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Abstract

One-dimensional analytical porosity-weighted solutions of the dual-porosity model are derived, providing insights on how to
relate exchange and storage coefficients to the volumetric density of the high-permeability medium. It is shown that porosity-
weighted storage and exchange coefficients are needed when handling highly heterogeneous systems—such as karstic
aquifers—using equivalent dual-porosity models. The sensitivity of these coefficients is illustrated by means of numerical
experiments with theoretical karst systems. The presented 1D dual-porosity analytical model is used to reproduce the hydraulic
responses of reference 3D karst aquifers, modelled by a discrete single-continuum approach. Under various stress conditions,
simulation results show the relations between the dual-porosity model coefficients and the structural features of the discrete
single-continuum model. The calibration of the equivalent 1D analytical dual-porosity model on reference hydraulic responses
confirms the dependence of the exchange coefficient with the karstic network density. The use of the analytical model could also
point out some fundamental structural properties of the karstic network that rule the shape of the hydraulic responses, such as
density and connectivity. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction ity, secondary porosity. Hydrodynamic processes are
thus controlled by a system of two partial differential

Based on the definition of the first mathematical equations. In literature, two main approaches can be

model developed by Barenblatt et al. (1960) for
dual-porosity systems, many different schemes have
been proposed in order to better describe the hydraulic
behaviour of such reservoirs. The basic concept of the
dual-porosity model is that the fractured rock consists
of two overlapping continua in hydraulic interaction:
a matrix continuum of low-permeability, primary
porosity and a fracture continuum of high-permeabil-
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distinguished: the first considers that flow between
continua occurs under pseudo-steady-state conditions
(see e.g. Warren and Root, 1963), and the second
considers a fully transient exchange between continua
(see e.g. Kazemi, 1969). Fully transient exchange
models are more sophisticated from the physical and
mathematical points of view than the models based on
steady-state transfer functions. However, Moench
(1984) showed that pseudo-steady-state block/fracture
exchange models could be described as a particular case
of unsteady transfer models by means of fracture skin

0022-1694/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
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Fig. 1. Conceptual scheme of the analytical model.

parameters. In his analysis, Moench (1984) provided a
theoretical justification for the use of equivalent
pseudo-steady-state flow models, where both overlap-
ping continua have the same geometry. Since the main
source of uncertainty in the prediction of the hydraulic
behaviour of fractured aquifers lies in the distribution
of high-permeability zones, these kinds of models do
not require the definition of a block geometry, as in
transient models. The flux exchanged between conti-
nua q., is ruled by a lumped parameter, as defined by
Barenblatt et al. (1960), according to the equation
qex = Ta(H,, — Hp), where H,, and H; are the respec-
tive average hydraulic heads in the matrix continuum
and the fracture continuum, and « is the exchange
coefficient. Following the model of Warren and
Root (1963), « relates to the fractured rock geometry
and its hydraulic properties.

Karstic aquifers are commonly schematised by a
mostly unknown high-permeability channel network
which is embedded in a low-permeability fractured
limestone volume, and is well connected to a
discharge area. In such carbonate aquifers, which
have often been assimilated to dual-porosity systems
(Drogue, 1969; Teutsch, 1988; Mohrlok, 1996; Mohr-
lok and Sauter, 1997; Mohrlok and Teutsch,
1997), the geometry of the channel network
governs the global hydraulic response but is
never well known a priori. In a dual-porosity
model of karstic aquifer, the primary porosity
represents the matrix volumes (fissured limestone
volumes of low-permeability) and the secondary
porosity represents the karstic network (channel
network of high-permeability). The two model
components are, therefore, linked to this duality
in the hydraulic characteristics.

The purpose of this paper is first to provide 1D
analytical solutions of the dual-porosity model with
porosity-weighted continua, according to transient-
type input boundary conditions. In the second step,
we point out the relation between the exchange coef-
ficient o and some geometrical and/or physical
characteristics of the high-permeability zones in
dual-porosity systems. To illustrate the application
of the model, numerical experiments are carried out
in order to simulate the hydraulic responses of several
3D reference models, which take into account the
hydraulic characteristics of karstic aquifers. The cali-
bration of the analytical model on reference data show
the large effect of the karstic network structure on the
hydraulic responses (spring hydrograph and hydraulic
heads).

