, the larger the required stress for buckling. Inherently, it is as-
sumed that buckling load is maintained as the slab deforms.

Fig. 2. Buckling stress versus slenderness ratio for buckling failure using Euler’s formula
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It can be seen that the stress required for buckling failure to occur is rather
high for the practical range of elastic modulus and slenderness ratio. For a
Young’s Modulus of 30 GPa and a slenderness ratio of 10, the stress required for
buckling to occur is in the range of 250 MPa. It would be rather di‰cult for such
high stress to be found near the boundaries of openings since its value exceeds the
strength of the granitic rocks in uniaxial compression. Unless failure initiation in
the slab results in Young’s Modulus lower than 30 GPa, buckling failure can occur
only if the granitic slab has a slenderness ratio greater than 10, as shown in the
analysis presented in Fig. 2.

The buckling approach using Euler’s formula assumes that the load is applied
axially on the column and that failure occurs when the critical stress is reached.
That critical stress defines a bifurcation point above which the equilibrium is un-
stable, and below which it is stable. That stress is not dependent on the strength of
the material, and is also independent of the deflection of the column under the
load, subject only to end constraints. Thus, the Euler load Pcr describes the upper
bound of the value of the critical buckling load.

3. The Eccentric Loading Approach

The axial loading analysis in Euler’s approach can give a first estimate of the
critical buckling load. However, as is pointed out by Timoshenko (1976), the
weakness of the approach lies in the fact that as the slenderness ratio increases,
various imperfections, such as the initial crookedness of the column, are likely to
increase. Then buckling can occur under loads smaller than Pcr. This introduces a
certain arbitrariness into the selection of the proper safety factor against buckling.
In addition, the strength of the material is not taken into account, and the column
deflections are undeterminable. To make the design procedure more rational, an-
other method has been proposed (Timoshenko, 1976; Gere and Timoshenko,
1990), where the unavoidable inaccuracies in the column could be represented by a
small eccentricity e, of the applied load. Then the criterion of failure is based on
the magnitude of compressive and tensile stresses in the column, rather than the
Euler load.

The maximum deflection of a column under eccentric load is given by Eq. (2)
(secant formula in Timoshenko, 1976):

d ¼ e

2
664 1
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2

� 1

3
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2
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3
7775; ð2Þ

where:

k2 ¼ P=EI ; I ¼ wt3=12; A ¼ wt
P: the eccentric load, P ¼ sA;
e: the eccentricity.

The corresponding maximum moment will be:

Mmax ¼ Pðeþ dÞ; ð3Þ
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and the maximum compressive and tensile stresses are:

smax
compr ¼ sþMmax

S
; smax

tens ¼ s�Mmax

S
; ð4Þ

where: S: section modulus (S ¼ wt2=6, for rectangular cross sections).
After linking Eqs. (2), (3) and (4), the formulae for max compressive and ten-

sile stresses can be determined:
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It can be seen that the stress in the column is a function of Young’s modulus, the
applied stress, the eccentricity and the slenderness ratio. Then, for a rock slab with
a certain strength, there should be a critical slenderness ratio below which failure
will initiate in the middle of the column under eccentric loading, and buckling may
occur, as shown in the analysis illustrated in Fig. 3. For example, assuming that
the tensile strength of the rock is not exceeded, it can be seen that for a column
under a stress of 100 MPa, the slenderness ratio for compressive failure to initiate
should be less than 13. The selected value of Young’s modulus represents the one
of the intact rock. For smaller values of Young’s modulus or larger eccentricities,
the value of the critical slenderness ratio will decrease. Although the approach can
give an excellent theoretical description of column behaviour, di‰culties can arise
because the eccentricity of the load may not be known accurately. This approach
was used to analyse the e¤ects of confining pressure on buckling, and to calculate
the stored strain energy.

Fig. 3. Determination of critical slenderness ratio for buckling analysis under eccentric load
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4. Influence of Confinement

A comparative study was first carried out in order to examine the maximum
deflections generated due to eccentric axial loading and confining pressure. For the
case of eccentric axial loading, and for small loads (e.g., s < 1=10sb), the maxi-
mum deflection of the column is given by the approximate formula shown in Eq.
(6) (Timoshenko, 1976):

dmax G
Pel 2

8EI
¼ swtel2

8EI
; ð6Þ

while, for the case of uniformly applied confining pressure, q, the deflection of the
column at the midpoint is going to be:

d 0 ¼ 5qwl 4

384EI
: ð7Þ

Please note that for the case of uniformly applied confining pressure, the eccen-
tricity does not enter into the calculation of the maximum deflection. If it is
assumed for the sake of simplification that the role of the confining pressure is not
to allow any deflection of the column, then it should be:

dmax ¼ d 0 ) ste

8
¼ 5ql2

384
) q

s
¼ 9:6

te

l 2
; ð for: s <

1

10
sbÞ: ð8Þ

Eq. (8) describes the required confining pressure q, required to stop the deflec-
tion of the column, as part of the average longitudinal stress, s. The e¤ect of the
slenderness ratio and eccentricity on the q=s ratio are demonstrated in the para-
metric analysis presented in Fig. 4. It can be seen that for a slenderness ratio of 10,
a confining pressure of no more than 5% of the axial stress is adequate to stop any

