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Abstract

We propose an accurate, fast and easy-to-use method to derive numerical solutions for production–diffusion equations for

finite diffusion domains of various shapes and arbitrary cooling histories. Previous studies provide solutions for spheres, infinite

cylinders and infinite sheets. We extend this range and provide solutions for finite bodies, i.e. finite cylinders and rectangular

blocks of any aspect ratio. This approach is important as recently, it has become clear that, for example, the physical grain is the

diffusion domain for He diffusion in apatite and titanite [J. Geophys. Res. 105 (2000) 2903; Geochim. Cosmochim. Acta 63

(1999) 3845]. We discuss the use of the new approach for forward modelling (U–Th)/He production–diffusion in apatite.

Taking results with finite cylinders as a good approximation for apatite crystals, it is found that approximating instead with

spheres or infinite cylinders having the same radius yields differences in calculated ages that can easily be as large as 20–35%.

The relative differences are most pronounced in thermal histories that spend significant time at or near the closure temperature.

On the other hand, reasonable agreement is found with spheres having the same surface to volume ratio. D 2002 Elsevier

Science B.V. All rights reserved.

Keywords: Low-temperature thermochronology; Diffusion; Forward modelling; (U–Th)/He dating

1. Introduction

Since the initial studies of Farley et al. (1996),

Lippolt et al. (1994), Wolf et al. (1996), and Zeitler et

al. (1987), (U–Th)/He thermochronology utilising

apatite quickly developed into a versatile tool for

low-temperature geochronology (House et al., 1997,

1998; Reiners et al., 2000; Spotila et al., 1998). To

fully exploit the potential of this technique, the

accurate knowledge of the diffusion parameters is

important (Wolf et al., 1998). Modelling temperature

histories of a given area from elevation and/or depth

profiles (House et al., 1999; Wolf et al., 1998) requires

a suitable description of the geometry of the diffusion

domain. To date, invariably spherical diffusion geo-

metries were assumed for modelling He diffusion in

apatite (House et al., 1999; Wolf et al., 1996, 1998).

This is, however, a simplifying assumption as the

physical boundaries of apatite crystals probably de-

note the size and shape of the diffusion domain
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(Farley, 2000), which in turn is clearly not spherical.

A finite cylinder is a much closer approximation of

apatite than a sphere, or an infinite cylinder as

proposed by Farley (2000) (typical length/radius for

granitic apatites is, e.g.� 4–8). To date, however,

there is no feasible procedure, which allows the

accurate numerical solution for the production–diffu-

sion equation for finite cylinders. In this paper, we

provide an efficient method that can be used not only

for spherical and infinite geometries, but also for finite

cylinders and rectangular blocks of any shape. The

latter may be of use for other minerals such as titanite,

for which it is demonstrated that the diffusion domain

is the physical grain size (Reiners and Farley, 1999).

As this method can be applied to spherical and infinite

geometries, we use this to check the consistency of

our modelling results with previously published exact

solutions for special cooling histories (Carslaw and

Jaeger, 1959; Dodson, 1973; McDougall and Harri-

son, 1999). In this paper, we demonstrate that most

arbitrary shapes can be approximated by a sphere

under the condition that this sphere has the same

surface to volume ratio.

For the time being, effects of a zoned distribution

of parent nuclides, and of a-ejection, are neglected. In
a second paper (Meesters and Dunai, 2002) (hence-

forth called part II), the method will be extended to

incorporate these effects. The methods and results

presented in part I can also be applied to Ar geo-

chronology.

2. Methods

2.1. Description of the problem, and solutions in the

literature

The problem that we are facing can be stated in

mathematical terms as follows. There is a diffusion

domain of a given shape and size. In it, radioactive

decay produces a daughter isotope of unknown con-

centration C(x,y,z,t) (mol per volume unit). The

daughter isotope is produced at a rate U (source,

mol per volume unit per time unit). It is understood

that U is either a constant or an exponentially decay-

ing function of time. In this paper (except for Appen-

dix A), we restrict ourselves to a place-independent U:

U =UR(t). In part II, the case of a place-dependent U

will receive an elaborate treatment. The daughter is

subject to diffusion, and the diffusion coefficient D is

a given function of time (but decidedly not of place).