2. Analytical solutions for 1D dual-porosity conduit
flow

In this section, we propose 1D solutions of the dual-
porosity model (Fig. 1), with porosity-weighted
continua. In this model, we assume zero matrix
conductivity and first-order exchange Kinetics
between porosities (pseudo-steady-state exchange),
ruled by the lumped « parameter. Solutions are
given for a few typical transient input signals imposed
as boundary condition.

2.1. Basic equations

The differential equation controlling flow in the
channel continuum is described by the groundwater
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diffusion equation with source term

9%H, oH, oH,,
a2 Ve Ty M

K.

with K. and S, are the hydraulic conductivity and
storage coefficient of the high-permeability conti-
nuum (channel), and §,, is the storage coefficient of
the low-permeability continuum (matrix). H, =
H, (x,t) and H, = H_.(x,t) are the hydraulic heads of
the matrix continuum and the channel continuum,
respectively, x being the distance.

In Eq. (1), the second term in the right hand side
acts as source term accounting for contributions to and
from the matrix continuum.

Let ¢ be the volumetric density of the channel
continuum. ¢ is the ratio of the total channel volume
to the apparent total volume of the system, and can
also be assimilated to the channel total porosity. The
matrix continuum volumetric density is thus 1 — ¢

Ve
b= @

a

V
1l—dp=-" 3
¢ v (3)
where V, is the channel volume, V,, the matrix volume
and V, is the apparent total volume.
Weighting the terms of Eq. (1) by ¢ and 1 — ¢
yields

9%H, 0H, OH,
= + -
dK, Y S, o (I — @Sy o 4)
or
0°H, oH, OH.
K. C=§ —S +85 —2 5
where
1-¢)
B= T(z) (6)

When both continua are assimilated to tubes or pipes,
Eq. (6) results in

o ()

r. and r, being the channel and matrix radii, respec-
tively.
The expected solutions of Eq. (5) must satisfy the

following boundary conditions:
dH,
H.(0,1) =BC() or — K, 8—(0’ 1)
X

=BC(f), and H.(+0,f) =0 (8)

with BC(7) a transient input function at the boundary
x=0.
Assuming first-order exchanges between porosities,
the matrix storage term in Eq. (5) can be expressed by
oH
Sm—m = _a(Hm - Hc) 9
ot
where H,, = H,(x,1), H, = H.(x,?).
Applying the Laplace transform to Egs. (5) and (9)
with the initial condition H.(x,0) = H,(x,0) =0
yields

9*(H.)

PSAH,) + pBSm(Hy) = K. 7 (10)

(H)
S,

14 2o
a

(Hp) = (1)

The p-transformed L(H,) is denoted by (H;).
By substituting Eq. (11) in Eq. (10), the following
partial differential equation is obtained:

0*(H.
) = A (12)
X
with
p BSm
Ap)= —|S. + -2 (13)
3 R
o

The solutions of Eq. (12) must satisfy the boundary
conditions

g KHO

(H)0,p) = (BC)(p) or — 5
X

©0,p)
= (BC)(p), and (H)(+o0,p)=0 (14

with (BC)(p) the p-transformed boundary condition
BC(f) at x = 0.
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Table 1
Example of typical flux boundary conditions

BC type

Formula in the Laplace domain

n step-flux functions®

J
*Fz(Ti +T;-1)

n
S i) =
Jj=1

p

n triangular flux functions®

J
*PZ(T,' +T)
=

n —pui(y —phi _ o, o=Phi
z Goi € "t — iy T e T — e P
=

7
P i1ty — ti—1)

* 1; is the time elapsed before the step-flux i starts and 7; is the injection duration of intensity g,;.
" u; is the time elapsed before the triangular signal i starts, f,;_, the time elapsed when the maximum flux g; is reached, and 1,; the total

duration of the signal i.

2.2. Resolution

The general solution of Eq. (12) reads
H,p) = 5 ([F)E) + (F) eV

+ (F)p) = (FOEe VAP)  (15)

where (F|)(p) and (F,)(p) account for the boundary
conditions.

