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Abstract

Typical isochron calculations involve using a least squares analysis of the data. If the scatter about a line through the data is

perfectly Gaussian, then least squares provides an optimal handling of the data. However, if the data are Gaussian only in the

centre of the distribution, but depart from it only slightly in the tails of the distribution, then least squares is not optimal and can

easily degrade seriously. For the size of datasets that are used in isochron calculations, such non-Gaussian behaviour is

impossible to test for. This is important because there are numerous sources of uncertainty which might result in subtly non-

Gaussian behaviour. Therefore, to defend against degradation, it is proposed that isochron calculations be modified by the use of

a robust statistical method so that non-Gaussian tail behaviour can be accounted for. For data that are actually Gaussian-

distributed, the new isochron calculation method will generally give identical results to least squares. The improvement given

by the new method is illustrated by the use of simulations. D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Much of what is currently practised in the calcula-

tion of isochrons emanates from the classic papers of

York (1966) and McIntyre et al. (1966). Their work

evolved from what might be called the classical sta-

tistics tradition, in which a least squares analysis is

undertaken, in the context of analytical uncertainties on

both the x and y coordinates of the data in an isochron

diagram (York, 1969). The least squares method is

optimal if the data scatter about the linear trend through

the data is Gaussian-distributed but for the usual size of

isotopic datasets, this is impossible to test for. What is

needed is an isochron calculation method that works

well, in the sense of finding the linear trend through the

majority of the data, regardless of the structure of the

data scatter (i.e. perfectly Gaussian or not) about the

trend. However, the least squares analysis normally

used in isochron calculations cannot be relied upon to

provide this trend (e.g., Rock et al., 1987). Non-

Gaussian behaviour rapidly degrades the least squares

analysis, as will be illustrated below.

In a least squares analysis, not only is an age and its

uncertainty calculated, but also a statistical measure,

MSWD,1 which was originally used to say whether the
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text.
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data should indeed be combined (i.e. have age sig-

nificance) (McIntyre et al., 1966). Out of this grew a

practice that only if the MSWD passes an appropriate

statistical test will the calculated age be termed an

isochron. Otherwise, it is termed an errorchron

(Brooks et al., 1972). The MSWD is used to determine

if all the observed scatter in the data is consistent with

analytical uncertainties. If MSWD ‘‘fails’’, then geo-

logical error is assumed to be involved, and the data as

an errorchron are deemed to have less or no age

significance. Although the strict application of this

isochron–errorchron distinction based on the MSWD

is not commonly applied, recognising that geological

scatter need not destroy the age significance of data,

there is nevertheless a reverence for the MSWD. For

example, the MSWD is still used in error-expansion of

age uncertainties, and in deciding whether or not error

expansion should be applied. However, the MSWD

cannot normally be relied upon, as is shown below.

This is important because, with increasing MSWD

through a certain value, the standard procedure of

error expansion involves a step-wise change in age

uncertainty. As well as finding reliably the linear trend

through the majority of the data, an isochron calcu-

lation method is needed that provides age uncertainties

that increase smoothly with increasing data scatter.

In this paper, the classical statistical isochron

calculation methods are examined and shown to be

sub-optimal, and alternative methods are proposed.

2. The least squares method

The isochron methods considered are those in

which the data form a linear trend on an x–y plot, the

slope of the trend relating to the age when the isotope

system closed, assuming that this took place at one time

and subsequently remained undisturbed. These meth-

ods include such commonly employed systems, such

as, Rb–Sr, Sm–Nd, Pb–Pb, U–Pb, Lu–Hf and Re–

Os. For all real cases, the data defining the trend show

some level of scatter, and estimation of the age involves

regression of the data to determine the slope.

Considering these data as (column) vectors, x and

y, the vector of residuals, e, the vertical distance of the

points to any line, is given by

e ¼ y � Xq

in which q is a column vector with two elements, the

intercept and slope, and X is a matrix with two

columns, the first being a column vector of ones

(denoted 1), the second being x, so X = [1 x]. The

classical ‘‘least squares’’ approach involves finding

the q that minimises the sum of the squares of the

residuals

min
q

eTe

in which T denotes the transpose of the vector (or

matrix). A wide range of data uncertainty structures

can be accommodated by considering the vector of

residuals premultiplied by a weight matrix, W, so that

the least squares problem involves solving

min
q

eTW2e: ð1Þ

In isochron calculations in which the elements of x

and y have uncertainties associated with them, and the

elements are correlated, W is diagonal, with diagonal

elements, Wii

W ii ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
yi
þ b2r2

xi
� 2brxiryiqxiyi

q ð2Þ

in which b is (an estimate of) the slope, and rxi is the
standard deviation of xi, ryi is the standard deviation

of yi, and qxi
yi is the correlation between xi and yi

(e.g., York, 1969; Wendt and Carl, 1991). Various

special cases can be found by making appropriate

substitutions in Eq. (2).