A further assumption is that the transport of the

daughter into the environment is such that the con-

centration is always zero at the boundary. We are

concerned with processes starting at an initial time

tinit, and ending at the present time tpres. Our problem

is now to compute the spatially averaged value of C,

Cav, at the final stage. Eventually, it may be also

interesting to compute the temporal evolution of

Cav(t). The most interesting entity is the ratio Cav /U,

which corresponds to the measured age tc. (unless tc is

not much smaller than the decay time s (s = 1/k,
k = decay constant), in which case Cav/U = s(etc /s

� 1)).

To solve the production–diffusion equation, finite

difference methods are generally inappropriate. The

Crank–Nicolson method (Crank, 1975; Crank and

Nicolson, 1947), which belongs to this class, is

feasible for domains that can be reduced mathemati-

cally to a one-dimensional form. This is the case for

infinite plane sheets and also for spheres and infinite

cylinders. The method has recently been applied

successfully to (U–Th)/He (Wolf et al., 1998), assum-

ing spherical diffusion domains. However, if such a

reduction is impossible, finite difference methods

become comparatively very slow and practically

unfeasible.

A more appropriate method is based on the decom-

position of the problem into eigenmodes. The appli-

cation to constant D (Carslaw and Jaeger, 1959) is

well known. Dodson (1973) investigated the case of

an exponentially decaying D(t), as often used in

geochronology. The application of this method to

arbitrary D(t), which is of interest of us, has been

discussed by Lovera et al. (1989) and followed by

McDougall and Harrison (1999, Chap. 6). The dis-

cussion of this point is continued in Section 2.2.

Another important issue is the derivation of the

correct values for D as used in the calculations. For

each temperature, values for D can be calculated using

the Arrhenius equation (see, e.g. McDougall and

Harrison, 1999) and experimentally derived values

of D0 and Ea. As there are various approaches to

interpret diffusion experiments and because some of

these approaches will affect modelling results, they

will be discussed here.
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In Ar geochronology, it is customary to report

D0 /a
2 values (where a is the characteristic dimension

of the diffusion domains; Dodson, 1973) (McDougall

and Harrison, 1999 and references therein). The con-

sequent application of this approach largely mends the

complications related to geometry that are discussed in

this paper. Consequent application in this context

means that the geometry of the sample on which the

diffusion experiment is performed is equivalent to that

of the measured (unknown) sample used for modelling

constraints, and that throughout the calculations, the

same term D0 /a
2 is used (i.e. the same diffusion

domain size). Then, effects of shape and dimensions

as described below will cancel each other out in the

course of the calculations. In Ar geochronology, usu-

ally, crushed fragments of much larger crystals are

used, both for diffusion experiments and for geochro-

nological studies, such that its possible to design

experiments that meet the condition of consequent

application. The use of crystal fragments has the

additional benefit that the assumption of a rectangular

concentration profile, essential for the correct calcu-

lation of the diffusion parameters (Fechtig and Kalbit-

zer, 1966, p. 71; see also below), is usually met on the

fragment scale, while this is often not true for the

original, unfragmented crystal.

In (U–Th)/He-geochronology, both D0/a
2 (e.g.

Reiners and Farley, 1999; Wolf et al., 1996; Zeitler

et al., 1987) and D0 values have been reported

(Farley, 2000; Reiners and Farley, 1999). The use

of D0 seems justified at least for apatite and titanite

where the grain size is probably the diffusion domain

size (Farley, 2000; Reiners and Farley, 1999, 2001).

This is important as the successful approach as used

in Ar geochronology, i.e. consequently using D0/a
2,

cannot be straightforwardly applied to (U–Th)/He-

geochronology. This has to do with (i) the usually

small size of the most commonly used minerals

(apatite, titanite, zircon), (ii) the relative ease of He-

loss and (iii) the significant emission distance of a-
particles in minerals (Farley et al., 1996). If, for

