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Abstract

In this paper, numerical methods derived in Part I (Chem. Geol. (2002)) are expanded to accommodate the effects of a-

emission and zonation of U and Th as relevant for (U–Th)/He thermochronology. Expressions for the required coefficients are

derived for spheres, finite and infinite cylinders and rectangular blocks, for parent nuclide distributions, which are either

uniform or have stepwise zoning. We show that the effects of a-emission and zonation on the He retention in a nonspherical

crystal of modest aspect ratio can be approximated by a sphere of identical surface-to-volume ratio (S/V) if the zonation is

transposed on to the sphere. The currently usual correction method is to perform first a diffusive calculation without considering

a-emission and zonation and to multiply afterward with a correction factor that has been derived originally for nondiffusive

calculations. Our results demonstrate that more accurate calculations yield different results and that the differences are often too

large to be ignored in practice. Especially for thermal histories that include a protracted residence in the partial retention zone,

the difference between the usual correction and our correction can be as high as f 20% for homogeneous sources. For zoned

crystals, the difference can be even larger. D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In Part I (Meesters and Dunai, in press), an

efficient algorithm has been presented for calculating

the 4He accumulation from the decay of U and Th in

crystals of various shapes for a given thermal history.

The algorithm is based on decomposition of the He

content into eigenmodes of the Laplace operator.

However, the method of Part I was incomplete in

two respects. First, a homogeneous distribution of the

parent nuclides over the crystal was assumed, whereas

heterogeneous (especially zonal) distributions are

often encountered in practice. Second, the algorithm

did not account for the long stopping distances of the

emitted a-particles. This distance, r, is, for instance,
about 20 Am in apatite (Farley et al., 1996; Ziegler,

1977), which is too long to be neglected in practice. It

is clear that the He content is depleted by this effect
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close to the margin since part of the a-particles leave

the crystal. Farley et al. (1996) have discussed how to

correct for this effect in the absence of diffusion. In

the presence of diffusion, it is currently customary to

first perform calculations with a diffusion model for a

(spherical) crystal with a simple homogenous source

and, subsequently, multiply the result with a correc-

tion factor for a-ejection (e.g. House et al., 1999;

Stockli et al., 2000; Warnock et al., 1997). However, it

is evident that this is a simplification, as the outcome

of a correct production–diffusion calculation does not

only depend on the amount of He produced, but also

on the spatial distribution of the He (Farley, 2000).

For instance, in the simplest case (no zonation), the

He is relatively strongly depleted in the outer parts

due to a-ejection and this, in turn, will decrease the

relative degree of diffusive loss of He as compared to

a rectangular concentration profile that would be valid

in the absence of a-ejection. As a result, the conven-

tionally corrected ages are generally overcorrected if

diffusion is important. The two processes, a-ejection

and diffusion, are interwoven and a new algorithm is

required that incorporates both processes simultane-

ously.

This more involved exercise is more than of aca-

demic interest as apatites with strongly zoned U

distribution (and by inference also Th) are frequently

encountered in fission track analysis and do occur in

apatites of plutonic, volcanic and metamorphic prov-

enance (members of the fission track group at the

Vrije Universiteit Amsterdam, personal communica-

tion, e.g. see Fig. 1). The occurrence of zonation

cannot be predicted (some populations are not zoned),

but must be established for each apatite sample.

Concentration contrasts between inner and outer

regions in a crystal may range 1–2 orders of magni-

tude such that the U (Th)-rich portion inevitably will

dominate the He accumulation history as we try to

reconstruct in our analytical work. It is beyond the

scope of this paper to discuss analytical techniques

that allow to identify and to characterise U–Th

zonations in the apatite grains used for analysis in

(U–Th)/He thermochronology. Suitable analytical

techniques are currently developed at the Vrije Uni-

versiteit Amsterdam.

In the present paper, an algorithm is presented for

predicting He contents from thermal histories, taking

into account the combined effects of long stopping

distances of a-particles, heterogeneous distribution of

the parent nuclides and diffusion. It is understood that

the reader is acquainted with the methods of Part I.

The algorithm is actually identical to the one of Part I,

except for the fact that the coefficients that we called

c-coefficients have to be adapted. The methods in

Section 2 is, apart from an introductory subsection

(Section 2.1) and a subsection with general directions

(Section 2.2), entirely devoted to the problem of

calculating these c-coefficients.
The methods to calculate c-coefficients depend

strongly on the geometry. For spherical crystals, it is

fortunately possible to find analytical expressions

(Sections 2.5 and 2.6). Moreover, for spherical crys-

tals, only few eigenmodes have to be incorporated in

the calculations to obtain accurate results, making the

algorithm much faster than for other shapes. Real

crystals are not spherical, but it was our hope that

‘‘arbitrary’’ crystals could be ‘‘translated’’ to equiv-

alent spherical crystals. It is shown in Section 3 that

this can indeed be done by taking spheres with the

same surface-to-volume ratio (S/V) and similar zon-

ing, provided the crystals are not too elongated and

provided the U–Th zonations have shapes in accord-

ance with the crystal shape. The best agreements are

found between spheres and finite cylinders, which is

particulary useful for apatite. With this background,

the methods for spheres that are given here are

probably much more useful than the methods for

other shapes. These latter methods had, of course,

also to be described since they are used here for

comparison.