The minimisation problem in Eq. (1) can be

tackled directly, or in equation form. Thus, differ-

entiating Eq. (1) with respect to q, gives

XTW2e ¼ 0: ð3Þ

Substituting for e and rearranging gives the least

squares estimator of q

q ¼ ðXTW2XÞ�1XTW2y: ð4Þ

Use of Eq. (4) is iterative if the weights depend on q,
as in the case of the York regression using Eq. (4) with

Eq. (2). The implementation of the tanh estimator

advocated below can also be accommodated in the

form of Eq. (4)— see below.

A measure of the scatter of the data about the

regression line that features prominently in the geo-
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chronological literature is the ‘‘mean squared weighted

deviates,’’ or MSWD, a statistical measure of the

scatter of the data about the line, normalised to the

assigned uncertainties on the data. MSWD is simply

MSWD ¼ eTW2e

n� 2
ð5Þ

in which n is the number of data points. More

commonly used in the statistical literature is rfit (or

just r) given by

rfit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSWD

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTW2e

n� 2

s
: ð6Þ

In what follows, scatter is referred to in terms of

MSWD, while in the equations rfit is used, it being

clear that they are simply related.

In weighted least squares, the estimate of the

uncertainties on q, in the form of the covariance

matrix of q, Vq, is provided by

Vq ¼ ðXTW2XÞ�1: ð7Þ

The way in which the above least squares equa-

tions are normally used in geochronology can be

summarised as follows

(1) collect data (make vectors x and y)

(2) assign analytical uncertainties (make W with

Eq. (2))

(3) calculate age (via the slope, q2, from Eq. (4))

(4) calculate MSWD (via Eq. (5))

(5) calculate uncertainty on age (via Eq. (7))

The primary assumptions made in following this

approach are that, (a) all the uncertainties in the data

are of analytical origin, and, (b), that these uncertain-

ties are Gaussian in form. The first of these says that

there is no scatter in the data of geological origin. It is

also implicit that the analytical uncertainties are well

known. In many studies, this is not true, as discussed

in the next section. Yet this knowledge is critical to the

use of MSWD in geochronology (e.g., Kullerud,

1991). Assuming that the uncertainties are Gaussian

and assuming that the uncertainties are well known,

the approach often followed is to compare the MSWD

to its distribution under Gaussian uncertainties (Wendt

and Carl, 1991), and if this test passes at the 95%

level, then the data have age significance, and the

uncertainty on the slope is given by Eq. (7). If it fails,

then the data may not (or do not) have age signifi-

cance. As noted earlier, the former case are called

isochrons; the latter errorchrons.

Now consider that the weight matrix is multiplied

by an unknown factor, f. The factor does not affect q
(and therefore the calculated age), Eq. (4), but it does

appear in the uncertainty on the age. The factor is

given by

f ¼ rfit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eTW2e

n� 2

s
ð8Þ

and

Vq ¼ f 2ðXTW2XÞ�1: ð9Þ

However, if f is to represent scatter over and above

that represented by known analytical uncertainties

(e.g., unassessed analytical uncertainties, or geologi-

cal scatter), then f must be bounded below by, for

example, a = 1 (or, better, a value of a provided via a

v2 test.2) Then, to find the value of f to use in Eq. (9),

using Eq. (6), fu 1 if rfitV a, but f = rfit if rfit > a. For
rfitV a the age uncertainty is constant, and this

corresponds to York Model 1. For rfit>a, the age

uncertainty increases with rfit. This is York Model 2,

with the age uncertainty ‘‘magnified.’’ So the above

summary may be augmented

(4) calculate MSWD (via Eq. (5))

(5) use MSWD to decide if data scatter is ap-

propriate:

. if OK, data define an isochron;

. if not OK, data define an errorchron

(6) calculate uncertainty on age, multiplying this

by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSWD

p
if it is an errorchron

In the light of Eq. (8), if the MSWD is used to

distinguish between isochrons and errorchrons, the

importance of correctly assigning uncertainties to the

data is obvious, as emphasised, for example, by Kul-

lerud (1991). If the input uncertainties are doubled, say,

2 a=
ffiffiffiffiffiffiffi
2:5

p
is often used.
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then rfit is halved, possibly converting an errorchron

into an isochron. This is obviously unsatisfactory if

input uncertainties are not sufficiently well known, and

MSWD is given this special significance. Moreover,

the statistical test is only saying that MSWD should be

less than a certain value with 95% confidence. Using

this to make a black–white distinction between error-

chron and isochron is clearly inappropriate.