example, apatites of geological samples are used for

diffusion experiments, e.g. to characterize an apatite

population for a given thermochronological study

(Reiners and Farley, 2001), a-ejection and He-loss

during the cooling of the natural sample will result in

rounded concentration profiles. While the rounding

due to ejection can be accurately described in some

cases (homogenous U and Th concentration) (Farley

et al., 1996), the rounding due to diffusive loss of He

is a priori an unknown, as the cooling history is not

yet known but is the goal of the thermochronological

study. Fechtig and Kalbitzer (1966), whose equations

are invariably used to interpret stepwise heating

experiments (e.g. (Farley, 2000; Reiners and Farley,

1999, 2001; Wolf et al., 1996)), are explicit about the

consequences of unconstrained concentration pro-

files: ‘‘The disturbance of the square profile can only

be neglected when the fraction released by the

experiment is several times higher than the original

loss; in this case, the resulting diffusion coefficient

will be right. In particular, if a sample with argon

losses [in our case helium losses] is taken for dif-

fusion experiments, one should be aware of the

violation of the boundary conditions. The apparent

diffusion constants will come out too low, and the

activation energies too high’’ (Fechtig and Kalbitzer,

1966, p. 71). The way around the problem that is

pointed out by Fechtig and Kalbitzer (1966), release

of large fractions of gas in the experiments, is

problematic (Dunai, 2000) and in the case of apatite

virtually impossible to achieve, if the apparent

change of diffusion mechanism at temperatures

>265 �C (Farley, 2000) is real. Suitable experiments

at temperatures < 265 �C would last weeks to several

months, if not years, and thus are impractical. It is

likely that the diffusion coefficients obtained by

Reiners and Farley (2001) and Wolf et al. (1996)

on samples with rounded concentration profiles are

hereby inaccurate and that, e.g. differences in calcu-

lated TC of geological samples and Durango apatite

as described by Reiners and Farley (2001, p. 417) are

at least in part experimental artifacts due to violation

of the boundary conditions described by Fechtig and

Kalbitzer (1966).

The remaining option is to use fragments of

large crystals (Dunai, 2000; Farley, 2000; Reiners

and Farley, 1999; Wolf et al., 1996), largely elim-

inating the problem of rounded concentration pro-

files. However, if fragments are used, the D0/a
2

from those experiments cannot be used analogous

to Ar geochronology for natural crystals as the geo-

metry of shards and the crystals is clearly differ-

ent and the characteristic dimension a will be dif-

ferent in most cases. Therefore, D0 has to be used

with an appropriate value for a (Reiners and Farley,

A.G.C.A. Meesters, T.J. Dunai / Chemical Geology 186 (2002) 333–344 335



2001) in accordance with the geometry of the

crystals.

The D0 and Ea as can be obtained from fragments

(e.g. Farley, 2000) are material properties that can be

applied to all geometries if the diffusion is isotropic.

For the remainder of this paper, we will assume

isotropic diffusion, which at least for apatite seems

to be justified within the experimental uncertainties

(Farley, 2000). Anisotropic diffusion could be incor-

porated in the calculations presented here; however, in

the light of presently available experimental data, we

believe that this is not yet mandated. Another assump-

tion that underlies our calculations is that the grain is

the diffusion domain size (Farley, 2000; Reiners and

Farley, 1999, 2001), i.e. that the modelled grains are

free of cracks and other fast tracks for diffusion. For

the calculations, we use D0 and Ea of Wolf et al.

(1996) as these values have been used in Wolf et al.

(1998), to which we will compare our calculations (D0

is obtained using a= 60 mm). For actual calculations

that go beyond the qualitative discussion presented

here, the more recent values of Farley (2000) should

be used as a model for He diffusion in apatite. The

actual differences between using the values of Wolf et

al. (1996) and Farley (2000) are, however, small

compared to the effects discussed in this paper. In

the future, studies that describe, e.g. the potential

influence of composition on He diffusion will further

increase the accuracy of the modelling results.

2.2. Our method

In this paper, we describe an easy-to-use version of

the eigenmode-method. The method is equivalent to

the one of Lovera et al. (1989), but is simpler in

several respects. Moreover, it is extended to other

shapes to facilitate the application to domains that

have the shape of crystals. Specifically, besides the

sphere, infinite cylinder and plate already discussed

by Lovera et al. (1989), also the rectangular block and

the finite cylinder are treated here. This, however,

necessitates a different notation (mainly since there is

no longer a unique length scale).

It is shown in Appendix A that the spatial average

Cav(t) can be expressed as

CavðtÞ ¼
X1
n¼1

cnðtÞ ð1Þ

in which cn(t) is the contribution of the n-th eigen-

mode. Sometimes (see Section 2.3), the eigenmodes

are naturally labeled with more than one index, so that

more than one summation sign is required. In the

following, a single index is used for convenience.