In Section 3, we also give attention to the question

whether work can be saved by using ‘‘shortcuts’’,

such as replacing an inhomogeneous distribution by a

homogeneous one, or applying correction coefficients

for a-ejection, as found by calculations for nondiffu-

sive cases, to diffusive cases. It will be shown that

Fig. 1. Photomicrographs of apatite grains and the corresponding mica external detectors as used in fission track analysis. Visible are the etched

tracks created by spontaneous and induced fission of 238U and 235U, respectively. The track density within the zones of a grain/external monitor

image is proportional to the U–concentration. (a) Vassijaur granite, Sweden; 68j25V16WN 18j07V42WE; (b) Skröven granites, Sweden,

66j18V43WN 22j48V55WE; (c) gneis, Baisvarri complex, Sweden 70j03V57WN 27j44V18WE. Photos courtesy of Bart Hendriks.
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either of these simplifications leads, in general, to

large systematic errors.

2. Methods

2.1. Model description

For the generation of helium in a crystal, the

following model is assumed (Farley et al., 1996). The

parent nuclides are distributed (not necessarily homo-

geneously) over the crystal and we write the corre-

sponding density of a-emission asUplace(x,y,z)UR(t), in

which UR(t) is the total a-production divided by the

total crystal volume, and Uplace(x,y,z) is a dimension-

less distribution with a volume average of one. In the

following, other quantities will also be chosen dimen-

sionless if possible. If an a-particle is produced at a

point, it is emitted in entirely arbitrary direction and

comes to rest at a distance, r, at a point that may be

within or outside the crystal.

Farley et al. (1996) employ a function F(x,y,z),

which is the chance that an a-particle emitted at (x,y,z)

remains within the crystal. F does not indicate how

the new He is distributed spatially. We use the

dimensionless function Splace(x,y,z) to denote the

chance, per volume unit and multiplied with the total

crystal volume, that an emitted a-particle stops at

(x,y,z). Consequently, the source term in the produc-

tion–diffusion equation is Splace(x,y,z)UR(t). Splace
depends on the crystal geometry, on the parent dis-

tribution, Uplace, and on the stopping distance, r.
Mathematically, Splace(x,y,z) is calculated by taking

the average of Uplace over an infinitely thin spherical

shell with center (x,y,z) and radius r, assuming

Uplace = 0 outside the crystal. F(x,y,z) is calculated

by taking the average over the same shell of a

function, which is one inside and zero outside the

crystal. In the special case that Uplace = 1 (homoge-

neous distribution of the parent nuclide), F = Splace.

The retentivity, FT , which is the probability that an

emitted a-particle stops within the crystal, can be

expressed in two ways:

FT ¼ 1

V

Z
dV Splaceðx,y,zÞ

¼ 1

V

Z
dV Uplaceðx,y,zÞFðx,y,zÞ: ð1Þ

The second form was used by Farley et al. (1996), the

first yields the same result though, locally, Splace p
UplaceF.

The fundamental quantities have now been given;

it remains to be considered how the evolution of the

He content, Cav(t), in the presence of diffusion can be

calculated from them.

2.2. How the evolution of the Helium content is

calculated

It has been derived in Appendix A of Part I that for

any He source, Splace(x,y,z)UR(t), the spatial average

Cav(t) of the He concentration evolves as:

CavðtÞ ¼
Xl
n¼1

cnðtÞ, ð2Þ

with cn(t) governed by:

dcn

dt
¼ �lnDðtÞcnðtÞ þ cnURðtÞ, ð3Þ

where D is the diffusion coefficient. Herein, ln
depends only on the geometry and has been treated

in Part I. However, cn has to be adapted to Splace. Once
cn is known (for an array of low n values), the

numerical solution of the differential equations for

each cn(t) and the summing of the cn(t) can be

performed as described in Part I. Thus, the whole

specific problem caused by a-emission and hetero-

geneity of the source is the determination of cn. This
will occupy us in Sections 2.3–2.7.

An important result (dealt with in Sections 2.5 and

2.6) is that analytical expressions for cn can be found

for the sphere, if the distribution of parent nuclides is

homogeneous, or if it is a simple step function of the

distance to the center. This special result has a wider

scope of application than might be apparent at first,

for the following reasons. First, the cn obey (just like

Splace and C) the superposition principle: If arbitrary

parent nuclides distributions U (1)(r) and U (2)(r) yield

c-values cn
(1) and cn

(2), respectively, for the nth

eigenmode, then any arbitrary combination, say for

instance, U(r) = 4U (1) + 7U (2), yields the correspond-

ing combination of c-values: cn = 4cn
(1) + 7cn

(2) (proof:

that such a rule holds for Splace follows from its

mathematical definition in Section 2.1; from Eq.

(10) in Section 2.3, it follows subsequently for cn).
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Since any U(r) can be approximated by combining

several step functions, its cn can be approximated by

combining the corresponding analytical results. Sec-

ond, as will be shown in Sections 3.1 and 3.2, the

evolution of Cav(t) for crystals with either homoge-

neous or zonal distribution of parent nuclides does not

strongly depend on size and shape, but tends to be

universal for a given zoning and surface-to-volume

ratio. This implies that for a variety of crystal shapes,

the evolution problem can be translated to an evolu-

tion problem on the sphere, for which the cn can be

relatively easily obtained. Moreover, the cn for the

sphere have only one index so that faster calculation is

possible with them than with the cn for other finite

shapes.

