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Abstract

We construct multiple realizations of hierarchical fracture networks with fractal dimensions between one and two, then
simulate single-well pumping tests and natural-gradient tracer tests on them. We calculate averages and standard deviations of
test results over the multiple realizations, and show individual results for selected cases to highlight key features of flow and
transport through hierarchically fractured rock. These studies are intended to illustrate the range of possible behavior that can be
obtained during fracture-dominated hydraulic and tracer tests, and provide insights into how to interpret field responses. The
fractal dimension of the fracture network itself is generally larger than the fractal dimension of the flow field arising during a
well test. The performance measures of the natural-gradient tracer tests, including the total flow through the fracture network,
tracer travel time, front width, and maximum breakthrough concentration, can all be correlated to fractal dimension. Although
some of the features observed in the flow and transport behavior within the hierarchically fractured rock have been observed by
other authors using non-fractal fracture network concepts (e.g. channelized flow with early breakthrough times, crossing
breakthrough curves), others arise directly from the fractal nature of the fracture network, in which variability occurs on all
scales (e.g. front width and maximum breakthrough concentration that are constant over a wide range of fractal dimensions).
Generally, transport simulations show large variability within a given realization and among realizations with the same fractal
dimension, even in networks whose dimension is close to two. This finding is consistent with the large variability in experi-
mental results observed at fractured rock field sites. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Hydrogeology; Fractures; Fractal geometry; Pumping tests; Solute transport; Breakthrough curves

1. Introduction

Hydrogeological problems involving fractured rock
are challenging to solve because contrasts in perme-
ability of the fractures and surrounding rock matrix
are extreme and localized, making flow strongly
dependent on the interconnections between conduc-
tive fractures (i.e. the connectivity of the fracture
network). Site characterization is difficult because
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the key features controlling flow are likely to be
impossible to identify a priori and they often respond
to field tests in ways that are not amenable to simple
interpretations (Karasaki, 1987a; National Research
Council, 1996, Chapter 5). With the introduction of
the concepts of fractal geometry to geological systems
(Mandlebrot, 1982; Turcotte, 1992), the notion that
fracture networks often have a hierarchical (i.e. frac-
tal) structure has gained support (Sahimi, 1993 and
references therein; National Research Council, 1996,
Chapter 2 and references therein). In hierarchically
fractured rock, both the extent and spacing of frac-
tures vary over a wide range of length scales, which
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can exacerbate the difficulties associated with under-
standing flow and transport.

In the present study, we are primarily concerned
with the situation that arises when a hierarchically
fractured site is encountered in which a small number
of wells are available for subsurface characterization.
This may occur when multiple sites are under consid-
eration for a particular activity (constructing a geolo-
gic nuclear waste repository, for example). It would
not be cost effective to drill many wells at many
candidate sites, but enough information must be
gleaned from each site for good candidates to remain
candidates and poor candidates to be eliminated. For a
nuclear waste repository site it is critical to develop an
understanding of how water flow and radionuclide
transport will occur through and away from the repo-
sitory. Important characterization tools in this regard
are pumping tests and tracer tests. In the early stages
of site characterization, when only one or a few wells
are available, single-well pumping tests are likely to
be the primary characterization tool. On the other
hand, a natural-gradient tracer test more closely
mimics the conditions under which radionuclide
escape from a repository is likely to occur and
hence provides more reliable characterization infor-
mation. Such tracer tests require careful design if the
results are to be interpretable, making it worthwhile to
study the relationships between the responses from
single-well pump tests and natural-gradient tracer
tests that arise in hierarchically fractured rock.

In a seminal paper, Barker (1988) described how
a well test can be used to determine not only the
effective transmissivity of a fracture network, but
also the dimension of the flow field, which he
denotes the generalized radial flow dimension, n.
Values of n range from 1 to 3, where the integral
values of 1, 2, and 3 correspond to linear, radial,
and spherical flow, respectively, and intermediate
non-integral values describe flow fields with fractal
dimension. Polek (1990) simulated well tests in
hierarchical fracture networks with a range of fractal
dimensions and found that Barker’s generalized
radial flow dimension was smaller than the fractal
dimension of the fracture network itself. He inter-
preted this as indicating that flow occurs primarily
on a subset of the fracture network, denoted the
backbone. In the present paper, we follow a proce-
dure similar to that of Polek but broaden the focus

to include transport as well as flow, by simulating
natural-gradient tracer tests as well as single-well
pumping tests. We examine how fractal dimension
affects the performance measures of the natural-
gradient tracer tests, including the total flow through
the fracture network, tracer travel time, front width,
and maximum concentration. Our primary goal is to
illustrate the types of flow and transport behavior
that are representative of hierarchically fractured
rock, and thereby aid the design of field tests and
the interpretation of field data.

A number of researchers have used numerical simu-
lations to investigate flow and transport in heteroge-
neous porous or fractured media (Moreno and Tsang,
1994; Birkholzer and Tsang, 1997; Berkowitz and
Scher, 1997), including several who have explicitly
invoked hierarchical concepts (Grindrod and Impey,
1993; Clemo and Smith, 1997). However, none of
these authors have systematically investigated how
transport processes vary with the fractal dimensions
for flow and the fracture network itself, as is done
here. Others have investigated the significance of frac-
tal geometry on transport (particularly dispersion)
theoretically (Ross, 1986; Cushman, 1991; Tyler
and Wheatcraft, 1992 and references therein; Sahimi,
1993 and references therein), providing insightful
conceptualizations and elegant mathematical formal-
isms. The present approach is more practically
oriented, with the goal of providing insights and infor-
mation for designing and interpreting field experi-
ments.