The cn evolve according to (see Appendix A, Eq.

(26))

dcn

dt
¼ �lnDðtÞcnðtÞ þ cnURðtÞ ð2Þ

in which ln and cn are parameters depending on

geometry. Consequently, evaluating Cav(t) entails

three steps. First, the coefficients ln and cn should

be determined. Second, the differential equation for

cn(t) should be solved numerically. Third, the results

of cn(t) should be summed to obtain Cav(t). The latter

step is nontrivial as there are in principle infinitively

many of them. We now consider the three necessary

steps in sequence. The parameters ln and cn are given
in the section on geometry (Section 2.3) for ‘‘ideal’’

shapes, assuming a place-independent U. We note that

if the source is place-dependent, as is the case when

a-ejection is properly accounted for, the cn values

should be adjusted, whereas the ln values remain

unchanged (see part II). Our method to solve Eq. (2)

is presented below. Its derivation is given in Appendix

A. A comparison with Lovera et al. (1989) is given in

Appendix B. It will be seen that although the methods

may look very different at first sight, the results are

equivalent. Our method, however, has a simpler

derivation, and appears easier to use.

The resulting procedure to evaluate cn(t) is as

follows. Let the diffusion coefficient be given as an

array of values: D1, D2, . . ., DN, corresponding to the

times t1, t2, . . ., tN, in which tN = tpres. The times, not

necessarily equidistant, should of course be chosen so

that they yield a reasonable resolution of D(t). The

source function UR should be given as either a

constant UR,0, or it should have the form UR,0�
exp(� t/s). The array F is defined as:

Fj ¼ tj or Fj ¼ sð1� expð�tj=sÞ ð3Þ

for constant or decaying source-strength, respectively.

From the input arrays, intermediate arrays n and FV
are derived. The first represents the time integral of D:

nðtÞ ¼
Z t

t1

DðhÞdh ð4Þ
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Discrete values are computed by n1 = 0 and subse-

quently

njþ1 ¼ nj þ
Dj þ Djþ1

2
ðtjþ1 � tjÞ ð5Þ

for j = 1, 2, . . ., N� 1. The array FV represents dF/dn
and is constructed as

FjV ¼ Fjþ1 � Fj

njþ1 � nj
ð6Þ

for j = 1, . . ., N� 1.

Now, the expression for cn(tpres) = cn(tN) is (see also

Appendix A, Eqs. (32), (38), (40))

cnðtN Þ ¼ xþ UR,0
cn
ln

XN�1

j¼1

ðbN, jþ1 � bN, jÞFjV ð7Þ

in which

bN, k ¼ expð�lnðnN � nkÞÞ ð8Þ

If the concentration is initially zero, x = 0, otherwise

x ¼ cnðt1Þexpð�lnnN Þ ð9Þ

To facilitate computations with Eq. (7), it can be used

that b decreases with decreasing second index, and is

effectively zero for sufficiently low indices (corre-

sponding to times of fast diffusion, or times preceding

fast diffusion). Cav(tN) is found by summing cn(tN)

over all eigenmodes (all n; Eq. (1)). Finally, Cav(tN)/

UR(tN) is the quantity that should be compared to the

measured ages. On working out, UR,0 does not occur

in the expression if x is zero. Final values cn(tN) can be

calculated using Eq. (7) without first calculating ear-

lier values of cn. If desired, one can of course compute

the whole time series. To find Cav(tJ) for some

arbitrary tJ in the set t1, . . ., tN, one should replace

N with J in Eqs. (7)–(9).

Finally, the summation problem has to be consid-

ered. In practice, instead of the infinite sum in Eq. (1),

one can only compute partial sums. By the M-th

partial sum
P

M, we understand

X
M
¼
XM
j¼1

cjðtÞ ð10Þ

if there is one index,

X
M
¼
XM
j¼1

XM
k¼1

cj,kðtÞ ð11Þ

if there are two indices, etc. For modest values of M,

the difference between
P

M and
P

1 can be consid-

erable. Fortunately, this can be remedied since
P

M

appears experimentally to have a regular dependence

on M as M becomes large: specifically, one obtains a

fairly straight line by plotting
P

M as a function of

yM = 1/(M + 1/2), as illustrated in Fig. 1. We used this

by taking the best-fitting straight line (in least-squares

sense) through the points M = 11 to M = 15, and then

calculated the value of this line for yM = 0 (or M=1),

thus obtaining an accurate estimate for
P

1.