It must now be considered what is the use of FT for

diffusion calculations. We first note that:

dCav

dt
VFTUR, ð4Þ

with ‘‘ = ’’ in absence and ‘‘ < ’’ in presence of

diffusion. Since the ‘‘measured age’’, tc is Cav/UR ac-

cording to the customary definition, it follows (neg-

lecting the time dependence of UR) that:

dtc

dt
VFT, ð5Þ

again with the same remark about = and < .

Clearly, for cases where diffusion is important, tc
has no simple relation to FT. Further, as will be shown

in Section 3, the often used method to apply FT as

correction factor in conjunction with diffusion calcu-

lations yields, in general, erroneous results. Still,

determining FT remains useful because of the follow-

ing interesting identity:

FT ¼
X
n

cn, ð6Þ

(summation over all eigenmodes). This identity is

very useful for checking the validity and accuracy

of results (and has been used time and again in

checking the results in this paper).

The most fundamental way to prove this relation is

the following. For the nondiffusive case, we have Eq.

(4) with ‘‘ = ’’ sign; however, on the other hand, dCav/

dt can be determined from Eqs. (2) and (3) with

D(t) = 0 substituted. Combining both outcomes yields

Eq. (6). This relation connects crystal characteristics

and holds independent of the nature of thermal evo-

lution.

2.3. Calculation of cn: general remarks

This subsection can be skipped by readers who are

not interested in derivations. We now consider how

the calculation of the c-coefficients has to be adjusted

if a-emission and eventually inhomogeneous Uplace

are to be taken into account. As was discussed already

in Appendix A of Part I, the cn are derived from the

eigenfunctions ln of the Laplace operator which are

zero at the crystal boundary, as follows:

cn ¼ snln;av, ð7Þ

in which ln,av is the volume average of ln, and the sn
are the expansion coefficients of Splace:

Splaceðx,y,zÞ ¼
X
n

snlnðx,y,zÞ: ð8Þ

It follows from the general principles of eigenfunction

theory (see, e.g. Collins, 1968, Chapter 5) that:

sn ¼
Z

dV Splaceln

Z
dV ðlnÞ2

�
ð9Þ

Hence:

cn ¼
1

V

R
dVlnR

dV ðlnÞ2
Z

dV Splaceln: ð10Þ

The integrals that do not involve Splace can be looked

up in Carslaw and Jaeger (1959). The integral contain-

ing Splace is a different story. Though analytical results

can be obtained for the sphere (see Sections 2.5 and

2.6), usually numerical integration has to be per-

formed.

2.4. Calculation of cn: special cases

As this subsection is again only about derivations, it

may also be skipped. The sphere with radius, a,

appears to be in every respect the easiest shape to

work with. It is assumed that the parent nuclide

distribution (and, hence, Splace ) depends on the dis-
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tance, r, to the center alone. In the expansion of Splace
in eigenfunctions, only eigenfunctions with the same

symmetry will occur; these are:

lnðrÞ ¼
1

r
sin np

r

a

� �
ð11Þ

with n= 1, 2, 3, . . . (note that ln is regular in r= 0). The

expressions for cn and FT, obtained with Eqs. (1) and

(10), are:

cn ¼ ð�1Þnþ1 6

np
1

a2

Z a

0

dr r2SplaceðrÞlnðrÞ, ð12Þ

FT ¼ 3

a3

Z a

0

dr r2SplaceðrÞ: ð13Þ

Analytical solution is, in general, possible for the

sphere; this will be discussed in Sections 2.5 and 2.6

and readers may proceed by reading there.

For crystals of other shapes, analytical solutions

are, in general, out of scope. It will even be hard to find

Splace analytically. However, it is always possible to

estimate Splace by a Monte Carlo method. This amounts

to the following: to determine Splace at a given point

(x,y,z), one emits for a number of times an a-particle

from there ‘‘back’’ to a point (xV,yV,zV) at a distance, r,
and in a fully random direction. For each experiment,

one determines the value of Uplace(xV,yV,zV); if the point
is outside the crystal, the value zero is assigned. Then

the average outcome of all experiments is determined;

this is the estimate for Splace(x,y,z).

For completeness, we give a prescript to achieve

this numerically. With a random number generator,

one can produce numbers u and v that have a uniform

distribution between 0 and 1. From them, one calcu-

lates polar angles, h and u:

h ¼ arccosð1� 2uÞ; u ¼ 2pv: ð14Þ

These are just distributed such that the corresponding

direction is random. For the stopping point (x,y,z), the

potential point of emission (xV,yV,zV) is:

xV ¼ xþ rsinhcosu; yV

¼ yþ rsinhsinu; zV ¼ zþ rcosh: ð15Þ

For the block with x from 0 to a, y from 0 to b, and

z from 0 to c, the concerned eigenfunctions are

(eigenfunctions with odd symmetry do not contrib-

ute):

llmnðx,y,zÞ ¼ sin ð2l � 1Þp x

a

� �
sin ð2m� 1Þp y

b

� �

� sin ð2n� 1Þp z

c

� �
: ð16Þ

It is straight forward to write a program for obtaining

FT and clmn (with the required Splace determined by the

Monte Carlo method); however, computations are

relatively time-consuming since three-dimensional

integrals are involved (though one can somewhat

reduce the required computational effort by using

tricks based on the symmetry of the problem). Worse

is that the number of c-coefficients becomes so large,

a problem already discussed in Part I.

The cylinder with radius, a, and height, h, has

eigenfunctions that contain the Bessel function, J0.

Hence, some extra effort is required to write down

algorithms for the computation of FT and cmn. On the

other hand, once the programs can be run, they are

relatively attractive since there are only two indices

instead of three.