2. Methods

We construct hierarchical fracture networks made
up of line segments in two-dimensional (2-D) space (a
plane). The networks have fractal dimensions
between one and two. For each fractal dimension
considered, at least 12 realizations of the fracture
network are constructed. We then simulate a single-
well pumping test and two natural-gradient tracer tests
(with opposite gradients) on each realization. The
number of realizations is constrained by available
computer resources. In the discussion (Section 4)
following presentation of results (Section 3), we
demonstrate that the present number of realizations
is adequate.
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Fig. 1. Construction of a random Sierpinski lattice for Ny, = 5: (a) the basic template with four fractures of length L, (b) addition of fractures of
length L/3, (c) addition of fractures of length L/9, (d) addition of fractures of length L/27, and (e) addition of fractures of length L/81.

2.1. Generation of hierarchical fracture networks

The hierarchical fracture networks are generated as
random Sierpinski lattices. We begin with a square
template consisting of four fractures in two orthogonal
sets as shown in Fig. 1(a). This template divides the
original square with sides of length L into nine smaller
squares, each with sides of length /3. We then shrink
the template by a factor of three, replicate it Ny, times
(where 1 =Ny =9), and superimpose the replicates
on the original template in Ny, of the nine smaller

squares chosen at random, as shown in Fig. 1(b) for
Ny = 5. This procedure is then repeated for each of
the L/3-length templates (Fig. 1(c)), then for each of
the resulting L/9-length and L/27-length templates
(Fig. 1(d) and (e), respectively). For 1 =Ny =38,
the final fracture network contains fractures of length
L,L/3,L/9,L/27,and L/81, and blocks of intact rock of
length L/3, L/9, L/27, L/81, and L/243. For Ny =0
(the network shown in Fig. 1(a)) and Ny =9, the
fracture network is a regular lattice in which all blocks
of intact rock have length L/3 and L/243, respectively.
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Fig. 2. Some of the fracture networks constructed as random (left and center columns) and regular (right column) Sierpinski lattices.

Fracture networks constructed in this manner are
denoted five-level lattices, as they include five sizes
of templates. Current computational limitations
preclude using higher-level lattices for the present
study. In principle, however, we could continue the
process, using even smaller templates to represent
even smaller fractures until reaching the fractal cutoff
length below which fractal geometry is not expected
to be the best representation of fracture flow. Fracture
mapping studies at The Geysers, California (Sahimi et
al., 1993) and Yucca Mountain, Nevada (Barton and

Hsieh, 1989) observed fractal geometry over length
scale ranges of one and two orders of magnitude,
respectively, suggesting that using the five-level
lattices, which comprise nearly two orders of magni-
tude of fracture lengths, is reasonable.

The basic building block of the hierarchical lattices
is called a fracture element. It is a fracture segment
with a length one-third that of the smallest template
used in the lattice. For a lattice with M levels, the
smallest template length is L/3" ~!, therefore the
length of a fracture element is [, = L/3™. There are
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N, =5

Fig. 2. (continued)

12 fracture elements in the smallest templates, and it
is straightforward to calculate the total number of
fracture elements, denoted N, in the lattice. First,
the total fracture length is obtained by summing the
length of fractures added during each level of
construction:

AL + NoAL/3 + NLAL/3® + NGAL/Z + -

+ Ny laL3M! (M

Then, dividing by [, yields N
Na = 4(3" + Ng3" ™" + N3

M-1
TN 4 ENGTIB) =40 Y (N/3Y
j=0

@)

Applying the summation formula for a geometric
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Fig. 3. Example of the box counting method: the symbols show the
number of fracture elements N(r) encountered within a radius r of a
central point for five-level lattices with Ny, = 3 and 6. The slope of
the best-fit lines is the fractal dimension D of the fracture network.

series yields

L= (N3

N, =403M
el () 1_(Ngq/3)

3)

Fig. 2 shows a selection of the random fracture
networks created for each value of Ng. In the lattices
shown in the left and center columns of Fig. 2, at each
level of construction a different random set of N
squares is filled with smaller fractures. If the same
Nyq squares are filled at each level, a much more regu-
lar fracture network is formed, as shown in the right
column of Fig. 2. We only consider networks contain-
ing fractures that pass close to the center of the model
(these are picked out randomly from a larger suite of
realizations), so that we can compare well tests and
tracer tests with a common source location. As Ny
decreases for random networks, the probability of a
fracture intersecting a given source region becomes
smaller and smaller until for Ny = 1 there are only a
few realizations that do so, all similar to the regular
lattice shown in Fig. 2.

The fractal dimension of a fracture network can be
determined using the box counting method (Ott, 1993)
as shown in Fig. 3, which is a log—log plot of the
number of fracture elements N(r) encountered as a

Fractal Dimension, D
- )

o
n

= = = Equation (5), M=15

B Average over all 5-level lattices

Equation (5), M=5

Traditional Sierpinski gasket

Fig. 4. Fractal dimension D of the fracture network as a function of N,

sq»

N, 6 8

10

with D averaged over at least 12 realizations of five-level lattices for

2 = Ny, = 8. The fractal dimensions determined from Eq. (5) with M =5 and 15 and that for a traditional Sierpinski gasket in which only the

shortest fractures are retained are also shown.
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function of distance r from some point in the lattice.
The slope of the best-fit line through these points is the
fractal dimension, D. Fig. 3 shows N(r) as measured
on two five-level lattices with different values of Ng,.
The good fit to straight lines is typical of all the
lattices generated and confirms that five-level fracture
networks constructed as shown in Fig. 1 do possess
fractal geometry over a range of length scales.

We can derive an analytical expression for N(r),
following a line of reasoning similar to that used to
derive Eq. (3) for N, but starting with the smallest
template replica (m = 1) and subsequently consider-
ing larger and larger replicas (m = 2,3,...,M) :

1= (N/3)"

=g @

m—1 )
N() =43)" > (N3 =43)"
Jj=0

where r is related to m by r = [,,3". Note that when
r=L,m= M and N(L) = N, as defined by Eq. (3). A
straightforward calculation yields an expression for
the fractal dimension D:

dinN(r) _ r dN(r) _ 143" dN(m) dm

D = = =
dinr N(r) dr N(m) dm dr
1 — 3y N
_ (Nsq In3
1 = (Ng/3)"
Q)

For the case Ny = 3, Eq. (4) can be simplified before
evaluating the sum, yielding

N(r) = 4(3)"m (6)
and consequently

1

D=1+
mlin3

(N

For evaluating the fractal dimension of an M-level
lattice, it is appropriate to replace m in Egs. (5) and
(7) with M. The fractal dimensions measured from
lattices with M =4 and 5 agree closely with those
obtained from the analytical solution using the
corresponding values of M, further demonstrating
that these lattices adequately capture the desired
hierarchical structure.