The attractiveness of this method decreases rap-

idly if the number of indices increases. With one

index (as for the sphere), one needs the first 15 cn
values, but with two or three indices, 152 or 153

values are required to obtain the same accuracy; note

that 153 = 3375. Fig. 1 suggests that good estimates

can be obtained already from lower order cn. This is

indeed the case for the space-independent sources of

this paper. However, with space-dependent sources

as will be considered in part II, it appears practically

impossible to use less than 15 levels, as will be

seen.

The results of this method have been compared to

exact results, which are known for cases with con-

stant D (Carslaw and Jaeger, 1959) and for cases

with D(t ) decaying as an exponential function of t

(Dodson, 1973; McDougall and Harrison, 1999).

Irrespective of the domain size, an excellent agree-

ment was found.

2.3. Geometry

The required information about geometry consists

of the eigenvalue ln and a dimensionless number cn
for each n-th eigenmode. The method to compute

these is indicated in Appendix A. As in this paper, we

only consider a source function of the form UR(t ),

Splace = 1 in Appendix A. For this case, the values of

ln and cn are related to a classical problem, namely

the cooling of a body (with constant D and no heat

source) from an initial constant temperature T0, with
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T= 0 at the boundary. The corresponding expression

for the average temperature is known to be

TavðtÞ ¼ T0
X1
n¼1

cnexpð�lnDtÞ ð12Þ

Carslaw and Jaeger (1959) elaborately discuss this

problem for many shapes, and from the expressions

given there, ln and cn can be easily inferred. Eigen-

modes with spatial average zero are skipped.

For a sphere of radius a,

ln ¼
np
a

� �2
; cn ¼

6

ðnpÞ2
ð13Þ

for n = 1, 2, 3, . . .
For a rectangular block of edge-lengths a, b, c,

each eigenmode is labeled with three indices, ‘, m,
and n, each of which runs from 1 to infinity, and

l‘,m,n ¼ p2 ð2‘� 1Þ2

a2
þ ð2m� 1Þ2

b2
þ ð2n� 1Þ2

c2

 !

ð14Þ

c‘,m,n ¼
512

p6

1

ð2‘� 1Þ2
1

ð2m� 1Þ2
1

ð2n� 1Þ2
: ð15Þ

If one of the edge lengths of the block, say c, is

infinite, the index n disappears, the corresponding

term in the expression for l is dropped, and

c‘,m,n ¼
64

p4

1

ð2‘� 1Þ2
1

ð2m� 1Þ2
ð16Þ

If b is also infinite, we have an infinite plate. The

indices m and n disappear, the corresponding terms in

the expression for l are dropped, and

c‘ ¼
8

p2

1

ð2‘� 1Þ2
ð17Þ

For the cylinder, the computations are somewhat more

involved. One needs the zeros of the Bessel function

J0: j0,1 = 2.40482. . .; j0,2 = 5.52007. . .; etc. These val-

ues are listed in Table 9.5 of Abramowitz and Stegun

(1965).

For a cylinder of radius a and height h, the

eigenmodes are labeled with two indices, m and n,

each running from 1 to infinity, and

lm,n ¼
j0,m

a

� 	2

þ ð2n� 1Þp
h

� 	2

;

cm,n ¼
32

ð j0,mð2n� 1ÞpÞ2
ð18Þ

Fig. 1. Illustration of determining an infinite sum
P

1 from partial sums
P

11. . .
P

15. Discussion is given in the text.
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If h is infinite, there is only one index and

lm ¼ j0,m

a

� 	2

; cm ¼ 4

j20,m
ð19Þ

3. Discussion

After providing a method to derive numerical

solutions for the production–diffusion equation for

finite and infinite diffusion domains of various shapes,

we now discuss the implications for low-temperature

geochronology. As an example, we will focus on (U–

Th)/He thermochronology. A great potential of the

(U–Th)/He method is that, depending on the cooling

history of a rock, significant information can be

obtained about the timing and duration of the samples

passage through the partial retention zone (PRZ; Wolf

et al., 1998). The PRZ for He in apatite extends from
�40 to�85 �C (Wolf et al., 1998). There is little

difference between the PRZ and typical environmental

temperatures; thus, geological interpretations of (U–

Th)/He data are potentially very sensitive to deviation

in assumptions used to model the results. One of those

assumption is the shape of the diffusion domain,

which we investigate here.