For the cylinder, the eigenfunctions are (assuming

a cylindrical symmetry for the distribution of parent

nuclides):

lmnðr,zÞ ¼ J0 jm
r

a

� �
sin ð2n� 1Þp z

h

� �
: ð17Þ

Herein, m and n run from 1 to l, J0 is a Bessel

function and jm is its mth zero point. The expressions

for cmn and FT are:

cm;n ¼ � 16

pa2hnjmJ0VðjmÞ

Z h

0

dz

Z a

0

dr rSplaceðr,zÞ

� J0ðjmr=aÞsinðð2n� 1Þpz=hÞ, ð18Þ

FT ¼ 2

a2h

Z h

0

dz

Z a

0

dr rSplaceðr,zÞ: ð19Þ

To determine Splace, the Monte Carlo method can

again be used. If values of jm , J0V( jm) and J0(. . .)
cannot be determined using numerical software

already available, the necessary information can be

found in Abramowitz and Stegun (1965): values of jm
and J0V( jm) are found in Table 9.5 of that book (trans-
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late jm = jm,0) and an accurate approximation to eval-

uate J0 is given in Section 9.4 of the same book.

For the cylinder of infinite length, only one index

remains:

cm ¼ � 4

a2jmJ0VðjmÞ

Z a

0

dr rSplaceðrÞJ0ð jmr=aÞ,

ð20Þ

FT ¼ 2

a2

Z a

0

dr rSplaceðrÞ: ð21Þ

2.5. Calculation of cn: sphere with homogeneous dis-

tribution of parent nuclides

We first continue with the derivation for the sphere,

and then give the results for FT and c. In Appendix A,

the following expression for Splace is derived for the

sphere (Eq. (34)):

SplaceðrÞ ¼
1

2rr

Z rþr

Ar�rA
ds sUplaceðsÞ: ð22Þ

For homogeneous distribution of the parent nuclides,

Uplace(s) = 1 for s < a, and as always Uplace(s) = 0 for

s > a. We note that a point P in a crystal can be of

three types: Of the points PVat a distance, r, away
from P, (1) all or (2) some or (3) none may be situated

within the crystal. The third option can only occur for

small crystals (a < r). In accordance with this, the

result of the integral for Splace(r) can have three forms,

depending on whether a is situated above, or within,

or below the interval from Ar� rA to r + r:

SplaceðrÞ ¼ 1 ðazr þ rÞ,

SplaceðrÞ ¼ ða2 � Ar � rA2Þ=ð4rrÞ
� ðAr � rA < a < r þ rÞ, ð23Þ

SplaceðrÞ ¼ 0 ðaVAr þ rAÞ:

This result is also found in Farley et al. (1996).

From this, expressions for cn and FT can be

obtained with Eqs. (11–13. Provided a>r/2 (other-

wise cn = 0):

n ¼ 3

ðnpÞ2
� 1� r

2a
þ 1

np
1

kr
ð1� cosðkrÞÞ

�

þ 1

kr
sinðkrÞ

�
, ð24Þ

in which k depends on n according to:

k ¼ np=a: ð25Þ

This is a very manageable result. Further, as men-

tioned earlier by Farley et al. (1996):

FT ¼ 1� 3

4

r
a
þ 1

16

r3

a3
ð26Þ

again provided a>r/2 (otherwise FT = 0). We have

performed an independent check on Eq. (24) by

verifying that
P

cn =FT, using analytical expressions

for the concerned sums (Abramowitz and Stegun,

1965, numbers 23.1.17–18 and 23.2.24–25).

2.6. Calculation of cn: sphere with zoned distribution

of parent nuclides

For nonhomogeneous U(r), the computations

become more involved. It is discussed in Appendix

A how the analysis can be facilitated. The analysis has

to work with a double integral, with integration both

over points of emission and over points where the a-

particles come to rest. In the following, by the con-

tribution of a region to cn and FT , we mean the

contribution of the a-particles emitted, not those that

came to rest in that region.

We apply this analysis now to the special case that

U(r) is a step function and, hence, can be written as a

combination of functions which are constant on a

shell. A shell pV rVq on which U(r) =U0 (see Fig.

2) yields a contribution to cn and FT, the expression of

which will depend on the region in which the shell

lies, and the definitions of the involved regions

depend on their turn on the ratio of r to a.
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We first consider the most important (and most

complicated) case, namely the case that rV a. One

has then to discern between an outer region a�
rV rV a, and an inner region rV a� r. If the shell

lies in the outer region, it yields the following con-

tributions:

cn,outer ¼
3

ðnpÞ4
aU0

r



q2 � p2

2
k2 þ ð�1Þnþ1

� ½kqsinkðq� rÞ � kpsinkðp� rÞ

þ coskðq� rÞ � coskðp� rÞ�
�
, ð27Þ

in which

k ¼ np
a

again contains the dependence on n, and

FT,outer ¼
U0

a3



q3 � p3

2
þ 3

8r
a2 � r2 � p2 þ q2

2

� �

� ðq2 � p2Þ
�
: ð28Þ

If, on the other hand, the shell lies in the inner region,

the contributions become

cn,inner ¼ ð�1Þnþ1 6

ðnpÞ4
aU0

r
sinðkrÞ½kpcosðkpÞ

� kqcosðkqÞ þ sinðkqÞ � sinðkpÞ�, ð29Þ

FT,inner ¼
U0

a3
ðq3 � p3Þ: ð30Þ

If a< rV 2a, there are again two regions, namely

an outer region r� aV rV a, and an inner region

rV r� a. A shell in the outer region yields contribu-

tions of just the same form as for the case r < a con-

sidered above. A shell in the inner region yields no

contribution now since all a-particles emitted there

leave the crystal. If finally r>2a, all a-particles are

ejected out of the crystal, and cn and FT are zero.

