
Estimating event rates in the presence of dating error with
an application to lunar impacts

Andrew R. Solow �

Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

Received 26 September 2001; received in revised form 12 February 2002; accepted 18 February 2002

Abstract

Radiometric ages of objects are often used to reconstruct historical variations in the rate function of geological
events. Measurement error in such ages can lead to a bias in the estimated rate function. This paper describes a
method for estimating the historical rate function that accounts for measurement error. The method is applied to the
estimation of the rate of lunar impacts over the past 3.5 billion years from the argon^argon ages of 155 impact
spherules. A simulation study of the performance of the method is also presented. ß 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Radiometric ages of objects are commonly used
to estimate variations in the historical rates of
geological events. In a recent example considered
in some detail below, Culler et al. [1] used the
argon^argon ages of 155 impact spherules col-
lected during the Apollo 14 mission to reconstruct
variations in the rate of lunar impacts over the
past V3.5 billion years. In doing so, Culler et
al. used a method based on an ideogram to ac-
count for measurement error in the estimated ages
of the spherules. This paper describes an alterna-
tive approach to analyzing data of this kind.
Under this approach, the event times are mod-

elled as arising from a point process [2]. A point
process is a stochastic process giving rise to dis-
crete events in continuous time. Such a process is
characterized in part by a rate function that de-
scribes how the mean number of events in a unit
time interval varies over time. The goal of the
approach described here is to estimate this rate
function.

Because there is often no a priori basis for spec-
ifying the form of the rate function, a nonpara-
metric kernel estimator is used that assumes only
that the rate function varies smoothly over time
[3^5]. In using this (or any other) estimator, it is
important to account for measurement error in
the impact times. The e¡ect of measurement error
on the nonparametric estimation of the rate func-
tion of a point process does not appear to have
been studied. However, results for the related
problems of nonparametric density estimation
and regression [6] suggest that measurement error
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can lead to serious bias in this context. In this
paper, a general purpose method called SIMEX
[7] is used to correct for the e¡ects of measure-
ment error.

The remainder of the paper is organized in the
following way. In Section 2, the basic approach is
described and compared to the ideogram used in
[1]. In Section 3, this approach is applied to the
data from [1]. The results of a small simulation
study of the performance of the proposed ap-
proach are presented in Section 4. Section 5 con-
tains some brief concluding remarks.

2. Approach

Let t1,t2,T,tn be the unknown true ages of
n events. These ages are assumed to have arisen
from a point process with rate function V(t) oper-
ating over the known interval (0, T). The rate
function V(t) can be interpreted as the mean num-
ber of events occurring in a unit time interval
centered at t. The measured age Yj of event j is
assumed to follow the model:

Y j ¼ tj þ O j ð1Þ

where Oj is a normal measurement error with
mean 0 and known variance cj

2. The problem
considered in this paper is the nonparametric es-
timation of the rate function V(t) from the mea-
sured ages Y1,Y2,T,Yn.

To begin with, suppose that the ages of the
events are measured without error, so that
Yj = tj for all j. Under the assumption that V(t)
varies smoothly with t, Diggle [3] proposed the
kernel estimator:

~
VV ðtÞ ¼ 1

h

Xn

j¼1

K
t3Y j

h

� �
ð2Þ

where the kernel function K is a probability den-
sity function symmetric about 0 and h is a band-
width that controls the smoothness of V(t). For
t6 h, part of the kernel extends below the lower
bound of the observation period at 0. This can
lead to bias in estimating V(t) in the neighborhood
of t = 0. A simple way to avoid this is to re£ect or

fold at 0 the part of the kernel extending below 0,
so that all of its mass lies within the observation
period. The resulting estimator can be written:

V̂V ðtÞ ¼ 1
h

Xn

j¼1

K
t3Y j

h

� �
þ K

tþ Y j

h

� �
ð3Þ

The same problem can arise and a similar correc-
tion can be made for tsT3h. In this paper, the
so-called bisquare kernel:

KðuÞ ¼ 0:9375 ð13u2Þ2 MuM91
0 MuMs1

ð4Þ

will be used.
As with all estimators, the mean squared error

of V(t) includes contributions from bias and var-
iability. The bandwidth h controls the trade-o¡
between these sources of error. If the bandwidth
is small, then the contribution of bias to mean
squared error will tend to be small, but the con-
tribution of variability will tend to be large. As a
result, V(t) will exhibit excessive variability over
periods in which V(t) is smooth. Conversely, if
the bandwidth is large, the contribution of bias
to mean squared error will tend to be large, but
the contribution of variability will tend to be
small. In this case, V(t) will tend to smooth out
local features in V(t). A number of automatic
methods for bandwidth selection have been pro-
posed that attempt to strike a reasonable balance
between bias and variability [3^5,9]. Unfortu-
nately, these methods are all a¡ected by measure-
ment error. Speci¢cally, due to the attenuating
e¡ect of measurement discussed below, they will
tend to select a bandwidth that is too large. Band-
width selection in the presence of measurement
error remains an open question. In the following
section, a bandwidth corresponding to 10% of the
length of the estimation period is used. This is
toward the small end of the range of typical band-
widths (5^20% of the observation period) [7]. In
qualitative terms, the results presented in the next
section are not highly sensitive to bandwidths in
this range.

The kernel estimator outlined above assumes
that the ages of the events are observed without
error. Here, a general purpose method called SI-
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MEX [8] will be used to account for measurement
error. This method has been used in the related
problem of nonparametric regression [10]. The
idea behind SIMEX (which, for reasons that are
made clear below, stands for simulation^extrapo-
lation) is to estimate V(t) by extrapolating the be-
havior of V(t) when additional measurement error
is added to the observations to the case where
measurement error is reduced to 0. For Qs 0, let:

Y jðQ Þ ¼ Y j þ Q
1=2

c jR j ð5Þ

where Rj is a normal error with mean 0 and var-
iance 1. The mean and variance of Yj(Q) are:

EðY jðQ ÞÞ ¼ tj ð6Þ

and:

VarY jðQ Þ ¼ ð1þ Q Þc 2
j ð7Þ

respectively, so that, notionally at least,
Yj(31) = tj. Let V(t ;Q) be the mean value of V(t)
when the observed ages follow Eq. 5. Note that
V(t ;0) = V(t). It is straightforward to estimate
V(t ;Q) for selected positive values Q1,Q2,T,Qm of Q

by averaging V(t) over repeated simulations from
Eq. 5. This is the simulation step of SIMEX. In
the extrapolation step, a parametric model ft(Q) of
the dependence of V(t;Q) on Q is ¢t to the sequence
V(t ;0), V(t;Q1),T,V(t;Qm) and the ¢nal estimate Vs(t)
is found by extrapolating the ¢tted function to
Q=31. This is illustrated in the next section.

As noted, Culler et al. [1] estimated the rate of
lunar impacts from the ages of spherules using an
ideogram. This ideogram can be written:

V̂V I ðtÞO
Xn

j¼1

P

t3Y j

c j

� �
ð8Þ

where P is the standard normal probability den-
sity function. Although the form of this ideogram
is similar to that of the kernel estimator (Eq. 2)
with a normal kernel, it is actually quite di¡erent.
The di¡erence arises from the use of the magni-
tude of the measurement error, as re£ected in cj,
in place of the bandwidth h. As a result, the de-
gree of smoothing of the ideogram is directly re-

lated to the level of measurement error. The ob-
served ages Y1,Y2,T,Yn re£ect two sources of
variation: variation in the underlying point pro-
cess and measurement error. While VS(t) accounts
for both, VI (t) accounts only for measurement
error. To see this, consider the case in which there
is no measurement error. In that case, VS(t) re-
duces to the ordinary kernel estimator, but VI (t)
simply reproduces the data as a set of spikes at
Y1,Y2,T,Yn. Even in the absence of measurement
error, it seems extreme to estimate the impact rate
as 0 everywhere except at these spikes. This is
particularly true as the data almost certainly rep-
resent an incomplete sample of impact events.
Culler et al. [1] acknowledged this problem with
the admonition to ignore spikes in the ideogram
associated with single, well-dated spherules. On
the other hand, when measurement error is
present, there is no reason why the degree of
smoothing should increase with the magnitude
of this error, which is, after all, not a feature of
the underlying rate function. To put it another
way, the problem that measurement error com-
monly causes is the attenuation or £attening out
of variations. This e¡ect is illustrated in the next
section. Statistical methods, including SIMEX,
that are designed for estimation in the presence
of measurement error are intended to reduce this
attenuation. In contrast, by increasing the degree
of smoothing when measurement error is large,
the ideogram tends to exacerbate it.