Wolf et al. (1998) conducted a thorough investiga-

tion of the temperature sensitivity of (U–Th)/He

thermochronology utilizing apatite. In the study of

Wolf et al. (1998), explicitly a spherical diffusion

domain is assumed that is smaller than the physical

grain. Recently, however, Farley (2000) demonstrated

that the physical grain is the diffusion domain and

suggested that the infinite cylinder is the most appro-

priate geometry for modeling He-diffusion. In the

following, we use some of the thermal histories

discussed by Wolf et al. (1998) to illustrate the sen-

sitivity of diffusion to domain shape. We will show

that both the assumption of a sphere (Wolf et al.,

1998) and the assumption of an infinite cylinder

(Farley, 2000), can lead to significant deviations if

the diffusion domain is indeed the physical grain, i.e.

rather of finite cylindrical shape.

In Fig. 2, He age evolution curves are plotted for

several representative time–temperature paths. Please

note that the format of this figure and input parameters

for the thermal histories are the same as used by Wolf

et al. (1998) in his Fig. 5. For geological significance

of those cooling histories, we refer the reader to

Section 3.1. in Wolf et al. (1998). For the calculation,

we used time steps of 5 Ma and a time-independent

source strength; for history 5, the time steps were

reduced to 1 Ma for the last 5 Ma. For histories with a

step in the temperature (histories 1 and 3), an adjusted

version of Eq. (5) has been used

njþ1 ¼ nj þ Djðtjþ1 � tjÞ ð20Þ

to account for the fact that the temperature remains

constant over each time step, rather than being con-

tinuous and piecewise linear as is otherwise assumed.

We calculated He evolution curves for spheres

(radius 60 mm), cubes (height 120 mm), rectangular

blocks (height h1 = 120 mm, h2 = h3 = 240 mm), finite

cylinders (radius 60 mm, length 240 mm) and infinite

cylinders (r= 60 mm), utilizing our equations derived

above. Note that the minimum dimension is the same

in all cases (120 mm). In all examples shown in Fig. 2,

we obtain the same results for spheres as Wolf et al.

(1998). We take this as an indication of the reliability

of our method to reproduce results obtained by the

Crank–Nicolson method (Crank and Nicolson, 1947;

Wolf et al., 1998).

It is evident from Fig. 2 that for fast and monotonic

cooling (histories 1 and 2), the differences between

the He age evolution curves is relatively small (but

still up to 10% in final ages for history 2). For

temperature histories where the apatites spend signifi-

cant time in the PRZ (histories 3, 4, and 5, Fig. 2) the

differences between the various geometries, however,

can increase to up to 40% (e.g. difference between the

rectangular block and sphere relative to age obtained

for the sphere, history 5). While the maximum differ-

ence is not necessarily significant for apatites, it

clearly serves to illustrate that the shape of diffusion

domains is not irrelevant for the outcome of models

predicting He accumulation in minerals. Comparing

the results for spheres to geometries more relevant to

He diffusion in apatite, i.e. finite and infinite cylin-

ders, the relative differences are still large, up to 20%

and 35%, respectively. We therefore conclude that it is

important to properly consider diffusion domain

shapes, at least in low-temperature geochronology.

We propose for the time being that finite cylinders

be used to model apatite. We recommend that the

radius used is derived according to r=(dmax + dmin)/4,
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where dmax and dmin are the outer and inner diameter

of the hexagonal prism, respectively. The length of the

apatites should be the prism length, plus the 1/4th of

the height of the terminating pyramids, if they are

present (the latter term will usually be negligible).