A considerably more profound difficulty with

MSWD, however, is that arising from the assumption

that the uncertainties on the data are Gaussian-dis-

tributed. The MSWD is particularly sensitive to non-

Gaussian behaviour, as illustrated below. Such behav-

iour is commonplace in real data (e.g., Hampel et al.,

1986, pp. 25–28). In isotopic data it will arise through

the combination of the different sources of analytical

and geological uncertainty, as well as from the nature

of these uncertainties themselves. Critically, non-

Gaussian behaviour is impossible to test for in the

small to minute datasets that are typically employed in

isochron calculations. Not only does non-Gaussian

behaviour affect MSWD, but it compromises the

accuracy of the least squares estimator. So alternative

methods are needed, as outlined below. With such a

method, the shortcomings of least squares in isochron

calculations are emphasised, before returning to the

behaviour of MSWD.

3. Towards a practical algorithm

The vast majority of the geochronological literature

takes a ‘‘hard’’ classical-statistics stance regarding

isochron calculations (see Rock et al., 1987, for an

exception). However, there are alternatives, and ones

that behave much more reliably than least squares

with data that depart from Gaussian uncertainties.

These robust statistical methods automatically down-

weight or even reject outliers, rather than treating all

data in the same way as in least squares, or relying on

manual cleaning of the data. For an excellent intro-

duction to robust statistics, the reader is referred to

Hampel et al. (1986), pp. 1–71 and pp. 397–416.

An intuitive illustration of the problem, and the

solution by using a robust method (for example, the

tanh estimator outlined below) is provided in Fig. 1. A

dataset of 10 points corresponding to 2500 Ma (Pb–Pb

dating) was created with Gaussian uncertainties (ry=

0.01, representing all of the denominator in Eq. (2)). In

Fig. 1, the high-end data point was progressively

displaced from the trend, above and below, and various

estimators applied to the resulting datasets. The least

squares age [(Eq. (2))] simply follows the point, with

the MSWD (rfit) flagging the extent to which this

datum departs from the trend. At some stage, the point

will clearly (e.g., visibly) be displaced from the trend

through the rest of the data and be considered an

outlier. Such a datum may then be removed from the

dataset, however this relies on a subjective decision

made by the geochronologist performing the calcula-

tion. For hard rejection (e.g., manual cleaning) of the

point once it is deemed an outlier, the result follows the

Fig. 1. (a) Age versus departure of a data point from the trend

through the data, ‘‘D’’ giving the departure as a multiple of ry. The
point is at one end of the trend, ‘‘lsq’’ is the least squares result, and

its 95% confidence band; ‘‘tanh’’ is the tanh estimator result (heavy

solid line); and (hard) is the hard rejection result (dashed line),

where the point is thrown out once the point is ‘‘far’’ from the line.

(b) Corresponding rfit versus departure relationships.
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least squares age until the point is omitted, then moves

discontinuously to the least squares age given by the

dataset without that point. Such discontinuous behav-

iour, combined with the problem of deciding when to

omit the data point (i.e. when is a point an outlier?),

makes the approach less than desirable. In contrast, the

robust age (tanh), follows the least squares line when

the point is close to the trend, but varies smoothly

away from the least squares age as the point leaves the

trend and the influence of the point is downgraded,

eventually being the fit of the data without that data

point when the point is determined to be an outlier by

the model. Such smooth handling of data off the trend

is attractive in an isochron calculation, and has the

added advantage that no subjective decisions regard-

ing outliers are required. If the point displaced is in the

middle of the trend, the effect on the age is similar to

that in Fig. 1 but is less pronounced.

Away of introducing appropriate robust methods is

to note that Eq. (3) is a member of a general family of

regression estimators called M-estimators (e.g., Ham-

pel et al., 1986, p. 315), which have the form

XTwðuÞ ¼ 0 ð10Þ
in which u is the vector of residuals, e, normalised to a

scale that reflects the scatter of the data, s. So u = e/s.

This family includes the estimator advocated below—

the so-called tanh estimator, as well as least squares,

with w(u) = u. The calculation of the data scale, s, is

considered in the next paragraph. In the context of

(implicit), w(u) is chosen such that its value does not

increase without bound as u increases, as it does with

least squares. The motivation for an important group of

M-estimators, the so-called redescending estimators

(Hampel et al., 1986), is that (a) the optimal properties

of least squares need to be utilised for smaller residuals,

(b) larger residuals need to be excluded, and (c)

intermediate residuals need to have a contribution that

is transitional between (a) and (b). This effect can be

seen in Fig. 2(a) in which, for juj< 1.634, the contri-

bution is the same as for least squares; for juj>4, the
residual does not contribute, and in the intermediate

region there is a smooth transition from a full contri-

bution to no contribution. This transitional region

represents residuals that can be considered to be pro-

gressively more doubtful and whose influence is there-

fore progressively downgraded (Hampel et al., 1986,

Fig. 1, p. 61).

In order to function effectively, methods such as the

tanh estimator need to have both a scale to normalise

the residuals, and an estimate of the trend of the data.