Fig. 4 shows D averaged over all realizations of the
five-level lattices as a function of Ny. Also shown is D
as given by Egs. (5) and (7) with M = 5 (to compare to

the average values) and M = 15 (to represent a more
idealized hierarchical medium beyond our present
numerical capabilities).

Note that as M gets very large, Eqgs. (§) and (7)
become

In3

for Ngg > 3, ()

D=1 for Nyq = 3. )
Eq. (8) is the fractal dimension of a traditional Sier-
pinski gasket; it is also plotted in Fig. 4. In contrast to
the present algorithm for fracture network generation,
which retains fractures of all lengths, the traditional
Sierpinski gasket retains only the smallest ones, i.e.
those resulting from the final shrinkage, replication,
and superposition of the template. When N, =< 3, the
number of shorter fractures grows slowly as the lattice
is generated and the original long fractures contribute
significantly to the fractal dimension. In contrast,
when Ny, > 3, the reverse is true and Eq. (8) holds
even for modest values of M.

Although they are highly idealized, we believe that
the hierarchical fracture networks generated as
random Sierpinski lattices are useful for representing
real fractured rock for the following reasons. Most
importantly, fractures of all lengths are present and
blocks of intact rock matrix of all sizes are present.
For low values of N, fracturing is generally sparse,
with only a few through going paths. In contrast, for
higher values of Ny, fracturing is ubiquitous whereas
gaps in the fracture network are sparse. Under both
conditions, there is a huge variability among realiza-
tions, as is seen in nature. Finally, the fractures form
two orthogonal sets, another feature commonly seen
in field settings. A possible limitation is that we are
guaranteed to have long continuous fractures with a
regular geometry (the tick-tack-toe pattern of the
basic template). For low values of Ny, this may
dominate behavior.

In the present work, all fractures have the same
transmissivity (7= 10"" m?%s), a simplification that
allows us to focus on the fracture network geometry.
This treatment should be adequate when variability in
fracture transmissivity is relatively small or is not
correlated to fracture length. The more complicated
case in which fracture transmissivity is correlated
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Fig. 5. Schematic of the H-12 problem: (a) full 3-D problem, and (b)
2-D slice through the center of the block modeled in the present
studies. The EDZ is shown as a solid black square in the center. For
tracer tests with a reverse gradient, the flow direction arrow in (a) is
reversed and 4= —1.6 m on the left boundary in (b).

with fracture length is described elsewhere (Doughty
and Karasaki, 2000).

For the flow calculations, fracture aperture w and
transmissivity 7 are assumed to be related according
to the cubic law (i.e. w is the hydraulic aperture). For
the transport calculations, the tracer aperture is
assumed to be 10 times larger than the hydraulic aper-

ture, to account for fracture roughness. The factor of
10 is taken from calibration of a numerical model to
data from a tracer test conducted in a fractured rock
(Uchida and Sawada, 1995). How generally applic-
able this factor is remains unknown. However, its
only role in the present study is as a multiplicative
scale factor for tracer velocity (i.e. tracer moves 10
times more slowly through a 10 times wider fracture
so breakthrough times are 10 times longer than they
would be if the hydraulic aperture were used); it does
not affect the dependence of transport behavior on
fractal geometry.

2.2. Flow and transport simulator

The finite element model TRIPOLY (Karasaki,
1987b; Segan and Karasaki, 1993; Birkholzer and
Karasaki, 1996) is used to simulate water flow and
tracer transport through the hierarchical fracture
networks. Fractures are represented as one-dimen-
sional linear elements and fracture intersections are
represented as nodes. A special-purpose grid genera-
tor is used to create the hierarchical lattices described
in Section 2.1. TRIPOLY models transient or steady
flow according to Darcy’s law and models transport
using the advection—dispersion equation (ADE).
Transport calculations use a mixed Lagrangian—
Eulerian scheme combined with an adaptive gridding
algorithm that places additional nodes in locations of
large concentration changes to minimize the numer-
ical dispersion. Complete mixing is assumed at frac-
ture intersections. For the present transport
calculations, we neglect diffusion and dispersion
within individual fractures because sensitivity studies
have shown that it has only a small effect compared to
the mixing and dispersion that arise from the highly
irregular flow field that develops in the complicated
hierarchical fracture networks.

2.3. Single-well pumping test analysis

Barker (1988) generalized the diffusion equation
for radial liquid flow to non-integral flow dimensions,
in order to analyze data from well tests conducted in
fractured rock. He obtained an analytical expression
for the transient drawdown during a constant-rate
pumping test in terms of the (complementary) incom-
plete gamma function (Barker, 1988; Press et al.,
1986). The expression includes a parameter v that is
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Fig. 6. Numerically simulated drawdown for single-well constant-
rate pumping tests for lattices with: (a) Ny, = 3, and (b) Ny, = 7. The
late-time leveling out of drawdown represents the pressure pulse
reaching the outer boundary of the model, and is not used in the
matching process. In (b) Barker’s (1988) analytical solution in terms
of the incomplete gamma function is also shown; in dimensionless
time u, S; and K are the specific storage and hydraulic conductivity,
respectively, of the fracture network and r is the radius of the
pumping well.

related to the generalized radial flow dimension n
according to v =1 — n/2. For n = 2, the incomplete
gamma function simplifies to the familiar exponential
integral of the Theis (1935) equation. For n < 2, the

slope of the log drawdown-log time plot becomes
linear at long times, with a slope given by v. We
numerically simulate single-well, constant-rate pump-
ing tests by applying a mass sink to nodes near the
center of the lattice while holding nodes along the
outer boundary of the lattice at constant hydraulic
head. Comparing the resulting transient drawdown
to the analytical solution provides an estimation of
n. For small values of n, the linear late-time slope
provides a simple way to estimate n, but for larger
values of n, the constant-head outer boundary of the
lattice is felt before the drawdown curve becomes
linear, requiring that the complete curve (prior to
boundary effects being felt) be matched.