The bodies modeled in Fig. 2 have different surface

to volume ratios (S/V) and we will show in the

following that these differences are significant for

modeling accumulation of He in these and other

bodies. The S/V ratios of the bodies in Fig. 2 are:

cube and sphere both 0.05 mm � 1, finite cylinder

0.0417 mm� 1 and infinite cylinder and rectangular

block both 0.0333 mm � 1. As can be seen from

histories 3–5 in Fig. 2, bodies with the same S/V

ratio are more similar to each other in their accumu-

lation behavior than to those with different S/V ratio

(see also Lagerwall and Zimen, 1964). For example,

the infinite cylinder is more comparable to the rec-

tangular block than to the finite cylinder, and is most

distinct from the sphere. The intermediate position of

the finite cylinder seems to be in agreement with its

intermediate S/V ratio. To better illustrate the effect of

the S/V ratio, we also present in Fig. 3 the same

thermal histories as in Fig. 2, but calculated for bodies

that have the same S/V ratio as a sphere with 60 mm
radius, i.e. 0.05 mm� 1. The bodies modeled in Fig. 2

have the same aspect ratio as those in Fig. 1, i.e. have

the same shape (cube same as Fig. 2; block h1 = 80

mm, h2 = h3 = 160 mm; finite cylinder r = 50 mm,

l = 200 mm; infinite cylinder r = 40 mm). It is evident

from Fig. 3 that that the differences between the

various bodies are greatly reduced, the biggest ‘‘out-

lier’’ is the infinite cylinder with a maximum devia-

tion of�7% relative to the sphere. For practical

purposes, however, considering the analytical uncer-

tainties and uncertainties involved with a-ejection
correction (Farley et al., 1996), the histories of most

bodies are equally valid (at least for bodies with

modest aspect ratios). Therefore, we conclude that

finite cylinders with an aspect ratio typical for apatites

can be modeled as spheres of the same S/V ratio (these

Fig. 2. Apatite He age evolution curves of various grain geometries

(black lines) for several representative time– temperature paths

(solid grey line). The format and thermal parameters to model for

time– temperatures are the same as used for Fig. 5 in Wolf et al.

(1998). In plots A–E, the sequence of the evolution curves is the

same. The lowest ages are always obtained for spheres. In

increasing order, the spheres are followed by the cube, finite

cylinder, infinite cylinder and rectangular block (medium dashed

line = sphere; solid line = cube; short dashed line = finite cylinder;

dotted line = infinite cylinder; long dashed line = rectangular block).

Dimensions of the modeled bodies are given in the text as is a more

extensive discussion.
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‘‘model spheres’’ will always have a radius greater

than the radius of the physical apatite grains, 20%

greater in above case). This approach may be advanta-

geous for inverse modeling when a 10-fold decrease

of computation time is desirable. The approximation

of a body of interest by spheres of same S/V ratio can

probably also be used for shapes not covered by our

method presented above.

4. Conclusions

(1) The method we derived for solving produc-

tion–diffusion equations can be used for various

crystal shapes for which no solutions existed yet,

e.g. finite cylinders and rectangular blocks.

(2) The shape of diffusion domains is important for

modeling He accumulation in apatite grains during

cooling histories that spend significant time in the

partial retention zone. Using spheres or infinite cyl-

inders instead of finite cylinders with the same radius

yields differences in calculated ages of up to 35%.

(3) The surface to volume ratio of mineral grains of

different shapes and aspect ratios is an important

parameter describing the influence of geometry on

diffusion behavior.

(4) The diffusion behavior of mineral grains with

modest aspect ratio can be approximated by spheres of

identical surface to volume ratio.

The implications of zoned U and Th distribution

and of a-ejection will be discussed in part II.
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Appendix A. Solution of the production–diffusion

equation

In the following, the He source-function is allowed

to depend on both place and time, so the it can be

written as Splace(x,y,z)UR(t) in which Splace is dimen-

Fig. 3. As Fig. 2 but calculated for grains with the same surface to

volume ratio as a sphere of 60 mm radius. The shapes (i.e. aspect

ratios) of the grains are the same as in Fig. 2. The linestyles are the

same as in Fig. 2. Please note that the age sequence for the different

bodies is not the same as in Fig. 2 (medium dashed line = sphere;

solid line = cube; short dashed line = finite cylinder; dotted line = in-

finite cylinder; long dashed line = rectangular block). Further

discussion is given in the text.
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sionless. In the present paper, Splace = 1, but in part II

(Meesters and Dunai, 2002), the more general case

will be considered. The production–diffusion equa-

tion to be solved is

@C

@t
¼ DðtÞj2C þ Splaceðx,y,zÞURðtÞ ð21Þ

with C an unknown function of place and time, and

D(t), UR(t) and Splace(x,y,z) known functions. The

equation holds for a diffusion domain of a certain

size and shape, and C is zero at the boundary.