Both of these requirements can be met with highly

resistant methods that are little affected by (many)

outliers in the data (Rock et al., 1987). The reason why

these methods are not in themselves excellent ways of

determining isochrons is that they tend to be highly

inefficient, meaning that when applied to data that are

actually Gaussian, for example in simulations, they

Fig. 2. (a) The function w(u) plotted against u, in which u is a

residual normalised to scale, for least squares (lsq), hard rejection of

outliers for u > 2.5 (hard; dashed line), and for a redescending

estimator (tanh; solid line). The tuning constants used in the tanh

estimator are r = 4 and p= 1.634 (Hampel et al., 1986, Table 2, p.

163). (b) The weightingW2 =w(u)/u for the w-estimator form of the

tanh estimator (solid line), as well as the weighting for least squares

and hard rejection (dashed line).
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have the undesirable effect of producing substantially

wider confidence intervals on calculated ages (as in

Fig. 5). Application of a redescending estimator from

such an inefficient estimator substantially improves the

efficiency, particularly for larger samples. The resistant

method used here to determine the trend through the

data is the least median of squares (LMS), although

other such methods could be used. The LMS is found

by determining the position of the minimum width

band that includes half of the data, the width of the

band being measured in the y direction (Rousseeuw

and Leroy, 1987, pp. 197–201). The scale estimate, s,

used is a standard resistant one based on the median of

the absolute values of the residuals, known as nMAD

s ¼ 1:4826 1þ 5

n� 2

� � ffiffiffiffiffiffiffiffiffiffiffi
mede

p
2 ð11Þ

in which e is the vector of residuals to the LMS line,

e = y�XqLMS. The factor (1.4826) and the term in the

number of data points, n, make s approximate the

standard deviation for Gaussian-distributed data

(Rousseeuw and Leroy, 1987, p. 202). Thus

u ¼ y� XhLMS

s
: ð12Þ

The tanh estimator takes various forms, based on

Eq. (10) and the definition of w(u) (Hampel et al.,

1986, p. 160), Fig. 2(a). A fully iterated form has its

problems because (implicit) may have several solu-

tions, or it can blow up from an injudiciously chosen

starting q. Most of the efficiency gains can be made

by taking one step from the LMS estimate, rather than

carrying out a full iteration. The form of the 1-step

tanh estimator used here is a w-estimator, e.g., Good-

all (1983), involving one-step based on a rearrange-

ment of (implicit) with u given by Eq. (12). Forming a

diagonal weight matrix in terms of u, with diagonal

elements, Wii

W2
ii ¼

wðuiÞ
ui

¼

1 if AuA < p

AuA�r
p�r

if AuA > p and AuA < r

0 otherwise

8>>>><
>>>>:

ð13Þ

with p = 1.634 and r = 4, as shown in Fig. 2(b). These

p and r values are suggested to be reasonable defaults

by Hampel et al. (1986), p. 163. Then, in the form of

Eq. (3),

XTW2u ¼ 0

so Eq. (4) gives qtanh

qtanh ¼ ðXTW2XÞ�1XTW2y: ð14Þ

As a general scheme, this can be summarised as

follows, with the actual methods proposed in brackets,

starting with the collection of data, then

(2) calculate trend through data with a resistant

estimator (LMS)

(3) calculate resistant scale of scatter about trend

(nMAD)

(4) weigh data according to an efficient robust

estimator, based on the scale of scatter about

trend (tanh)

(5) adjust trend using weighted data; calculate age

from slope of trend.

Note that these robust estimators are based on the

actual scatter of the data about the linear trend, and

not the analytical uncertainties on the data.

Such a scheme can include the use of other

methods, including hard rejection of outliers, for

example using

W ii ¼
1 if AuA < 2:5

0 otherwise

8<
: ð15Þ

as long as these weights are based on resistant

estimates of the trend and the scatter about the trend.

Whereas such an approach is already a considerable

improvement on least squares, it is less efficient than

the tanh estimator (and has the discontinuous behav-

iour noted above).

4. Simulations

The effectiveness of the tanh estimator, compared

with that of least squares, can be best investigated by

simulation. The data uncertainty distributions used are
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described in Appendix A, and are shown in Fig. 3.

These distributions were chosen to contribute a small

amount of non-Gaussian behaviour to the uncertain-

ties. They are all Gaussian in the centre, but are

heavier-tailed than the Gaussian, with tail weights

greater than 1 (Rosenberger and Gasko, 1983).