2.4. Natural-gradient tracer test analysis

The Japan Nuclear Cycle Development Institute
(JNC) recently conducted a multi-national project
to investigate the uncertainties involved in the
prediction of the flow and transport behavior of
a fractured rock mass (Oyamada and Ikeda,
1999; Sawada et al., 1999; Doughty and Karasaki,
1999). In that project, known as the H-12 flow
comparison, several  research  organizations
conducted numerical simulations of radionuclide
transport away from a repository under the influ-
ence of a uniform horizontal head gradient (essen-
tially, a long-term natural-gradient tracer test). For
the present studies, we consider the same geome-
try as the H-12 problem and evaluate similar
performance measures, but consider flow and
transport through hierarchical fracture networks.

The H-12 problem involves a 200 m X 200 m X
200 m cube of granitic rock containing a 200 m
long, 2.2 m diameter cylindrical gallery, located in
the middle of the volume (Fig. 5(a)). The surface of
the cylindrical gallery is a no-flow boundary condition
(to represent an engineered barrier). The gallery is
surrounded by an annular excavation-damaged zone
(EDZ) with a thickness of 0.5 m and a low permeabil-
ity. Heads are assumed uniform on both x—z boundary
planes and the head difference between the two planes
is 1.6 m. No-flow boundary conditions are assumed
for all the x—y and y-z boundary planes. Hence,
flow is generally perpendicular to the gallery (along
the y-axis).

For the present studies, we consider a 2-D slice
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through the middle of the granite cube in the y—z plane
(Fig. 5(b)). For simplicity, the EDZ is modeled as a
2.5m X 2.5 m square region in which all elements
have a low transmissivity (7 =5 X 107 m?s). The
EDZ size equals the smallest size to which the original
four-fracture template (Fig. 1(a)) is reduced (200/34 m
on a side). The corner nodes of the EDZ are main-
tained at a constant tracer concentration C=1 to
represent the potential escape of radionuclides from
the EDZ.

The H-12 performance measures that we examine
are

e (), the steady-state flow rate through the model (i.e.
discharge per unit width in m?/s), which can be
converted to the effective transmissivity of the
fracture network,

e (Orpy, the steady-state flow rate through the EDZ,
which influences the quantity of radionuclides
released, and ultimately the integrity of the gallery
itself,

® 1, the fastest tracer travel time from the EDZ to the
downgradient boundary of the model.

In addition, we monitor Cp,, the maximum
concentration at the downgradient boundary of the
model and At, the width of the concentration front
at the location where Cp,, occurs. Furthermore, we
can convert At (the front width in time) to Ay (the
front width in space) by multiplying Az by the average
velocity of the front, L/(2#,), where L/2 is the distance
from the EDZ to the downgradient boundary of the
model, 100 m. Then Ay may be used as a measure of
the effective dispersion occurring in the fracture
network.

3. Simulation results

We examine well-test (flow) and tracer-test (flow
and transport) simulation results by calculating
averages and standard deviations over the multiple
realizations. We also show individual simulation
results for selected cases to illustrate key features of
flow and transport through hierarchically fractured
rock.

3.1. Flow

Fig. 6 shows some examples of the numerically
simulated drawdown response at the pumping well
for single-well constant-rate pumping tests in hier-
archical fracture networks. In Fig. 6(a), the general-
ized radial flow dimension #n is determined from the
late-time slope v of the log drawdown-log time plot
(v =1 — n/2) for two realizations with Ni; = 3. Some
fracture networks produce late-time drawdowns that
show distinctive breaks in slope, indicating sub-
regions with different flow dimensions. Fig. 6(b)
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compares the entire drawdown curve for an Ny, =7
lattice with Barker’s analytical solution, indicating
that the flow dimension for this network is about
n=1.65. We estimate flow dimensions for all the
realizations of hierarchical lattices for each Ny
value using one of these two methods and calculate
the arithmetic average and standard deviation, which
are plotted versus Ny, in Fig. 7(a). Note that plotting
average plus or minus standard deviation does not
imply that the underlying distributions are normal or

even symmetric. It just provides a convenient means
of illustrating the variability between realizations.

Combining the n versus Ny, plot (Fig. 7(a)) with the
D versus Ny plot (Fig. 4) yields a plot of flow dimen-
sion n versus fractal dimension D (Fig. 7(b)), which
shows that n < D for all Ny,. Following Polek (1990),
we interpret this as indicating that flow occurs primar-
ily on a ‘backbone’ portion of the fracture network. It
is important to realize that no dead-end fractures exist
in the hierarchical fracture networks by virtue of their
construction as random Sierpinski lattices. Hence, our
usage of the term backbone is distinct from the
common network or percolation theory usage in
which the backbone contains all conductive (i.e.
non-dead-end) fractures.

Fig. 8(a) shows the steady linear flow rate Q
through the fracture network during the simulation
of the H-12 tracer test. For 2 < Ny, = &, the values
of O represent an average over at least 12 realizations
(for Nyq = 9 there is only one realization possible, and
for Ngy=1 there is only one realization in which
fractures pass through the center of the model). The
relationship between Q and Ny, can be reasonably well
fit with the expression

0 = Qy exp[(Nyg/4)1, (10)

where Q is the flow through the basic tick-tack-toe
pattern (Fig. 1(a)) that corresponds to Ny = 0. With
the H-12 boundary conditions specifying a fixed head
gradient Vi, Q is easily converted into the effective
transmissivity of the fracture network T

Q= —Tu Vh (11)
For Ny, =0, we have
Qo = —T,Vh, (12)

where T,=2x%10""m?%s is the network trans-
missivity for Ny =0 (two parallel fractures, each
with a transmissivity of 10~7 m?s).