Fig. 4. Parametric analysis for the determination of the confinement e¤ects using the maximum de-
flection analysis
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deflection on the column. This analysis introduces the upper bound of confining
pressure. The approach oversimplifies the role of confining pressure, and the e¤ect
of deflections on the stability of the column, especially in the case of large loads
ðs > 1=10sbÞ. However, it demonstrates the favourable e¤ect that confining pres-
sure can have on buckling failure and the importance of the eccentricity of the
applied load.

In reality, some deflection of the column can be allowed, depending on the
mechanical characteristics of the material, without jeopardizing the stability of the
column. An analysis was carried out, where the maximum compressive and tensile
stresses in the middle of the column were determined taking into account the e¤ect
of confining pressure.

The maximum bending moment in the eccentrically loaded column with con-
fining pressure, q, occurs at the midpoint where the deflection is at maximum.
Based on the superposition method for the equilibrium analysis, the bending mo-
ment will be the result of three acting loads: the loading force P, the reaction force
R (expressed as a function of q), and the confining pressure, q, itself, as can be seen
in Eq. (9).

Mmax ¼ Pðeþ d� d 0Þ � qw l
2
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þ qwl

2

l

2
; ð9Þ

where: d ¼ e
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The maximum compressive and tensile stresses are going to be:

smax
compr ¼ sþMmax

S
; smax

tens ¼ s�Mmax

S
: ð10Þ

After linking Eqs. (9) and (10) we get:
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After substituting for S ¼ wt2=6 and I ¼ wt3=12, the final equations will be:

smax ¼ sþ 6s
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An example of the application of the approach is introduced in Fig. 5. It can be
seen that for the normal range of slenderness ratios, as determined in Fig. 3, and
for an applied load of 100 MPa, a confining pressure of 0.5 to 1 MPa is adequate
to stop any development of compressive or tensile failure in the column. This
confinement pressure can be provided partly by the fractured zone around an
opening and by backfill or stored material as is the case in an ore pass. Small
confining pressures have been calculated in the case of ore passes full of muck
using bin load theories (Kazakidis and Morrison, 1994). Backfill pressure mea-
surements at mines indicated that pressures as high as 2 MPa can develop (CRRP,
1995). The stabilizing e¤ect of confinement in underground mines of the Sudbury
Basin has been observed in many cases.

Fig. 5. E¤ect of confining pressure q, on stress build-up in a column under eccentric load

V. N. Kazakidis122



5. Energy Analysis

The strain energy stored in a column under eccentric load, prior to failure of the
column, was then examined. The amount of stored strain energy is often used as
indicator of the potential severity of failure that can occur in the vicinity of un-
derground openings and can relate to the design of support systems, and, overall,
to underground mine design. The storage of strain energy, U, will be due to lon-
gitudinal loading and to the bending of the column (Logan, 1991) and is described
by the equation:

U ¼ s2Al

2E
þ
ð l
0

M 2

2EI
dx; ð15Þ

where:

s: the average stress applied longitudinally;
M: the bending moment;
E: Young’s Modulus;
l: the length of the column;
A: the cross section under loading, ðA ¼ wtÞ;
I: the moment of inertia, (I ¼ wt3=12, for rectangular cross sections).

The calculations used in the strain energy analysis and the procedure followed are
shown in Appendix I. The stored strain energy for a loading stress of 100 MPa,
and a column length of 10 m (l ¼ 10 m, w ¼ 1 m, t ¼ 1 m) was found to be ap-
proximately 1 MJ.

6. Conclusions

An eccentric loading approach was applied to quantify confinement e¤ects and
examine the energy balance in a slab under buckling load. It was indicated that
confining pressure provided by fill or broken rock material can prove adequate to
control buckling failure under certain loading conditions. The stored strain energy
in a slab under eccentric loading conditions, in the vicinity of underground open-
ings was determined to be in the order of 1 MJ.
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Appendix I: Strain Energy Analysis in Buckling Failure

The deflection of a column is described by the general equation (Gere and Timo-
shenko, 1990):

u ¼ e tan
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The stored strain energy within a column is given by the general equation:
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With U1 being the energy stored due to the axial stress and U2 the energy due to
the bending moment.
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The above equation consists of three parts: U2 ¼ UA
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After completing the substitutions it is found that:
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After setting for average axially loading stress s ¼ P=A, and substituting for U1

and U2 we receive:

Total strain energy:
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