Although it is not implied that isotope datasets have

this precise uncertainty structure, our point is that such

datasets are typically too small to know their true

distribution with any certainty. Thus, if least squares

cannot adequately handle data with such a structure,

then an alternative needs to be found. An example of a

comparison between least squares and the tanh esti-

mator is shown in Fig. 4 for 10% 10N uncertainties,

with this notation for uncertainties explained in Appen-

dix A. The figure illustrates how much better the tanh

estimator handles this moderate departure from the

Gaussian compared with the least squares approach. A

full comparison, in terms of the width of 95% con-

fidence intervals on age, normalised to the interval for

least squares and Gaussian-distributed data, is shown

in Fig. 5. The open circles indicate the tail weight, for

given sample size, at which the tanh estimator becomes

more efficient than least squares. As can be seen, for

larger sample sizes, this is at very small tail weight,

meaning that even at small departures from Gaussian-

distributed data, least squares has been sufficiently

degraded to be less good than robust methods like

the tanh estimator. As the sample size decreases, the

transition tail weight becomes rather larger, and it is

likely that for sample sizes, n < 5 or 6, an alternative

approach to the tanh estimator will be required.

It could be argued that if MSWD properly flags

datasets that are not Gaussian, and the MSWD is used

to contribute to the width of the 95% confidence

intervals on age when least squares is used, then least

squares might still be viable. This can also be inves-

tigated with simulation, and the results are plotted in

Fig. 6. This shows that MSWD is unreliable, even

with only small departures from Gaussian behaviour.

For example, for 10 data points with a structure 25%

3N, the MSWD has lost any predictive power with

35% of the simulations flagged as failing the statis-

tical test, whereas the least squares results have only

degraded marginally, with confidence intervals half as

big again as for Gaussian-distributed data, Fig. 5.

In conclusion, MSWD is a flawed measure of data

scatter, unless the data are known to be Gaussian, a fact

Fig. 3. The four probability distributions used in the simulations,

Appendix A, (solid lines), compared with the Gaussian distribution

(dashed lines). The distributions are interquartile matched.
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we argue cannot be determined. Contrary to common

assumption, it does not provide the means of determin-

ing whether or not the scatter is contributed by analy-

tical uncertainties alone, even if these are well known.

Nor does it provide a reliable measure in the context of

error expansion of age uncertainties. Given that the

departures from Gaussian-distributed data as portrayed

on the x-axis of Fig. 5 are not unlikely, it is preferable

to abandon least squares and to adopt a robust estima-

tor like the tanh estimator.

5. Uncertainties in isotopic data

While it is argued here that the importance of

analytical uncertainties in isochron calculations cannot

survive in the light of the discussion and results above,

these uncertainties still play a role in isochron calcu-

lations. Although a critical ingredient in the type of

calculations proposed here is the use of the actual scat-

ter of the data to provide a scale for the scatter, it is

important to use some estimate of the analytical uncer-

tainties to provide a minimum scale. This is to guard

against the data fortuitously having a small scatter, a

problem that can easily arise for small samples.

Scatter of data is produced by a combination of

analytical and geological factors, as discussed below.

From the point of view of data having age significance,

and in the light of the robust statistical approach

followed above, a dataset is required to have a back-

bone of data that define a trend whose slope reflects the

age. Robust statistical methods are good at finding

such trends, regardless of the scatter about the trend,

and particularly regardless of outliers from the trend.

The backbone of data, which in the limit of larger

datasets need only involve half of the data, not only

Fig. 4. Comparison of ages calculated by least squares (lsq) and the tanh estimator (tanh), for 2000 10-point isochrons, for uncertainties

generated from 10% 10 N (see Appendix A). The dashed lines are the expected 95% confidence limits if the data were Gaussian distributed; the

solid lines are the actual 95% confidence limits from simulations involving 9999 isochrons.
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provides the slope of the trend, but the scatter about the

trend. Outliers, i.e. points off the trend, can be anything

from adjacent to the trend, to gross outliers far from the

trend. The former are of more concern as they cannot

be reasonably or easily excluded from the calculations,

whereas the latter can be discarded. The Gaussian

mixture distributions such as 25% 3N (Appendix A)

provide a way of simulating scatter with such moderate

Fig. 5. The width of the 95% confidence interval on age, normalised to that of the least squares 95% confidence interval for Gaussian distributed

uncertainties on the data, plotted against tail weight. Dashed lines are for least squares; solid lines are for tanh. The simulation results are plotted

as bullets; the lines joining them are indicative; the line labels are the dataset sizes which vary from 5 to 25 data points.

Fig. 6. The percentage of simulations in which MSWD fails plotted against tail weight for the two least non-Gaussian situations studied. The

simulation results are plotted as bullets; the lines joining them are indicative; the line labels are the dataset sizes.
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outliers. As shown in the last section, small departures

from Gaussian behaviour have significant effects on

simple statistics such as MSWD.

Analytical uncertainties arise from contributions

from sample preparation (e.g., weighing errors, blank

correction) through to the analysis itself (e.g., mass

fractionation correction, errors relating to signal size).