Thus
Tett/To = Qett/Qo = expl(Nyg/4)’], (13)
and finally
IN(T/Ty) = (Nyg/4). (14)

Given the smooth relationships between Ny, D, and n

(Fig. 7), we could fit curves to D(Nyq) and n(Ny) and
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Fig. 9. Different ways of evaluating flow through the EDZ during a
tracer test: (a) Qgpz versus Ny, (b) Qgpz/Q versus Ny, (€) PepzQgpz/
O versus Ny,.

hence express T,/ as a function of D or n as well.
Note that during the well tests, as Ny increases the
generalized radial flow dimension » increases, with T
remaining constant. In contrast, during the tracer tests
the flow dimension remains one, as it is controlled by
the constant head boundary conditions, and T
increases with Ny as shown in Eq. (14).

Fig. 8(b) shows the standard deviation of Q divided
by the average Q. It features a maximum for inter-
mediate values of N, indicating that a greater variety
of flow fields occur for intermediate values of Ny,
This is simply a consequence of the greater variety
of fracture networks that can be constructed under
these conditions.

Fig. 9(a) shows the average and standard deviation
over all realizations for Qgpy, the flow rate passing
through the EDZ during the tracer test. Qgp; generally
increases with Ny, as does the total flow through the
fracture network Q (Fig. 8), but the standard deviation
of Qgpz is much larger than that of Q, indicating larger
variability between realizations. This greater variabil-
ity is reasonable, as Q and n embody integration over
all the flow paths through the fracture network,
whereas Qgpz depends strongly on the particular
flow paths intersecting the EDZ. Another way to
look at EDZ flow is to plot Qppz/Q versus Ny, as
shown in Fig. 9(b). We see an overall decrease with
Ny, indicating that as more alternative flow paths
become available, more flow bypasses the EDZ.
Note that dividing by Q is equivalent to considering
fracture networks that have the same T, regardless of
Nyq. From a well-testing point of view this may be the
most common situation to find in practice. Recall that
the realizations used for each Ny, were chosen speci-
fically so that the fracture network would intersect the
EDZ. We can combine the probability that the fracture
network intersects the EDZ (Pgpz) and EDZ flow by
plotting PgpzQep/Q versus Ny (Fig. 9(c)), which
shows an increase for low Ny, followed by a plateau
for higher values. For small N, values, the small prob-
ability of the fracture network intersecting the EDZ
dominates but for large N, values, the probability
flattens out and nearly balances the decrease that
occurs as more alternative flow paths are added.

3.2. Transport

To compare transport through the hierarchical
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Fig. 10. Breakthrough time at the downgradient boundary of the
model as a function of Ny: (a) actual breakthrough time 1, and
(b) normalized breakthrough time #y, with the influence of effective
network transmissivity and total void space removed.

fracture networks we identify the location along the
downgradient boundary of the model where the maxi-
mum concentration Cp,,, occurs for each simulation.
For this location, we define the breakthrough time #,
as the time at which the concentration reaches C,,,/2
and the width of front Ar as the time over which the
concentration increases from O to Cy,,,. These quanti-
ties are averaged over at least 24 simulations (at least
12 fracture network realizations, each with tracer tests
in two directions) and plotted as a function of N
(Figs. 10(a), 11(a), and 12).

Fig. 10(a) shows that as N increases, #, increases
initially then decreases. The addition of flow paths
with increasing Ny, enlarges both T (Eq. (13)) and

18
(@) —l— Avg over all realizations

L —— Avg +/- one std. deviation

0 2 4 Neq 6 8 10

Fig. 11. Concentration front width at the downgradient boundary of
the model as a function of Ny: (a) front width in time Az, and (b)
front width in space Ay.

the total void space of the fracture network. On aver-
age, increases in T, would be expected to shorten #,
whereas increases in void space would lengthen #.
However, for a hierarchical fracture network, with
its highly irregular manner of filling space, individual
tracer flow paths can be affected in a wide range of
ways by the introduction of additional flow paths,
depending on the details of the connectivity of the
fracture network. The variation in Fig. 10(a) suggests
that at low values of N, increasing the number of
flow paths provides additional void space but not
much additional connectivity, so #, increases. Essen-
tially the reverse is true at high values of Ny, where
the addition of just a few flow paths may provide
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Fig. 12. Maximum concentration at the downgradient boundary of
the model as a function of Ny,

much more direct connections across the model,
greatly decreasing #y,.

Another way to compare breakthrough times for
different Ny, values is to normalize f, by T and the
total void space of the lattice, as shown in Fig. 10(b).
Normalizing #, is equivalent to assuming that for each
value of Ny, the transmissivity and aperture of the
individual fractures are chosen such that the effective
transmissivity and total void space of the model
remain constant. In a sense, this normalization isolates
fractal geometry effects from other influences.
Normalized time #;, is defined as

f* =1 Q(qu) Nel(s)
TO(5) NaNy)'

5)

where Ny =35 is arbitrarily chosen as the reference
value for which #,, = fy,. There is a general decline
in y as N, increases, suggesting that the additional
flow paths introduced for higher fractal geometry
provide more direct routes for tracer travel through
the model.

Just as converting f, to fy, serves to isolate the
effects of fractal geometry, so does converting front
width in time At (Fig. 11(a)) to front width in space Ay
(Fig. 11(b)). For small values of Ny, few alternative
flow paths are available so Ay is small. For Ny =09,
only the most direct flow path need be taken, again
yielding small Ay. For 3 =N, =8, Ay is roughly
constant and approximately equal to the distance
traveled, L/2. For some of the tracer test simulations,

C(?) curves are available at a series of distances y from
the EDZ along the path of peak concentration. At each
distance, At can be converted to Ay, which is then
plotted versus y (not shown). There is a good deal
of scatter between realizations (as in Fig. 11(b)) but
on average the trend of Ay = y is maintained for all
values of Ny, between 3 and 8. The lack of dependence
of Ay on N, (or equivalently on D or n) appears to be a
fundamental result for these hierarchical fracture
networks and is further discussed in Section 4.