3. Application

The methods described in the previous section
were applied to the data of Culler et al. [1]. The
goal was to estimate the rate of lunar impacts over
the period (0, 3500) using the ages of 155 spher-
ules. Throughout this section, time is measured in
millions of years (Myr) and the impact rate is mea-
sured in impacts/Myr. The data consist of the
measured age Yj and measurement error variance
cj

2 for each of n = 155 impact spherules. These
data can be found at the website http:www.scien-
cemag.org/feature/data/1044416.shl. The average
value of the error standard deviation Nj is around
238 Myr, corresponding to approximately 7% of
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the estimation period. A bandwidth of 350 Myr,
corresponding to 10% of the estimation period,
was used in the kernel estimation. The bound-
ary-adjusted kernel estimate V(t) is shown in
Fig. 1. For this estimate, the boundary adjust-
ment was made in the neighborhood of t = 0,
but, because the data set contains spherules with
ts 3500, no adjustment was made in the neigh-
borhood of t = 3500. The SIMEX estimate VS(t) is
also shown in Fig. 1. This estimate was based on
extrapolating to Q=31 the quadratic extrapolant:

f tðQ Þ ¼ L 0t þ L 1tQ þ L 2tQ
2 ð9Þ

¢tted to V(t;Q) for Q= 0, 0.5, 1, 1.5, and 2 by
ordinary least squares. For each value of t and
each value of these values of Q, V(t;Q) was esti-
mated from 200 simulations.

The extrapolation step has been described as
the Achilles’ heel of SIMEX estimation [8]. In
Fig. 2, the ¢tted extrapolant is shown for t = 0,
1500, and 3200. For t = 0 and 3200, the quadratic
extrapolant appears to ¢t the estimated values of
V(t;Q) rather well. The ¢t is somewhat worse for
t = 1500, although the overall attenuating e¡ect of
measurement error is clear. This suggests that the
estimated magnitude of the local minimum of

Fig. 1. The uncorrected kernel estimate V(t) (solid) and the
SIMEX estimate VS(t) (dashed) of the rate of lunar impacts
over the past 3.5 billion years. Impact rate is measured in
impacts/Myr. The dotted lines represent the upper and lower
0.05 quantiles of the distribution of VS(t) when the true im-
pact rate is constant.

Fig. 2. The behavior of the quadratic extrapolant in estimat-
ing the impact rate at (A) t = 0, (B) t = 1400, and (C)
t = 3200. In each case, the crosses show the values of V(t;Q)
or Q= 0, 0.5, 1, 1.5, 2 and the solid curve shows the quad-
ratic extrapolant ¢tted to these values by least squares and
extrapolated to Q=31.

EPSL 6177 26-4-02

A.R. Solow / Earth and Planetary Science Letters 199 (2002) 1^64



VS(t) near t = 1400 should be interpreted with cau-
tion.

To assist in interpreting VS(t), signi¢cance
bands were constructed under the assumption
that the true rate function V(t) is constant by
the following simulation procedure. A total of
155 true event times were distributed at random
over the interval (0, 4700). A normal observation
error was added to each of these times. The var-
iance of this error was chosen at random without
replacement from the 155 error variances reported
in [1]. Under this model, the distribution of VS(t)
over repeated simulations is the same for all val-
ues of t larger than h. This distribution was esti-
mated by ¢nding the value of VS(t) for a ¢xed
value of t greater than the bandwidth of 350
Myr for each of 1000 data sets simulated as de-
scribed above. The distribution of VS(t) was found
in the same way for selected values of t less than
the bandwidth of 350 Myr. Signi¢cance bands
given by the upper and lower 0.05 quantiles of
these distributions are also shown in Fig. 1.