Of these, the instrumental factors are generally moni-

tored routinely as the acquisition of an individual

isotope ratio represents the mean of numerous separate

measurements during a run. The analyst is thus pre-

sented with a value and associated uncertainty quoted

as ‘‘in run’’ or ‘‘internal’’ precision (2r). Additional
factors (e.g., amplifier gain calibrations, collector

efficiencies) then contribute further error, quantifiable

as ‘‘external’’ precision or ‘‘reproducibility,’’ normally

measured on standard reference materials.

It could be argued, however, that there is no easy

way of accurately determining true analytical uncer-

tainties for real samples unless, for example, the analyst

is prepared to undertake multiple analyses of each data

point (thereby incorporating all sources of random

errors). As a result, a commonly adopted strategy in

isochron calculations is to apply an error which is

proportional to the ratio, e.g. 0.1% on Pb isotope ratios,

0.005% on Sr isotope ratios, 0.5% on Rb/Sr, and so on.

Whereas it is reasonable to suppose that analytical

uncertainties have a Gaussian form in the centre, it is

impossible to determine whether or not they are Gaus-

sian in the tail. In the light of the above, even in the

absence of geological error, MSWD is still likely to fail

if analytical uncertainties have tails that are heavier

than Gaussian. For this reason alone, MSWD is un-

helpful.

Geological error reflects a breakdown in the as-

sumptions involved in an ‘‘ideal’’ isochron calcula-

tion: (1) that the individual samples analysed (rocks,

minerals) started with precisely the same isotopic

composition, (2) that the samples closed isotopically

at the same time, and (3) that the samples all remained

closed to isotope exchange since that time. Clearly, it

is undesirable to construct isochrons from data that are

grossly affected by such deviations from ideality. As

noted above, the critical feature of the data for the bias

on the age to be within a confidence interval on the

intended age (i.e., has age significance) is that the

effect of the geological factors does not significantly

affect more than half of the data. Geological error, if

present, may have any distribution, and the assump-

tion that it is Gaussian is unwarranted. Certainly, the

distribution can easily be such that the data no longer

give an age that has any significance, through for

example being skewed or biased.

While we would suggest that true uncertainties on

individual data points can, at best, only be approxi-

mated, it is certainly possible to provide a measure of

the minimum value. For the purpose of the isochron

calculations proposed here, estimates of minimum

values for the analytical uncertainties are all that must

be assigned (for scaling purposes; see earlier in this

section), as the robust estimators are based on the

actual scatter of the data about the linear trend and not

the analytical uncertainties. The assignment of precise

values depends upon the application and analytical

protocol in question (e.g., mass fractionation effects in

the case of Pb data, blank correction in the case of

low-level samples). Nevertheless, we would suggest

that, for many purposes, the 2r within-run precision

reported for each analysis may form a useful starting

point for the approach described herein, as the mini-

mum analytical uncertainties need only be approxi-

mations for the purposes of scaling.

6. Age uncertainties: bootstrap confidence

intervals and pictures

The isochron calculation problem is semiparametric

in that the functional form of the data is specified to be

linear (as the data are deemed to have age significance),

but the distribution of the residuals is not specified. In

this situation, the bootstrap (Hall, 1992; Davison and

Hinkley, 1997) provides a way of obtaining a confi-

dence interval on the age, given that the classical

statistics uncertainties on parameters are dependent

on the data being Gaussian-distributed. There are two

ways of applying the bootstrap to fit a line to data: case

resampling and error resampling (Davison and Hink-

ley, 1997, pp. 261–266).

In case of resampling, used in an isochron calcu-

lation by Kalsbeek and Hansen (1989), the {x, y} pairs

that constitute the data are resampled. For n data pairs,

consider an urn containing n balls each with a differ-

ent {x, y} pair written on it. One resample involves

repeating n times the taking of a ball from the urn,

noting its {x, y} pair, then returning it to the urn. In
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other words, n{x,y} pairs are chosen at random with

replacement. The isochron calculation is then applied

to the resample. This process is then repeated, for say

B = 999 resamples. The collected B isochron results

are then processed to give the slope (i.e., age) uncer-

tainty. The data ‘‘design’’, the way the points are

distributed along the linear trend, will vary between

resamples, and will vary from the original data.

Taking the view that the data design is intrinsic to

the data, and needs to be preserved in the resample,

the error resampling method is preferred here. In this,

the distribution of the points along the trend is taken

as a given, and it is to these points that the resampled

residuals are applied. To start with, the predicted

values of y,ŷ =Xqtanh, are calculated. The residuals,

e = y� ŷ, are the focus of the resampling. Each of B

bootstrap datasets is formed from x and y* = ŷ + e*, in

which e* is a resample of the residuals. This resample

is chosen at random with replacement from e. The

bootstrap dataset is then fitted to give q*, and a scale

s*. Focussing on the slope, the original tanh slope is

b = qtanh2 and the bootstrap slope is b* = q2*. The

pivotal statistic, /, is defined as

/ ¼
ffiffiffi
n

p b*� b

s*

� �
: ð16Þ

This process is repeated B = 999 times, say, giving

999 / values. These / values are then sorted, giving

/s, and the 95% confidence interval of / is simply the

value of the 25th, /25
s, and the 975th, /975

s, elements.