2.7. A note on the calculation of cn without a-emission

We have not performed calculations for the case

that a-emission is absent; however, zoning is present

in the crystals (e.g. for Ar-geochronology) since our

intentions are restricted to analysing measurements

with a-emission. Actually, without a-emission the

calculations are easier. A brief sketch is as follows.

In Section 2.4, ‘‘Splace’’ should everywhere be replaced

with ‘‘Uplace’’. Thereby, integrals are obtained that are

of a kind that is treated by Carslaw and Jaeger (1959).

If Uplace has the character of a step function, it is

possible to obtain analytical expressions for c for all

the usual shapes. However, for cylindrical shapes,

these expressions contain Bessel functions.

3. Results

3.1. Results for homogeneous distribution of parent

nuclides

In Part I, we calculated the evolution of the He ages

for five thermal histories (taken fromWolf et al., 1998)

and five crystal shapes with S/V= 0.05 Am � 1. The

same exercise has been done now with a-emission

Fig. 2. Illustration of a step distribution of the a-source, explaining

the symbols used in the text.
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included, using the methods of Section 2.2, with c-
coefficients calculated according to Section 2.5 for the

sphere, and to Section 2.4 for the other shapes (finite

and infinite cylinder, rectangular block and cube).

The source distribution of the a-particles is kept

homogeneous; nonhomogeneous distributions will be

considered in Section 3.2. For the stopping length, a

mean value of r = 20 Am is assumed (Farley et al.,

1996). A grid distance of 1 Am is used in performing

the numerical calculation of cn and FT. In applying the

Monte Carlo method, each time 100 random emission

directions are considered. The thermal histories (as in

Part I) will be indicated in the figures. The dimensions

are again chosen to yield identical S/V-ratio and are as

follows: sphere: radius 60 Am; cube: edges 120 Am;

block: edges 80, 160, 160 Am; finite cylinder: radius

50 Am, height 200 Am; infinite cylinder: radius 40 Am.

The time step is again 5 Ma (but 1 Ma for the final

stage of history 5). As in Part I, a slight adjustment is

made to deal with a discontinuous temperature.

Fig. 3a shows the results for history 1, with a

sudden shift from high to low temperature. For this

Fig. 3. Calculated ages, tc, for various thermal histories. The thermal histories 1–5 (a–e) are depicted as thick dark grey lines and are the same

as used by Wolf et al. (1998). The grey solid lines depict the evolution of a sphere without a-emission; all other evolution curves include a-

emission. Solid line: sphere; dash–dotted line: finite cylinder; short dashed lines: rectangular block; long dashed lines: infinite cylinder; dotted

line: cube. The sequence of calculated tc’s is always the same; in increasing order: infinite cylinder, sphere, finite cylinder, rectangular block,

cube. The dimensions of the bodies are given in the text; all have identical surface to volume ratios.
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case, diffusion essentially plays no role after the drop

in temperature. The evolution is comparable to the

one without a-ejection; however, the slope is reduced

to 0.75 times its old value ( = 1), corresponding to the

fraction FT of a-particles retained in the crystal (see

Eq. (5) with ‘‘ = ’’ sign). This value follows immedi-

ately from Eq. (26) for the case of the sphere. The

fraction appears practically independent on the con-

sidered shape. These results are in agreement with

the results of Farley et al. (1996), which were ob-

tained along different lines (namely from retentivity

calculations without considering diffusion and time

series).

Fig. 3b shows the results for history 2, for which

the temperature decreases fast, but not instantaneously

through the zone of partial retention. Once the temper-

ature decreased below 40 jC, tcs are again 0.75 times

the tcs calculated without a-ejection. Also, for this

history, diffusion has little effect on the results.

Fig. 3c shows the results for history 3, with the

temperature staying in the partial retention zone for

the first 80 Ma. Afterward, the temperature is low and

the slope is again 0.75; however, the thermal history

has its effect on the final tc: this is not 0.75 times the

value calculated without a-ejection, but considerably

more than this (except for the infinite cylinder, which

is an odd one out). This can be understood from the

interplay of a-ejection and diffusion. In the new

calculation, the He concentration in the outer parts

of the crystal is depleted by a-ejection; however, in

the old calculation, much more He was generated in

the outer parts and, consequently, it was depleted by

subsequent diffusion to a much greater extent than in

the new calculation. As a consequence, the difference

between the two resulting tc is not a factor 0.75, but a

factor much closer to one. This shows that a naive

correction for a-ejection using a nondiffusive reten-

tivity factor (as, e.g. in House et al., 1999; Stockli et

al., 2000; Warnock et al., 1997) is incorrect once

diffusion is important, i.e. if a sample remains for a

significant period of time in the partial retention zone

(PRZ, Wolf et al., 1998).

It is also seen in Fig. 3c that if the temperature is in

the partial retention zone, results for different shapes

(but same S/V ratio) become somewhat divergent, as

was also seen when a-ejection was neglected (Part I).

The results for the sphere, which are the easiest to

obtain, are still a good approximation for the other

finite shapes; however, they are systematically slightly

too low. The infinite cylinder has a lower tc than the

finite shapes.