To satisfy the condition (H,)(0,p) = 0, it is clear
that (F;)(p) = —(F,)(p). To satisfy the condition

(H)(0,p) = (BC)(p),  then  (F,)(p) = (BC)p).
Finally, Eq. (15) results in

(H)(x, p) = (BC)(p)e VAP (16)

Using a head Dirac boundary condition (BC)(p) =
(8)(p) = 1, the solution of Eq. (12) is

(H)(x,p) = e VA0 (17)

which corresponds to the channel transfer function,
and the transformed Darcy flux is

(q).p) = —K. agi ) — g A VAP (18

Under the flux Dirac boundary condition

K, H)(x, p)
ox x:

=P =1
=0

the transformed hydraulic head in the channel reads

e—xx/A(P)
(H)(x,p) = —F=— (19)
ST KA
and the transformed flux is

(g)x,p) = e VAP 20)

which equals the transfer function of the system as
defined by Eq. (17).

2.3. Channel connections using the dual-porosity
transfer function model

Let (TR)(x, p) be the transformed transfer function
of our dual-porosity system, explicitly defined by

S. Sin
(TR)(x,p) = exp(‘ \/(K + K(fx%:—pS))p)

2y

Under any Laplace p-transformed flux boundary
condition

K, d(H)(0,p)

BO)p) = —K, “

(e.g. see Table 1), the solution of Eq. (12) reads

+ o0

1
(H.)(x,p) = (BC)p) I J (TR)(u, p)du (22)

X

for the channel hydraulic head, and the transformed
flux is

(qe)(x, p) = (BCY(pXTR)(x, p) (23)
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Fig. 2. Channel connection and resulting signal.

The hydraulic head in the matrix continuum can thus
be assessed by making use of Eq. (11)

H_)(x,

(B = D) 24)
1+ —=
a

and the flow rate is given by (Q.)(x,p)=

(go)x.pymr?.
The flow model described by Egs. (22) and (23) can

be regarded as a ‘dual-porosity transfer function
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model’, as the transformation of an arbitrary transient
signal at the input boundary of the system is achieved
by means of impulse response function (transfer func-
tion) convolution.

Finally, for any Laplace p-transformed flux bound-
ary condition, the convolution with the transfer
function integral with respect to x yields the hydraulic
head solution, and the convolution with the transfer
function itself yields the specific flux solution. This
property allows the connection of several channels in
terms of fluxes, as shown in Fig. 2.

At the connection of two channels, the correspond-
ing flow rates can be summed and become the
upstream signal for the next channel section. The
final signal is thus simply obtained by successive
convolution of the transfer function of a specific chan-
nel section by its upstream boundary condition.

The Laplace transform technique has been widely
used to assess analytical solutions of the dual-porosity
model (see e.g. Warren and Root, 1963; Kazemi, 1969;
Moench, 1984; Mohrlok, 1996). Mohrlok (1996)
provided a 1D solution in the Laplace domain and was
able to calculate the inverse transformation of the
Laplace transform without the requirement of a numer-
ical inversion. However, the model proposed by this
author differs from the one presented in this paper as
no transient boundary condition at x = 0 is used. More-
over, if the time solution for a single channel system
may be assessed, this would not be the case for the
solutions of systems with multiple connected channels,
solutions which can easily be derived by staying in the
Laplace domain by means of convolutions.
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Fig. 3. Simulated output signals parameterised by coefficient « (m/s). K. = 10 mfs, S, =5%1072m, S, =1x10*m, B=1x10°, x =
1500 m, u=24h, t; =12h, t, =24 h, go = 0.1 m>/s. Bold lines: signals in the channel continuum; dashed lines: signals in the matrix

continuum.
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Fig. 4. Simulated output signals parameterised by coefficient 8 (-). K. = 10 m*fs, Se =5%x1072 m, S, =1X107* m,a=1x10"" mis,
x=1500 m,u =24 h,ty =12 h,t, =24 h, g, = 0.1 m>/s. Bold lines: signals in the channel continuum; dashed lines: signals in the matrix
continuum. Note that the difference between the curves 8= 1 and 10 is not sufficiently significant as to appear explicitly on the graph.