These values are converted back to slopes to give a

confidence interval

b� s/s
975ffiffiffi
n

p ; bþ s/s
25ffiffiffi
n

p

 �
referred to as the percentile-t bootstrap 95% confi-

dence interval of the slope, b, (Hall, 1992, pp. 16–

17). This bootstrap confidence interval is effectively

independent of the data uncertainties because it

depends on the size of the residuals, which remain

more or less constant as the data uncertainties are

varied. The bootstrap estimate of slope uncertainty is

undertaken using a pivotal statistic, rather than boot-

strap slopes directly, because this reduces bias on the

slope uncertainty.

Ideally, in the fitting of each resample, the fitting to

get the slope, b*, and the associated scale, s*, would be

undertaken using the same approach used to fit the

original data (i.e., LMS, followed by tanh, for b*, and

using nMAD for s*). However, a simpler approach that

is much faster computationally is advocated, supported

by a comparison with the ideal approach based on

simulations. The simpler approach involves first clean-

ing the data of outliers, identified via the original

robust fit of the data. The residuals associated with

outliers are not included in the resampling. The fitting

of the bootstrap datasets is then done using least

squares, with s* being the usual least squares estimate

(i.e., rfit, Eq. (6)). The residuals used are chosen to

have AuAV 2.5, Eq. (12), in which u is formed from

the residuals divided by the nMAD of the residuals.

However, if this nMAD is smaller than the average of

the analytical uncertainties

1

n

Xn
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

yi
þ b2r2

xi
� 2brxiryiqxiyi

q
then this average is used instead of the nMAD of the

residuals. This is to guard against a situation in which

the scatter on the data is smaller than that expected

with the analytical uncertainties.

In addition to providing a confidence interval, boot-

strap results of age may be viewed as a histogram (Fig.

7). This will show whether the distribution of the ages

is symmetric or not, and whether it is ‘‘fat-tailed’’

compared to a Gaussian-distribution. An aid in the

viewing of histograms such as Fig. 7 is provided by

smoothing using a kernel estimator (e.g. Hall 1992;

Wand and Jones, 1995). Working with the / values

generated above, the probability distribution of /,
p(/), is built up by replacing each of the B / values

by a shape (kernel), centred on the value. The shape

used here is the Epanechnikov kernel, 3/4(1� x2) with

� 1 < x < 1, (Wand and Jones, 1995, p. 30). x is centred

on / and scaled so that the resulting probability

distribution is smooth. Although approaches have been

suggested to automate the determination of this scal-

ing, trial and error is still advocated (Wand and Jones,

1995, p. 58). For Fig. 7, p(/) is transformed back to the

age using the same equation used in generating the

confidence interval, for comparison with the histogram

of ages. Such bootstrap probability distribution dia-

grams are called ‘‘confidence pictures’’ (Hall, 1992).

For larger datasets, the histograms/confidence pic-

tures are more symmetric, and in fact, the reweighted

least squares confidence interval often agrees rela-

tively well with the bootstrap result. However, for
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small datasets, say for n= 6 or less, the reweighted

least squares confidence interval provides a poor

approximation of the bootstrap result, and the histo-

grams can be quite asymmetric, or even bimodal. The

small dataset situation is discussed further below. Two

examples are shown in Fig. 7.

7. Discussion and conclusions

The approach advocated here can be summarised

as follows

(1) collect data

(2) assign analytical uncertainties

(3) calculate age (using LMS, nMAD and 1-step

w-estimator tanh)

(4) calculate age uncertainty using the bootstrap

These calculations are available from the authors as

a stand-alone application for various computer plat-

forms, as well as a Mathematicak function.

In the calculation of the age, this approach repre-

sents a modification of the standard least squares

procedure, in that data which scatter too much from

the trend have their effect on the age automatically

and smoothly downplayed. If there is no such scatter,

the least squares and tanh estimators are expected to

give the same ages, and many published isochron

datasets do give identical results. With increasing

scatter, the tanh estimator gives results that still follow

the main linear trend in the data, whereas least squares

may well not. Thus, we would suggest that the tanh

estimator should be used routinely, as a precaution,

instead of least squares.

In the calculation of the age uncertainty, the boot-

strap gives the same result as the standard least

squares procedure if the data scatter corresponds to

the analytical uncertainties. With increasing scatter,

the age uncertainty increases smoothly, in contrast to

error expansion.