For histories 4 and 5 (Fig. 3d and e), about the

same comments apply as for history 3. For the finite

shapes, the retentivity is always considerably higher

than 0.75 times the retentivity calculated without a-

ejection. The mutual positions of the curves for

various finite shapes are always the same, rising in

the order sphere–cylinder–rectangular block cube.

The curve for the infinite cylinder should be consid-

ered apart, and always lies below the curves for the

finite shapes.

3.2. Results for zoned distribution of parent nuclides

It must be first explained how the zonal distribu-

tions are chosen. The crystal is divided into an inner

and an outer zone, with the inner zone obtained by

Fig. 4. Illustration of a zoning within a finite rectangular section of a

crystal. The zone boundaries have the same center and shape as the

crystal.
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mathematically shrinking the crystal by some factor,

keeping its center and shape unchanged (see Fig. 4).

The distribution Uplace(x,y,z) for the source of a-

particles is then chosen such that Uplace is constant

U0 in either the inner or outer zone, whereas

Uplace = 0 for the complementary zone. U0 is deter-

mined by the requirement that the volume average of

Uplace is one (see Section 2.1). It is easily seen that

U0 is consequently a function of the shrinking factor,

and independent on the shape, provided the shape is

finite. The infinite cylinder obviously requires sepa-

rate treatment, as it can shrink in only two instead of

three directions. The considered shrinking factors are

2/3 and 5/6. With shrinking factor 2/3, one obtains

for the inner and outer source U0 = 1/(2/3)
3 and

U0 = 1/(1� (2/3)3), respectively, except for the infinite

cylinder for which second powers instead of third

powers should be used. Analogous expressions hold

for factor 5/6.

We now compare the outcomes for the different

zoning cases, for the five usual histories, but only for

the spherical shape, for the moment. It will be shown

below that the other shapes only yield small devia-

tions, except for the infinite cylinder as usual. Re-

Fig. 5. Calculated ages, tc, for various thermal histories including a-emission (r= 20 Am) for zoned and homogenous spheres (a= 60 Am). The

thermal histories 1–5 (a–e) are depicted as thick dark grey lines and are the same as used by Wolf et al. (1998). The grey solid lines depict the

evolution of a sphere with homogenous distribution of the a-source. Solid line: source in inner 2/3; dashed line: source in inner 5/6; dotted line:

source in outer 1/3; dash–dotted line: source in outer 1/6 of the crystal.
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member that the radius of the sphere in these calcu-

lations is a = 60 Am and the stopping distance is r = 20

Am.

Fig. 5a shows the results for history 1. Although the

total a-production rate is the same for all cases, tc is

seen to depend strongly on the location of the source.

The nearer the source is located to the outer world, the

smaller tc becomes. On the other hand, if the source is

located entirely at a distance that is z the stopping

distance away from the outer world, as is the case with

the source in the inner 2/3, there is full retentivity (so

that the slope of tc as a function of t is one).

Note that these results could again have been

obtained directly from FT, as diffusion is negligible.

FT can be calculated analytically, using the instruc-

tions of 2.6. Readers with interest in calculations may

check that the results for the cases of innermost 2/3, 5/

6, homogeneous distribution, and outermost 1/3, 1/6,

are: FT = 1, 0.91, 0.75, 0.65, 0.53. These are just the

slopes of the corresponding curves in Fig. 5a.

The other four histories (Fig. 5b–e) show essen-

tially similar results; however, the zoning dependence

becomes even more spectacular as the effects of

diffusion (corresponding to a slow passing of temper-

ature through the PRZ) become more important. The

reason is that diffusive loss is interwoven with a-

emission. If the relative loss due to a-emission is

larger, subsequent diffusive loss is relatively less

efficient as both processes deplete the outer parts

more that the inner parts. For history 5, the tc for

parent nuclides in the outer 1/6 is less than one third

of the tc for the same number of parent nuclei in the

inner 2/3. These results show that the knowledge of

spatial distribution of the He in a crystal is very

important for interpreting values of tc (‘‘ages’’).

We now turn again to the important question

whether a sphere can be used to approximate other

crystal shapes. The specifications for the computations

concerning the other shapes are as in Section 3.1. We

must add for completeness that the calculations are

somewhat less accurate than the previous ones since

when the cn are determined numerically, the spatial

features of the source distribution are somewhat more

difficult to resolve than without zoning. An additional

source of inaccuracy is the summation method: the

growth of the partial sums SM as a function of M (as

defined in Part I) is less regular. This is illustrated in

Fig. 6 (
P

M for finite cylinder, source in inner 2/3, first

history, time = 100 Ma). This irregularity is, in part, an

immediate consequence of the zoning (inspection

shows that it also occurred already to some extent for

the sphere, for which exact values of cnwere used). Fig.
6 shows that the error is small: for this special case since

neither a-particles nor He atoms can leave the crystal,

the exact outcome is known: tc = 40Ma. The calculated

outcome is only 0.5% less than this. However, using

lower order SM would have resulted in a less accurate

outcome.