3. Parameter discussion
3.1. Flux exchange coefficient

The dimension of the 3D exchange coefficient « is
[L™'T™']. For a 1D model, the dimension is [LT'].
Considering the incremental volume mr? dx in the
channel, the exchange flux g, [LT '] between poros-
ities seeping through the surface 27, dx can be
formulated according to

Gex = —alHy(1) — Hc(t)]% (25)

Moreover, using Darcy’s law to evaluate g, yields

=K Hm(t) - Hc(t)

Gex = m

(26)
&y
where K, is the matrix hydraulic conductivity [LTfl]
and ¢ is a factor multiplying r,, (the distance allowing
to evaluate the gradient being unknown a priori).
From Egs. (25) and (26) one can write

2 K
a=-—=1 (27
& rcrm
If « is the 1D exchange coefficient, then
2w K
oy = Trea = T Zm (28)

& VB
Fig. 3 shows the behaviour of the simulated hydraulic

head and flow rate according to the variations of the
coefficient . The input is a symmetric triangular flux

function (see Table 1). The more the value of «
decreases, the steeper the peak amplitude of the global
response, and also steeper is the decrease in the deple-
tion curve. The output flux shows a depletion curve
decreasing slower for increasing values of «, invol-
ving a more and more important base-flow. This is due
to the fact that when the transfer between porosities is
high, during the stress event a big amount of water is
stored in the matrix porosity. This volume is restored
to the channel during a slow depletion.

For high magnitudes of « (e.g. with a = 1 X 107°
in Fig. 3) the output signal is shifted, which is a conse-
quence of the term under the square-root in Eq. (16),
that tends to p((S. + BS,)/K.) if « tends to infinity
(high diffusion effect). Increasing values of « affect in
the same way the hydraulic head response in the chan-
nel. On the contrary, when « increases the hydraulic
head peak in the matrix continuum increases too.
Inversions of hydraulic gradient, which are typical
hydraulic processes occurring in karst systems, can
well be observed during the rainfall event (H,, < H,
during the stress period, H,, > H_ during the reces-
sion period).

3.2. Porosity-weighting coefficient

In Barenblatt et al. (1960), the ratio between the
fractured volume and the total apparent volume is
neglected, compared to the matrix porosity. In this
case, the total porosity of the dual-porosity system is
assumed to be more or less equal to the matrix
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Fig. 5. Illustration of the storage process by the channel network during a rainfall event (modified after Grasso (1998)).

porosity. If B=1 (i.e. ¢ =0.5), then Eq. (5) is
equivalent to the common dual-porosity 1D formula-
tion without porosity-weighted continua (which is in
fact similar to a weighting that equals 1/2), with first-
order exchange kinetics between porosities and
assuming no flow in the matrix continuum. The poros-
ity-weighted model thus represents a more general
modelling approach, in which 0 < ¢ <1, ¢=0.5
being a particular case of the model. Note that if 3
tends to infinity (¢ — 0), then the hydraulic head
tends to zero. If B tends to zero (¢p — 1), then the
hydraulic head obeys the pure diffusion equation
with the parameters of the channel continuum.
Moreover, writing &' = Ba and S}, = BS,, yields

S. a'S!
(TR)(x, p) = exp ( _XJ ( K. + K@ + pSi) )P)

(29)

Eq. (29) shows that including 8 in the equations
affects both the coefficients « and S,

Fig. 4 shows the behaviour of the simulated hydrau-
lic head and flow rate according to the variations of
the coefficient B. At a fixed exchange rate between
porosities (constant «), the coefficient 8 mainly rules
the magnitude of the hydraulic responses (also
involving modifications on the depletion part of
the curves). For increasing values of this coefficient
the spring hydrograph amplitude decreases. Both the
hydraulic head amplitudes in the channel and in the
matrix decrease too. This is the consequence of
the fact that this coefficient affects in the same way
the two coefficients @ and S,,. At this point, one can
see that introducing the coefficient 8 in a dual-
porosity model may be fruitful to calibrate both flow

and head responses. In fact, Cornaton (1999) showed
that using dual-continuum models with continua of
equal volumes is inappropriate to calibrate both
heads and spring hydrographs on data resulting from
reference 3D discrete single-continuum models of
karstic aquifers.

3.3. Channel conductive parameter

As flow in the model is laminar, the analogy
between Poiseuille’s and Darcy’s laws suggests the
following relation between the channel radius . and
the channel conductive parameter K, [L3T71]

K= 22r (30)
8u

with y [ML™°T"?] and u [ML™'T™'] the specific

weight and dynamic viscosity of water.