Turning to Fig. 1, the main e¡ect of SIMEX
estimation is to accentuate the quasi-periodic be-
havior of the estimated impact rate that is only
weakly discernible in the uncorrected kernel esti-
mate. As measurement error is known to attenu-
ate variability, this result is in line with expect-
ations. In overall terms, the estimate suggests
that the Moon has experienced what could be
called pulses of impact activity. The estimate ex-
hibits several excursions outside the signi¢cance
bands, indicating that this behavior is not due
simply to random variations around a constant
impact rate.

4. A simulation study

As the true rate of lunar impacts is unknown, it
is not possible to determine from the results of the
previous section how well the method of Section 2
performs. This section presents the results of a
small simulation study of the performance of
this method when the true rate function is known.
Other results on the performance of kernel esti-
mation and SIMEX estimation are covered in the
references. The simulation proceeded in the fol-

lowing way. A realization of the non-stationary
Poisson process with rate function:

V ðtÞ ¼ 150þ 50cosð4ZtÞ ð10Þ

was simulated on the interval (0, 1.5) using the
IMSL [11] FORTRAN subroutine RNNPP. The
kernel estimator with bandwidth h = 0.1 was ap-
plied to the simulated data to estimate V(t) over
the interval (0, 1), using the boundary correction
near the lower boundary, but not at the upper
boundary. Next, simulated normal measurement
error with standard deviation c= 0.07 was added
to each simulated event time and the uncorrected
kernel estimate V(t) and the corrected estimate
VS(t) were found for the data with measurement
error. The procedure was repeated 200 times and
the averages over these repeated simulations of
V(t) and VS(t) are shown in Fig. 3, along with
the true rate function V(t) and the average of
the kernel estimates for the data without measure-
ment error. Note that the parameters used in this
simulation were selected to correspond roughly to
the data analyzed in the previous section: namely,
a mean of 150 events, a bandwidth of 10% of the
estimation interval, and measurement error with
standard deviation 7% of the estimation interval.
The attenuation in the uncorrected kernel esti-

Fig. 3. True rate function V(t) (thin solid line) used in the
simulation study along with the mean value of the kernel es-
timate applied to the true event times (thick solid line); the
mean value of the uncorrected kernel estimate applied to the
event times measured with error (dashed line); and the mean
value of the corrected estimate (dotted line).
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mate V(t) is clear in Fig. 3. It is also clear that, in
this case, SIMEX works reasonably well at reduc-
ing this attenuation, in the sense that the mean of
VS(t) is close to the mean of the kernel estimate
for the true event times. Although it is not shown
in Fig. 3, in this case, the ideogram would exhibit
even more attenuation than the uncorrected ker-
nel estimate. This follows because, in this case, the
ideogram is equivalent to the kernel estimate with
a Gaussian kernel with bandwidth 0.07, which
corresponds roughly to a bisquare kernel with
bandwidth 0.14.

5. Discussion

Situations in which radiometric ages of objects
are used to reconstruct the history of physical and
other processes are pervasive in the earth sciences.
It is widely recognized that such ages include mea-
surement error and considerable e¡ort is under-
taken to assess the magnitude of this error. How-
ever, the e¡ects of measurement error on
estimation have been under-appreciated and
methods for dealing with these e¡ects have been
under-utilized. The approach proposed here com-
bines two modern statistical methods: nonpara-
metric kernel estimation of the rate function of
the point process of lunar impacts with SIMEX
estimation to correct for the attenuating e¡ect of
measurement error. The simulation results pre-
sented here, although limited, con¢rm the useful-
ness of the method at reducing the attenuating
e¡ect of measurement error on the estimation of
the rate function. The results of applying the
method to the measured ages of impact spherules

suggests that the lunar surface has undergone
quasi-periodic pulses of impact activity.
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