Fig. 7 shows for history 1 how for each zone tc
depends on the shape. Apart from the infinite cylinder,

the curves almost coincide. Results for history 2 (not

shown) are similar. For history 3 (Fig. 8), there is a

slight shape dependence for inner sources (Fig. 8a and

c), comparable to the case with homogeneous distribu-

tion (see Section 3.1). On the other hand, for outer

sources (Fig. 8b and d), the shape dependence is

smaller. The same remarks hold for histories 4 (not

shown) and 5 (Fig. 9). As for homogeneous distribu-

tion, for cases in which shape dependence occurs, the tc
for the sphere slightly underestimates the tc for the other

finite shapes, and overestimates the tc for the infinite

cylinder. The agreement between the finite cylinder and

the sphere is very good, deviations are mostly < 5%

(Figs. 7–9). This agreement is fortunate as the finite

cylinder is currently the best approximation of the

shape of a apatite crystal available.

In the examples depicted in Figs. 5–9, we have

only considered parent nuclides distributions that can

Fig. 6. Illustration of determining an infinite sum
P

l from partial

sums
P

11. . .
P

15.The dotted lines denote the 95% confidence en-

velope of the linear extrapolation. Discussion is given in the text.
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Fig. 8. Same as Fig. 7 but for history 3.

Fig. 7. Calculated ages, tc, for thermal history 1 (Wolf et al., 1998) and various zoned crystal shapes. The results for the different zonations, a-

sources in inner 2/3 and 5/6 and outer 1/3 and 1/6, are shown in (a)– (d). In these plots, solid lines denote sphere; dash–dotted lines: finite

cylinder; short dashed lines: rectangular block; long dashed lines: infinite cylinder; dotted lines: cube. The dimensions of the bodies are the same

as in Fig. 3; all have identical surface to volume ratios.
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be described by a single step function. For cases with

more complicated distributions that can be described

as a combination of multiple step functions, results

can be obtained by application of the superposition

principle (Section 2.2). As follows from the super-

position principle and the examples shown in Figs. 7–

9, also the more complicated zonations can be ‘‘trans-

lated’’ into a spherical geometry for easy and fast

calculation without significant sacrifice of computa-

tional accuracy.

4. Conclusions

In Part I (Meesters and Dunai, in press), a method

has been developed to calculate predicted He contents

in crystals, for application to (U–Th)/He thermo-

chronometry. The method has been extended in the

present paper to cases in which a-emission is impor-

tant and in which the parent nuclides have eventually

a zonal instead of homogeneous distribution.

The method is based on decomposition into eigen-

modes. For each eigenmode, coefficients l (eigen-

value) and c have to be determined, the expressions

depending on the crystal shape. For some shapes,

determination of c is difficult; however, for the special
case of a spherical shape, analytical expressions are

derived in this paper for both homogeneous and zonal

distribution of the parent nuclides.

There is an important reason to pay special atten-

tion to spherical ‘‘crystals’’. The number of eigenm-

odes that have to be considered is typically 15 for

spherical ‘‘crystals’’ (and for the infinite cylinder), 152

for the finite cylinder, and 153 for block-shaped

crystals. Hence, spherical crystals are by far the most

efficient from a computational point of view. This is

important since in practice, e.g. for inversion of depth

(altitude)–age profiles many runs with a model cal-

culating He contents from thermal series have to be

performed. For a successful inversion, many trial runs

are needed to obtain a good fit. Fortunately, a com-

parison of calculated results shows that for crystals

with modest aspect ration of varying shape, but with

the same surface-to-volume (S/V) ratio, all yield very

similar He age tc ( =He content divided by the rate of

He production) in response to the same thermal

Fig. 9. Same as Fig. 7 but for history 5.
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histories. This implies that it is possible to ‘‘translate’’

the problem for a crystal of a given shape, to a

problem for a crystal with spherical shape. This

remains so if zoning of the parent nuclides occurs,

provided the corresponding zoning is imposed on the

sphere.

In Section 3.1, results for homogeneous distribu-

tion of the parent nuclides are considered. For a

thermal history in which the temperature drops sud-

denly from high to low (so that the diffusivity drops

suddenly from effectively infinite to effectively zero),

results are similar to those obtained earlier with a

nondiffusive model by Farley et al. (1996). Once the

diffusion has ceased, there is a retention factor

( = retained fraction of a-particles) FT that corre-

sponds also to the He retention, and that can be

calculated analytically for spheres.

However, very different results are obtained if the

crystal stays during its cooling a long time in the PRZ.

In this case, a model incorporating both diffusion and

a-emission (like the present one) is required. Compar-

ison reveals that, with a-emission, the retained frac-

tion of He is not FT times the retained fraction without

a-emission, but considerably more than that. The

reason is that it is not allowed to consider loss by

a-emission and loss by He diffusion as independent

processes: ejection of a-particles causes the outer

parts more than the inner parts to be depleted in

new He, and, hence, it diminishes in a sense the effect

of diffusive loss since diffusive loss also pertains

primarily to the He in the outer parts. In the literature,

little attention has been paid hitherto to this problem

of correcting for the combined effect of a-emission

and diffusion. Model calculations are generally car-

ried out by calculating diffusive loss without a-emis-

sion, and afterward multiplying the resulting He

content with the nondiffusive FT as calculated from

Farley et al. (1996) (e.g. House et al., 1999; Stockli et

al., 2000; Warnock et al., 1997). It follows from the

foregoing that this can result in a substantial under-

estimation of the retentivity for samples that spent

considerable time in the PRZ.

The results show that a sphere can be employed as

an approximation of crystals with a different shape,

but with the same S/V ratio. The retentivity of the

sphere is only slightly smaller than the retentivity of

the other shapes with modest aspect ratio. Calcula-

tions for infinite cylinders with the same S/V ratio

yield somewhat more divergent results as compared to

the sphere and other shapes and yields always lower

values for tc. This implies that one should be careful

with approximations for very elongated shapes.