3.4. One-dimensional storage coefficient

Let E, [ML'T% and E, [ML 'T"?] be the
compressibility coefficients of a 1D channel section
and water, respectively, 6 [—] the channel porosity
and y [ML T %] the specific weight of water. The
1D storage coefficient S, [L] is the specific storage
coefficient [L~'] multiplied by the channel cross-
sectional area, that is

0 1
S, = ‘y(a + Ec)wrf (€2))]
The S, [L] coefficient corresponds to the volume of
liberated/stored water per unit of channel length, and
per unit variation of hydraulic head. Neglecting the
skull deformation and taking 6 = 1 for the channel
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porosity results in

S, = ——qr? (32)

e
Ey
Enforcing Egs. (30) and (32) allows the simulation of
typical karstic systems spring hydrographs. These
hydrographs show a rapid and high intensity peak,
followed by rapid decrease of the flow rate and a
steep decrease of the depletion curve. However,
straight application of Eqgs. (30) and (32) gives good
results provided the two porosities have approxi-
mately the same relative volumes (8 = 1, ¢ = 0.5).
For larger values of 3, Eq. (32) yields too high diffu-
sivity values, transferring the input signal quasi-
instantaneously. In this case, artificial values of
channel storage coefficients are required, 100—1000
times higher, in order to match the experimental
results.

This can be understood by considering that during a
rainfall event, a big volume of water can be stored in
the high-permeability network itself, by means of
multiple permeability/porosity systems of connected
open fractures, and other conduits. During the reces-
sion period, this amount must also participate in the
volume of the low depletion part of the hydrograph,
water being re-distributed within the higher perme-
ability zones of the network, all the way to the spring.
This process is shown in Fig. 5, showing the hydraulic
steps during a rainfall event. During the recharge peri-
ods, the karstic network storage is accommodated by
means of vertical conduits inside which the free water
level rises. Water is re-collected by the main drains
during the recession period. That is why the actual
storage coefficient of the channels has to be artificially
increased by orders of magnitude with respect to the
value given by Eq. (32). This points out the fact that
the depletion part of the hydrograph is not only an
image of the low permeable volumes, but is also
fully dependent on the channel network structure
(density, connectivity, total volume), as already stated
by Kiraly and Morel (1976). As a matter of fact, the
pure exponential extremity of the depletion curve
does not give any information on the hydraulic prop-
erties of the low permeable volumes, but rather on the
resulting hydraulic properties of the set channel
network/matrix volumes. Nevertheless, matrix speci-
fic yields and transmissivities are nowadays often still

derived from the slope of the recession curve by fitting
the data with an exponential function (Shevenell,
1996; Baedke and Krothe, 2001).

4. Sensitivity analysis

The organised heterogeneity of karst systems may
be schematised by a mostly unknown high-permeabil-
ity channel network which is embedded in a low-
permeability fractured limestone volume, and is well
connected to a discharge area, or karst springs. The
duality of karst aquifers is a direct consequence of this
structure (Kiraly, 1988, 1998): duality of the infiltra-
tion processes (diffuse infiltration into the low-perme-
ability volumes, concentrated infiltration into the
channel network), duality of the groundwater flow
field (low flow velocities in the fractured volumes,
high flow velocities in the channel network) and
duality of the discharge conditions (diffuse seepage
from the low-permeability volumes, concentrated
discharge from the channel network at the karst
springs).

As the available data on karst channel networks are
very limited, the combined discrete channel single-
continuum approach cannot be widely used. However,
it represents a powerful tool for checking the
adequacy of the interpretation schemes based on a
simpler representation of karst aquifers, where the
channel network does not appear explicitly (e.g.
global methods as black-box or grey-box models,
simple continuum or double-continuum approach).
Karst aquifers are 3D systems and cannot be reduced
to 2D objects without loosing important information
on the infiltration processes and the distribution of
hydraulic heads. Numerical experiments with a 3D
finite element model using the combined discrete
channel single-continuum approach, and simulating
the infiltration and groundwater flow processes in a
highly simplified theoretical karst aquifer, allowed to
show the existence or non-existence of an epikarst
zone enhancing concentrated infiltration (Kiraly
et al., 1995).

The dual-porosity approach has the drawback that
the model parameters can only be determined by
model calibration i.e. the model parameters cannot
be related directly to physical field measurements.
In the following, we analyse the parameters used
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spring

Fig. 6. Theoretical karst systems according to three channel network densities. Bold lines: karst channels embedded in a 3D structure (up).