The maximum concentration arriving at the down-
gradient boundary of the model (Fig. 12) is quite low
compared to the constant concentration (C = 1) main-
tained at the EDZ. This is because the EDZ is located
away from the long through-going fractures of the
full-size template and there is rarely a direct path
across the model that intersects the EDZ but misses
these long fractures, which contribute clean water
from the upgradient boundary of the model. Cy
shows only a gradual increase with Ny, until
Ny =9. Apparently even for the large Ny, values of
seven and eight, where we might expect that a direct
path from the EDZ to the downgradient model bound-
ary would result in a large C,., the occasional
presence of large gaps in the fracture network is suffi-
cient to disorganize the flow pattern, enabling mixing
to reduce Cpux.

The standard deviations tend to be very large for
parameters that reflect preferential flow through one
or only a few flow paths: Qgpy, fy, At, and C,,, (Figs.
9-12). This illustrates the basic difficulty of attempt-
ing to obtain meaningful results by averaging over
multiple realizations for any quantity which itself is
not representative of average behavior within a given
realization. It makes more sense to consider the range
of results possible for different realizations than to
focus on the averages themselves.

It is apparent from Figs. 10—12 that the standard
deviations of f, At, and Cp, all show peaks at inter-
mediate values of Ny, as seen for O (Fig. 8(b)). This
decrease in predictability arises because intermediate
values of Ny (or equivalently fractal dimensions
midway between one and two) have the widest
range of possibilities for connectivity of the fracture
network. For n or D close to one, there is rarely more
than one flow path between any two points and for n
or D close to two, there are generally many paths. In
contrast, for intermediate values of n or D, there could
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be any number of flow paths and hence a wide range
of flow and transport behavior must be expected.
Figs. 13—16 show steady-state concentration distri-
bution, C(y,z), and transient breakthrough curves,
C(1), for various values of Ny, to illustrate some of
the key features of flow and transport in hierarchically
fractured rock. For small values of N, the situation
shown in Fig. 2 for Ny =2 and 3 is typical in that at
least one of the constant head boundaries is inter-
sected by only two long fractures. If this is the upgra-
dient boundary of the model, then flow through the
EDZ tends to have a diverging character, as shown in
Fig. 13(a) for Ny, = 2. Conversely, if the downgradi-
ent boundary of the model intersects only two long

fractures, then all flow through the EDZ must ulti-
mately converge into these two fractures (Fig.
13(b)). These different flow distributions produce
sharply different breakthrough curves. Tracer moving
through the diverging flow fields passes through many
fracture intersections, resulting in much mixing and
spreading, resulting in classical S-shaped break-
through curves with late breakthrough times (exem-
plified by the breakthrough curves for z <0 in Fig.
13(a)). Converging flow occurs along fewer flow
paths, leading to earlier, sharper breakthrough curves
(Fig. 13(b)).

Within an overall diverging flow field there are
often ‘pinch points,” where flow through a network
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of fractures must converge to a single fracture flow fields (e.g. the breakthrough curve at z =33 m in
intersection (e.g. at y=33m, z= —33m in Fig. Fig. 13(b)). These oscillations are a numerical effect,
13(a)), resulting in converging flow at one scale arising from instabilities in the mixing of clean and
and diverging flow at another. Furthermore, this traced water at the few fracture intersections along the
converging-within-diverging pattern can occur at flow path as the adaptive gridding scheme adds and
different scales (e.g. the pinch point at y= —11 m, deletes nodal points at those intersections to minimize
z=—11m in Fig. 13(b)), ultimately leading to a interpolation errors. These numerical instabilities may
great deal of variety in spatial concentration distribu- have natural analogs in the real world, where changes
tions and breakthrough curves. in stress or other non-linearities could subtly alter

Interestingly, the breakthrough curves simulated fracture transmissivities or hydraulic boundary condi-
for converging flow fields are much more likely to tions. The point is that for converging flow fields there

show oscillations than those resulting from diverging are not enough fracture intersections for unstable
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processes occurring at each one to average out, lead-
ing to oscillating breakthrough concentrations.

For larger values of Ny, the convergence of the flow
field down to only two fractures becomes less
common, but converging—diverging features of the
fracture network at different scales still have a strong
impact on the tracer flow paths leaving the EDZ. As
Ny, increases from four to five the fracture network
undergoes a transition from having more gaps than
fractures to having more fractures than gaps. It is
during this transition region that the most variability
in fracture network connectivity is possible. Fig. 14
shows examples for Ny, = 4. In Fig. 14(a), many frac-
ture intersections between the EDZ and the downgra-
dient boundary result in S-shaped breakthrough
curves. Fig. 14(a) also shows the phenomenon of
crossing breakthrough curves, in which the location
with the earliest arrival of tracer does not end up being
the location with the maximum tracer concentration.
This occurs frequently in the hierarchical fracture
networks. In Fig. 14(b), a diverging flow pattern
results in uniformly low concentrations. In Fig.
14(c), the flow field shows neither an overall conver-
gence nor divergence. A relatively sharp concentra-
tion gradient is apparent across the fracture zone
downgradient of the EDZ. Note that several fractures
to the left of the EDZ show no concentration increase,
as the flow field bypasses them entirely.

Fig. 15 shows examples for Ny, = 5. In Fig. 15(a),
much of the flow through the model is funnelled
through the EDZ, and a relatively direct, narrow
flow path from the EDZ to the downgradient boundary
results in a large value of C,. In Fig. 15(b), there is a
narrow plume just downgradient of the EDZ, but then
diverging flow following a pinch point causes widen-
ing and a decreased C,,,. The oscillations in the
breakthrough curve for z=33 m probably reflect
unstable mixing of clean water from the upgradient
boundary and traced water from the EDZ at the
pinch point. In Fig. 15(c), C. is localized at
11 m < z <22 m, but the diverging flow field spreads
tracer at a lower concentration over a much greater z
range. The breakthrough curve at z= —11 m shows a
double-hump character that suggests there are two
primary flow paths from the EDZ, with the slower
path having a travel time of about 14 years.