Calculations of situations where the parent nuclides

are not homogeneously distributed in the crystal, but

restricted to a zone (Section 3.2), show a strong

dependence on the choice of the zoning. Retentivity

is smaller as the parent nuclides are located closer to

the outside. Moreover, if diffusion is significant, i.e.

especially when protracted passage/storage in the

partial retention zone does occur, the zoning depend-

ence is even stronger. The tc calculated for a given

number of the parent nuclei contained in the outer part

may be less than a third of the tc calculated for the

same number of parent nuclei in the inner part (same

crystal size and shape, and same thermal history). The

reason is that diffusion cooperates with a-emission in

depleting the outer parts more than the inner parts. It

follows from this that a thermo-chronological model

should incorporate diffusion, a-emission, and zoning

in a combined way.

In most cases, it is possible, in general, to ‘‘trans-

late’’ the zoning in an arbitrary crystal to zoning in a

spherical ‘‘crystal’’ with the same S/V ratio. As noted

above, computations for spherical crystals are easier

and faster than for other crystal shapes. A comparison

has been made between results for spherical and other

shapes and for crystals with modest aspect ratios a

good agreement was found. From the principle of

linear superposition, it follows that this agreement,

found for simple single step zoning, is equally valid

for cases with a more complicated zonal distribution

of the parent nuclides. The agreement is best between

spheres and finite cylinders (deviations mostly < 5%),

which is fortunate as the shape of apatite is best

approximated by a finite cylinder.

A user-friendly version of the program to perform

calculations for spherical geometries as discussed in

Part I and Part II is currently in preparation and can be

obtained from the authors when it becomes available.

Acknowledgements

We are grateful for stimulating discussions with all

the members of the fission track group at the Vrije

Universiteit Amsterdam. Special thanks to Bart

A.G.C.A. Meesters, T.J. Dunai / Chemical Geology 186 (2002) 57–73 71



Hendriks who directed our attention to zonation in

apatites and provided the excellent photomicrographs

and to Marlies ter Voorde for useful suggestions to

make this paper more readable. The constructive

reviews of Peter Zeitler and Ken Farley improved the

manuscript considerably. This is NSG-publication #

20011004.

Appendix A. Calculations for cases with spherical

symmetry

A.1. Determining Splace for the sphere

The quantitiesUplace and Splace have been defined in

Section 2.1. In the following, it is assumed that Uplace

depends on the distance s to the crystal center alone.

Our first problem is to express Splace. The principle

is as follows (Fig. 10): Let C be the center of the

spherical crystal with radius a. Now Splace in a point P

is the average of Uplace over all points PVlying at a

distance, r, from P. It PVis outside the crystal, Uplace =

0 there. The function Uplace depends by assumption

only on the distance s of PV to the center C of the

crystal. Thus:

Splaceðx,y,zÞ ¼
1

4p

Z 2p

0

du
Z p

0

dhsinhUplaceðsÞ:

ð31Þ

It can be found that s depends on the angle h (Fig. 10)

as follows:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2rrcosh þ r2

p
, ð32Þ

in which r is the distance of P to C.

The integral over u yields a factor 2p (the inte-

grated function does not depend on u). The integra-

tion over h can be replaced with integration over s as a

new variable (with r kept constant). Since:

ds ¼ � rr
s
sinhdh, ð33Þ

and s(h = 0) = r+ r and s(h = p) =Ar� rA, this yields

the simple expression:

Splaceðx,y,zÞ ¼
1

2rr

Z rþr

Ar�rA
ds sUplaceðsÞ: ð34Þ

A.2. Determining cn and FT for the sphere

The next problem is to determine from this (see

Section 2.4):

cn ¼ ð�1Þnþ1 6

ðnpÞ
1

a2

Z a

0

dr r2SplaceðrÞlnðrÞ, ð35Þ

in which:

lnðrÞ ¼
1

r
sin

np
a
r

� �
, ð36Þ

and:

FT ¼ 3

a3

Z a

0

dr r2SplaceðrÞ: ð37Þ

After substituting the expression (34) for Splace, the

expressions for FT and cn are double integrals. It is
Fig. 10. Explanation of the symbols used for the calculation of Splace
for the sphere.
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easier to reverse the order of integration, so that the

inner integral can be carried out already without

knowledge of the arbitrary function Uplace(s). This

yields the still complicated forms:

cn ¼ ð�1Þnþ1 3

np
� 1

ra2

Z a

0

ds sUplaceðsÞ

�
Z minðsþr;aÞ

As�rA
drsin

np
a
r

� �
, ð38Þ

and:

FT ¼ 3

2ra3

Z a

0

ds sUðsÞ
Z minðs�r;aÞ

As�rA
dr r, ð39Þ

it being understood that the integral over r is replaced

with zero in case the ‘‘lower’’ bound As� rA is larger

than the ‘‘upper’’ bound min(s + r,a). On working out

all possible cases, it is found that the prescript for the

double integration depends as follows on the ratio of r
to a: for r < a, there are two terms:

Z a�r

0

ds

Z sþr

As�rA
dr . . .þ

Z a

a�r
ds

Z a

As�rA
dr . . . ,

ð40Þ

for aV r < 2a, there is only one term:

Z r�a

a

ds

Z a

r�s

dr . . . , ð41Þ

and for rz 2a, the expression becomes zero.
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