MSWD is not used in the approach advocated here,

having been shown above that this measure of scatter

is very sensitive to the nature of the scatter, partic-

ularly for scatter arising from probability distributions

that are more long-tailed than Gaussian. Aspects of

isochron calculations that rely on MSWD may well

not work as expected, including error expansion and

the isochron–errorchron distinction. Whereas datasets

that give a low MSWD (e.g., less than 2.5) may

reasonably be assumed to involve scatter dominated

by essentially Gaussian analytical uncertainties, larger

values may be due to non-Gaussian behaviour as well

as geological error. Intermediate values of MSWD are

likely to arise from uncertainties that are heavier-tailed

than Gaussian analytical uncertainties and/or small

geological contributions, whereas large values are

likely to be dominated by geological contributions.

One example of the application of the new approach

is presented here. The example chosen, using literature

data from Russell (1995), is one in which there is a

difference between the results of the least squares and

tanh estimators (Fig. 8). Whereas the Nicolaysen plot

in Fig. 8(a) shows that there is some data scatter about

the linear trend, the Provost-like plot (Provost, 1990)

in Fig. 8(b) brings out the nature of the scatter. It shows

that the York model 2 age is pulled towards the two

Fig. 7. Example histograms (B = 999) for simulated datasets (with

ry = 0.01) and n= 10 and n= 5, showing the confidence picture

(solid line) and the Gaussian approximation (dashed line). The y-

axis is the probability, p.
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lowest (206Pb/204Pb) values, whereas the tanh estima-

tor treats these data as outliers, and downweights their

influence on the age. In this case, it is a moot point

whether these two points are outliers, or the next five

lowest (206Pb/204Pb) values. The least squares method

has put an average, and possibly meaningless, line

through the data, whereas the tanh estimator has

recognised that there is structure in the data, and acted

accordingly. Whereas it is clear that manual removal of

the two points will give the same result as the tanh

estimator, the latter provides the result directly and

‘‘objectively’’ (in the context of the definition of this

robust estimator), without the inevitable subjectivity of

choosing which data to remove manually.

The ideal isochron calculation method would not

only behave in a reliable and smooth way with increas-

ing scatter, but also with sample size. The robust

method advocated here will fail to behave appropri-

ately with sample sizes less than 5 or 6. It is an open

question what will provide the best method at small

sample sizes, but it is reasonably clear that this will not

be the least squares method. Whatever the method, it is

likely to be much more dependent on the uncertainties

assigned to the data than in the approach outlined in this

paper.
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Appendix A. Simulations

Simulations of isochron data were made varying

(1) size of dataset (n = 5,6,8,10,15,25)

(2) distribution of the uncertainties on the data (N,

5% 3 N, 25% 3 N, 10% 10 N—see below).

for a fixed data ‘‘design.’’ The range in x used is 20–

80, y prior to applying uncertainty is generated from

the x and a q of {12.5,0.164261} (corresponding to an

age of 2500 Ma in PbPb dating). The data uncertain-

ties, assigned only to y, are based on ry= 0.01. An

equal spacing of data points was used. In each of the

24 combinations, 9999 datasets were generated, and

each was fitted with least squares (lsq) and with the

tanh estimator (tanh). The focus was to look at the

MSWD, in the lsq case, and to look at the 95%

confidence interval on the calculated ages in both

the lsq and tanh. The confidence interval in each of

the 24 combinations was obtained by simply choosing

the 250th and 9750th values of the 9999 ordered ages.

The uncertainty structures used were (a) the Gaus-

sian distribution (N), (b) a Gaussian distribution con-

taminated with 5% of a Gaussian distribution with a

standard deviation three times larger (5% 3N), (c) a

Gaussian distribution contaminated with 25% of a

Gaussian distribution with a standard deviation three

times larger (25% 3 N), and (d) a Gaussian distribu-

tion contaminated with 10% of a Gaussian distribution

with a standard deviation 10 times larger (10% 10N).

The distributions are shown in Fig. 3. This series of

Fig. 8. Example (207Pb/204Pb)– (206Pb/204Pb) isochron using data

from Russell (1995), using all 36 data points, plotted (a) in the

standard way, and (b) in the manner of Provost (1990), with

(207Pb/204Pb) intercept on the left upright, and age on the right

upright. ‘‘lsq’’ is a York model 2 age of 431F15 Ma, while ‘‘tanh’’

is the tanh estimator age of 455F 11 Ma. See text for discussion.
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distributions are in order of increasing tail weight,

having thicker tails than the Gaussian distribution.

The tail weights are, in order, 1, 1.205, 1.833, and

3.429 (Rosenberger and Gasko, 1983). These are used

in the figures representing the simulations to reflect

departure from the Gaussian. In the simulations, the

distributions were normalised to match the interquar-

tile range of the Gaussian distribution: the multipliers

with respect to the Gaussian scale are 0.9624, 0.8118

and 0.8951, respectively.
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