In Fig. 15(a) and (b), the breakthrough curves have
a small, early increase in concentration followed some

time later by the main concentration front. This low-
concentration ‘tail’ is typical of fracture networks
with a relatively direct flow path from the EDZ to
the downgradient boundary that is surrounded by
many longer flow paths that lead to the same down-
gradient point. It is a common feature of hierarchical
fracture networks.

For large values of Ny, there are often relatively
direct paths from the EDZ to the downgradient bound-
ary, but concentration distributions still vary greatly
between realizations. Fig. 16 shows examples for
N,y = 8. Despite the nearly completely filled fracture
networks, gaps of all sizes exist so there is a signifi-
cant variability among realizations. In Fig. 16(a), the
flow field shows a gradual convergence to the right of
the L/3-size gap, which keeps the concentration plume
narrow. When the flow direction is reversed (Fig.
16(b)), the plume bifurcates around the L/3-size gap
and the breakthrough curves feature the low-concen-
tration tails and crossing pattern seen for previous
examples. Although the fracture pattern appears to
be generally symmetric about z =0, C,,, is much
higher for z= 33 m than for z= —33 m. This can be
explained by the L/27-size gap located at y= —7 m,
z= —"7 m, which diverts much of the flow upward. In
Fig. 16(c), the large gaps in the lower right corner
control the overall flow pattern by creating a slightly
diverging, diagonal flow field. The diagonal flow is
strongly reflected in the concentration plume, despite
the fact that the plume never gets close to the gap. If
the global character of the flow field were not appre-
ciated during the experimental design, and tracer
monitoring only occurred at z = 0 (nominally consid-
ered downstream of the EDZ), nearly the entire plume
would be missed.

4. Discussion and comparison to other studies

A common feature of most of the hierarchical frac-
ture networks studied is that they produce quasi-chan-
nelized flow with localized, rapid transport from the
EDZ to the downgradient model boundary. Many of
the breakthrough curves also show evidence of multi-
ple flow paths, indicating interaction between chan-
nels. In general, subtle features of the flow field can
produce strong responses in transport phenomena.
These features are not unique to hierarchical fracture



C. Doughty, K. Karasaki / Journal of Hydrology 263 (2002) 1-22 19

30 ] 1 I I
. : ! : !
: ‘ ! : L e
25 -  — [ [ [ .
: ¢« ! : !

! ! ¢ Individual realizations
i v\ ____._ ! e— Average
20 | ——Standard deviation

0 5 10 15 20 25 30 35
Number of realizations

Fig. 17. Normalized breakthrough time fy for Ny =5, illustrating
the relationship between individual realizations and averages and
standard deviations calculated using increasing numbers of realiza-
tions.

networks, but have been noted by authors using a
variety of approaches to investigate fracture flow
(National Research Council, 1996, Chapter 6). Other
findings, particularly the variation of front width
described at the end of this section, arise directly
from the fractal nature of the hierarchical fracture
networks, in which variability occurs on all scales.

It is common for studies using stochastically gener-
ated models to consider far more realizations than we
consider here, particularly when the variability
between realizations is high, as it is for simulation
results that depend on a few critical flow paths, such
as breakthrough time and EDZ flow. However, we
believe enough realizations have been used to make
the averages presented meaningful. For example, Fig.
17 shows ty, for each realization for Ny =35, along
with the average and standard deviation calculated
for increasing numbers of realizations. It is clear
that despite the large scatter in individual f; values,
after 12 realizations the average has stabilized.

We initiate transport by imposing a localized step
change in concentration at the EDZ, then follow the
resulting tracer plume through the fracture network
and examine its arrival at the downgradient model
boundary. This procedure reproduces the processes
associated with radionuclide release from a nuclear
waste repository and the associated natural-gradient

tracer test designed to mimic that release. The chan-
nelized nature of the flow leads to irregular, difficult-
to-predict transport, making any prediction for a
single point highly uncertain. Another approach is to
introduce tracer all along the upgradient boundary of
the model and construct a breakthrough curve by aver-
aging over the entire downgradient boundary of the
model (Birkholzer and Tsang, 1997). This method has
the advantage of incorporating the effect of flow paths
throughout the medium, but it does not illustrate what
is likely to happen during a given tracer test with a
localized tracer release point and a limited number of
observation points. Others use localized releases of
tracer, but primarily focus on spatially averaged
breakthrough curves (Grindrod and Impey, 1993;
Berkowitz and Scher, 1997; Clemo and Smith,
1997). We have found that looking at average rather
than local breakthrough curves is generally not help-
ful for elucidating the physical processes occurring in
the fracture network. Moreover, it is often misleading
as to the range of responses expected in an actual field
experiment with only a few observation points,
precisely because the critical fast flow paths that
produce the earliest tracer arrivals are not representa-
tive of the average behavior of the medium. A prefer-
able situation is to be able to monitor over a spatially
extensive region, such as an underground drift or a
surface exposure such as a cliff face. Then both
local and average predictions can be made and
compared to local and average observations, respec-
tively.

The finding that front thickness Ay = y for a large
range of fractal dimensions (Fig. 11(b)) may seem
surprising in view of numerous authors’ suggestions
that the commonly observed scale-dependence of
dispersivity (Gelhar et al., 1985) can be explained as
a consequence of the fractal dimension of the tracer
flow path (Tyler and Wheatcraft, 1992 and references
therein). In the conventional ADE with constant
values of groundwater velocity and dispersivity oy,
front thickness depends on time according to Ay ~
(oth)l/2 and on distance travelled according to Ay ~
(aLy)”z. In contrast, for scale-dependent or anoma-
lous dispersion, Ay ~ ¢ and Ay ~ y", where r > 1/
2. To preserve the connection with the conventional
ADE, a variable dispersivity «,, is introduced so that
Ay ~ (a,)"* with a,, ~*"' and Ay ~ (a, )"
with a,, ~ y*'. To explain this phenomenon with
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a fractal model, an expression for the power r as a
function of fractal dimension D must be derived.
For example, Wheatcraft and Tyler (1988) obtain
o, ~ y2D ~! (r = D), based on a random walk over
a set of fractal stream tubes.