Steady-state head solutions: equipotentials and flux vectors (below).

when a 1D dual-porosity analytical model correctly
describes the hydraulic responses of a well-known 3D
karst system.

4.1. Discrete channel single-continuum karst systems

Theoretical karst systems were elaborated using the
computer codes FEN, enhanced versions of the origi-
nal code FEM301 (Kiraly, 1985). FEN simulates the
steady-state and transient three-dimensional saturated
groundwater flow by the finite element method. The
structure of the channel network is introduced in a 3D
domain, by means of 1D elements, following Kiraly

TRDI : Transfer function
of the drain 1

TRD2 : Transfer function
of the drain 2
PANEL 2

BC2=TRD1 * BCI + SIG2

BC3=TRD2 * BC2 + SIG3

PANEL 3
0,,~TR*BC3

Fig. 7. Equivalent 1D dual-porosity model in the case of MODEL3
using a cascading system of convolutions.

(1979, 1985, 1988). With this known structure, it
becomes possible to analyse the relations between
the reference structure of the aquifer and the para-
meters of the dual-porosity model, which correctly
describes the simulated hydraulic responses. Three
different models were built, according to three differ-
ent channel network densities with symmetrical prop-
erties (Fig. 6). A set of horizontal and vertical
channels is connected, forming vertical drainage
panels connected to a main horizontal upper drain.
A single spring is simulated by applying a constant
head at a downstream node. Hydraulic parameters in
the 3D models are homogenously distributed. Model
area and volume are 6.8 km? and 2.72 km3, respec-
tively. Fig. 6 shows the complexity of the simulated
potential distribution in the aquifers. As a matter of
fact, the knowledge of the groundwater table level
(e.g. measured in boreholes) would not allow any
interpretation of the flow processes.

4.2. Equivalent 1D analytical dual-porosity model

The calibration of a single channel dual-porosity
model was rapidly abandoned as the results were too
different from the reference data. Structurally equiva-
lent 1D analytical models were then constructed
aiming at reproducing the right simulated reference



174 F. Cornaton, P. Perrochet / Journal of Hydrology 262 (2002) 165—-176

Table 2
Calibration example, model parameters

MODELI MODEL2 MODEL 3
3D numerical models

K. (m%/s) 10 10 10

S, (m) 5%107° 5%107° 5%1073
K, (m/s) 1x107° 1x107° 1x107¢
S (m™h) 5%107° 5%107° 5%107°
1D analytical models

Panels

a (m/s) 5%1078 65%1078 8x 1078
B (=) 4x10° 225%10° 1.5x10°
Central drains

a (m/s) 6x107" 5x107" 455%x 107"
B (=) 2.15x% 10° 25%10° 2.75%10°

internal responses and spring hydrographs. To
perform this task, the structure of the karstic network
of each discrete model was equivalently designed by
using successive convolutions (as described in Fig. 2
and making use of Egs. (22) and (23) for the hydraulic
head and flux, and of Eq. (2) in Table 1 for the bound-
ary conditions). Fig. 7 shows the strategy which is
used to create an equivalent dual-porosity model in
the case of MODELS3. The signal produced by a panel
i is denoted by SIGi. This signal is routed through
drain j, at the end of which it is noted BCi. For exam-
ple, at node 2, which connects the water routed by
drain 1 and water produced by panel 2 (SIG2), the
resulting signal is BC2 = TRDI X SIG1 + SIG2,
where TRD1 is the transfer function of drain 1, as
defined by Eq. (21). This signal is then used as an
input for the routing convolution in drain 2, which,
in turn, produces the signal reaching node 3. At node
4, the flow rate is equivalently calculated according to
Qo = TRXBC3, where BC3 = TRD2XBC2 +
SIG3, and TR is the transfer function of the last chan-
nel section.

Finally, the structure of the karstic networks used in
the discrete models is respected in terms of channel
lengths and channel connectivity. Some parameters of
the discrete models are taken as known values,
namely the channel hydraulic conductivity and
storage coefficient, and the matrix storage coefficient.
The boundary conditions are respected (nodal flow
rate at the extremity of each vertical channel, or
sinkhole). In the discrete reference models, 100%

of the total infiltration volume is applied directly
into the karstic network (100% of concentrated
infiltration).