In the present studies, we find Ay~ y, which
requires «,, ~y or r=1, which is the dispersivity
dependence for a stratified aquifer (Mercado, 1967).
Neretnieks (1983) recognized that this relationship
applies to channelized flow as well. It is natural for
heterogeneous models to produce channelized flow at
one scale, but Ross (1986) points out that fractal
media have the unique capability of producing chan-
nelized flow at all scales: at any experimental scale,
there are always a few fractures that are nearly as
large as the experimental scale; these provide quasi-
independent channels through which most of the flow
occurs; as the experimental scale increases, longer
fractures come into play and channeling is main-
tained. This explanation is consistent with the finding
that Ay =y independent of fractal dimension, for a
range of y values between 5 and 100 m.

However, it must be noted that the expression
Ay =y produces only a roughly approximate fit to
the numerical results and there is a great deal of scat-
ter around it both for observations at y = 100 m (Fig.
11(b)) and for smaller values of y (not shown). This is
not surprising since using the conventional ADE with
dispersivity represented as a function of time or space
to account for scale-dependent dispersivity is an ad
hoc approach. In fact, Berkowitz and Scher (1995) are
able to prove that using «,,(f) leads to quantifiably
incorrect solutions for the anomalous dispersion
caused by differential advection through a highly
heterogeneous medium. Cushman (1991) treats trans-
port in a fractal medium rigorously and obtains a non-
local integrodifferential governing equation in place
of the conventional ADE. In other words, transport at
a given point depends on the history of concentration
at that point as well as concentrations elsewhere in
space.

5. Summary and conclusions

We have generated hierarchical fracture networks
with well-defined fractal dimensions and simulated
single-well pump tests and natural-gradient tracer

tests through them. By examining multiple realiza-
tions we have looked for trends that describe the
variation of transport with fractal dimension and
features that are unique to particular fracture network
geometries. The studies attempt to illustrate the range
of possible behavior that might be obtained during
field tracer tests conducted in hierarchically fractured
rock and provide insights into how to interpret field
responses. Some specific findings are presented below
followed by more general concluding remarks.

1. As the number of filled squares N, in the random
Sierpinski lattices increases, the fractal dimension
of the fracture network D increases according to
Eq. (5).

2. The generalized radial flow dimension n obtained
during a well test also increases with Ny,. For all
fracture networks, n < D. The variability of n and
D among different realizations is small.

3. For the linear flow field obtained during a natural-
gradient tracer test, the effective transmissivity of
the fracture network is well fit by the relationship
In(To/Ty) = (qu/4)2, where T is the transmissiv-
ity of a fracture network with Ny, = 0. Given the
smooth relationships between Ny, D, and n, simple
analytical expressions could also be written for
Teff(D) and Teff(n)-

4. During natural-gradient tracer tests, the relative
amount of flow through the EDZ (the tracer source)
tends to increase with fractal dimension, as smaller
gaps in the fracture network make it less likely that
the EDZ will be bypassed by the primary flow
channels.

5. During tracer tests, channelized flow tends to
produce early, localized tracer breakthroughs, but
some interaction between channels is also appar-
ent, as breakthrough curves show evidence of
multiple flow paths arriving at a given point.

6. Normalized breakthrough time #; decreases as
fractal dimension increases, due to the addition of
more and more direct flow paths through the
model.

7. Front width Ay is independent of fractal dimension
over the range 3 = Ny =8 and is approximately
equal to the distance travelled by the front. This
linear dependence is consistent with channeling
that occurs over a range of length scales, which is
expected for a hierarchical fracture network.
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8. Maximum concentration at the downgradient
boundary C,,, is quite low compared to the unit
concentration maintained at the EDZ and Cy,
shows only a slight increase with fractal dimension
for Ny, = 8. This suggests that even for dense frac-
ture networks the occasional gaps disrupt and
disorganize the flow pattern, leading to low values

of Cpux.

Geometry and flow-related properties D, n, and Ty
represent average behavior over the whole fracture
network and thus show little variability between reali-
zations for a given Ny. Consequently, the averaged
relationships for D, n, and Tt as a function of Ny
apply quite well to all realizations. In contrast, trans-
port-related properties Qgpz, ty, Atf, and C, are
controlled by a relatively few fractures and conse-
quently are very sensitive to subtle variations in the
fracture network and the flow field. Because of the
hierarchical fracture network structure, flow field
variations occur at all scales. In particular, the exis-
tence of gaps of all sizes means that the converging—
diverging pattern associated with pinch points occurs
at all scales. Large-scale flow field features control the
overall direction of the tracer plume and whether it
broadens or remains narrow. At smaller scales, flow
can be focused toward the EDZ or largely bypass it,
strongly affecting the resulting tracer plume. Conse-
quently, there is a great deal of variability in transport
properties among realizations, which must be appre-
ciated when looking for trends associated with fractal
dimension.

At afractal dimension of D = 1.5, there is a transition
from networks with more gaps than fractures (Nyg = 4)
to networks with more fractures than gaps (N, = 5).
This is where the greatest variability in fracture network
geometry occurs, leading to the biggest uncertainty in
flow and transport properties. However, even for fractal
dimensions near D = 2 there is still a very large varia-
bility among transport simulation results for different
realizations. Moreover, within a given realization
there is also a great deal of variability, as evidenced
by the large values of Ay and small values of Cpy.
These findings are consistent with and may partially
explain the large variability in the experimental results
observed at fractured rock field sites (Olsson, 1992;
Mauldon et al., 1993; Uchida et al., 1993; Hsieh and
Shapiro, 1996; Karasaki et al., 2000).
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