In the equivalent 1D dual-porosity model, drains
and panels can have different parameters, as the
drained volumes of matrix differ from one another:
a and B coefficients have then to be properly esti-
mated and distributed.

To return into the time domain, the Laplace inver-
sion was performed via the Crump’s algorithm
(Crump, 1976).

4.3. Example of simulated hydrographs

Several global responses of the reference karst
aquifers were simulated, by using a sequence of one
triangular symmetric function followed by one asym-
metric infiltration function. The detail of a simulation
example is given in Table 2 and Fig. 8 shows the
graphical result.

To calibrate the three 1D equivalent analytical
models, the B porosity weighting coefficient was
first estimated by the evaluation of the drainable
matrix volumes in the 3D discrete models, during
recession periods. These matrix volumes were then
divided by the volume of the corresponding draining
channels. As K, S. and S, were imposed in the analy-
tical models, only the exchange coefficient a required
a calibration. Fig. 8 shows the coherence between
calibrated flow rates and hydraulic heads, in the case
of MODEL3, where the temporal evolution of the
head is ‘measured’ midway of drain 1 (see Fig. 7).

The sensivity analysis confirmed the relation
between the coefficients a and 3, as defined by Eq.
(28). However, the arbitrary constant ¢ introduced in
Eq. (28) could not be assessed through such an empiri-
cal analysis, mainly because of numerical restrictions
on the simulated reference data, which highly depend
on the level of refinement at the neighbourhood of the
discrete 1D elements. Note that discretisation around
discrete elements essentially affects the depletion part
of the reference hydraulic responses while the magni-
tudes of the simulated signals remain more or less the
same for different levels of refinement.

5. Conclusion

It has been verified, by means of numerical
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Fig. 8. Example of numerical/analytical calibrated fluxes, and calibrated hydraulic head for MODEL3.

experiments, that hydraulic responses of 3D theo-
retical karstic systems can be obtained by 1D
porosity-weighted solutions of a dual-porosity
system. Both the hydraulic heads in the channel
network and spring hydrographs could be simu-
lated by calibrating equivalent analytical dual-
porosity models. Only the exchange coefficient «
required a calibration process. To perform this
task, the structure of the karstic network was the
main characteristic of the reference aquifers that
had to be taken into account. The combined analy-
tical/numerical experiments showed that the
network density and the number of channel
connections within this network (channel network
connectivity), are fundamental structural features
that rule the shape and intensity of the spring
hydrograph. The flux exchange -coefficient in
dual-porosity models is directly related to the
karstic network density.

In order to simulate karstic shaped spring hydro-
graphs with rapid responses to rainfall events,
followed by low recession, both the 3D numerical
discrete single-continuum model and the 1D analyti-
cal dual-porosity model require channel storage coef-
ficient values 100—1000 times higher than the matrix
storage coefficient. This fact can be explained by
considering the potential storage capacity of the chan-
nel network in karst systems, accommodated by the
high porosity zones (watering/dewatering of open
fractures, vertical channels,...) that can easily store

a big amount of water during a rainfall event. This
large additional storage process is neither dependent
on the water compressibility nor the skull deforma-
tion.

Limitations of the presented dual-porosity model
have to be clarified. Firstly, the use of this model to
simulate karstic hydraulic responses is only valid for
systems with fully concentrated infiltration (100% of
total seepage directly into the karstic network). Catch-
ments of mature karstification, which are of great
interest for water supply, represent an ideal situation
for the application of the model. Secondly, as flow in
the matrix continuum is neglected, the high-perme-
ability network has to be the only water collector of
the aquifer (i.e. concentrated discharge directly linked
to the channel network). Finally, the position where
the matrix hydraulic head is evaluated is unknown a
priori, which makes the simulated matrix signals diffi-
cult to interpret.

Nevertheless, the use of porosity-weighted dual-
porosity transfer function models allows to make
inferences on the karstic network structure and its
influence on the spring hydrograph. The presented
analytical models, which remain valid for any transi-
ent boundary condition, combined with the possibi-
lity of channel connection, can be a practical tool for
testing the karstic structure, the homogeneous/hetero-
geneous infiltration processes and parameters distri-
bution effects on the hydraulic responses of highly
heterogeneous systems such as karstic aquifers.
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