For any domain shape, there are infinitely many

eigenfunctions un(x,y,z) (zero at the boundary) and

corresponding eigenvalues ln satisfying the equation

r2un ¼ �lnun: ð22Þ

Moreover, every function arising in diffusion prob-

lems can be expressed in eigenfunctions:

Cðx,y,z,tÞ ¼
X1
n¼1

fnðtÞunðx,y,zÞ, ð23Þ

with fn(t) as yet unknown. We also need the expres-

sion

Splaceðx,y,zÞ ¼
X1
n¼1

snunðx,y,zÞ, ð24Þ

to express Splace(t) in eigenfunctions; the sn are

assumed to be known. Substitution of these two

expressions in the production–diffusion equation

(Eq. (21)) and working out using Eq. (22) yields an

equation for each eigenmode separately, namely

dfn

dt
ðtÞ ¼ �lnDðtÞfnðtÞ þ snURðtÞ: ð25Þ

Since we are only interested in the spatial average, we

multiply this with the spatial average of un: un,av, to

obtain

dcn

dt
¼ �lnDðtÞcnðtÞ þ cnURðtÞ, ð26Þ

in which

cnðtÞ ¼ fnðtÞun,av, ð27Þ

is the contribution of the n-th eigenmode to the

average concentration, and

cn ¼ snun,av: ð28Þ

It follows that the required geometrical information is

entirely contained in ln and cn.
The solution to Eq. (26) is

cnðtÞ ¼ cnðtinitÞexpð�lnnðtÞÞ þ cnHnðtÞ, ð29Þ

in which

nðtÞ ¼
Z t

tinit

DðhÞdh, ð30Þ

and

HnðtÞ ¼
Z t

tinit

dhURðhÞexp


� lnðnðtÞ � nðhÞÞ

�
ð31Þ

The solution to Eq. (25) has the same form (with sn
instead of cn), but we do not need it as we are only

interested in spatial averages.

For the present purpose, we assume that C is

initially zero, hence fn(tinit) and cn(tinit) are zero too.

It then follows that

CavðtN Þ ¼
X1
n¼1

cnðtN Þ ¼
X1
n¼1

cnHnðtN Þ: ð32Þ

Hn(t) remains to be determined. To deal with the

difficult exponent in Eq. (31), it is better to choose

as a new integration variable v = n(h) rather than h
itself, yielding

HnðtÞ ¼
Z n

0

dv
URðvÞ
DðvÞ expð�lnðn � vÞÞ, ð33Þ

in which n = n(t), and by ‘‘UR(v)’’ we understand

UR(h) expressed as a function of the ‘‘transformed

time’’ v= n(h).This expression is, however, not very

attractive for numerical use, as the denominator D is a

very variable function, and sometimes effectively

zero.

To deal with this, we write UR/D as a derivative

and by assuming that UR(t) is either a constant UR,0 or

UR(t) =UR,0 exp(� t/s), we can define a function F

using

FðtÞ ¼ t ðs ¼ 1Þ or
FðtÞ ¼ sð1� expð�t=sÞÞ ðs < 1Þ:
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It follows that

UR

D
¼ UR,0

D

dF

dt
¼ UR,0

D

dv
dt

dF

dv
¼ UR,0

dF

dv
, ð35Þ

since dv/dt =D because of the definition of v = n(t).
Hence, the integral can be rewritten as

HnðtÞ ¼ UR,0

Z n

0

dv
dF

dv
ðvÞexpð�lnðn � vÞÞ: ð36Þ

In practice, a number of times t1 ( = tinit), t2, . . ., tN
( = tpres) is given, with corresponding diffusion coef-

ficients D1, D2, . . ., DN as well as the values F1,

F2, . . ., FN. The corresponding nj can be estimated by

n1 ¼ 0; njþ1 ¼ nj þ ðDj þ Djþ1Þðtjþ1� tjÞ=2: ð37Þ

The integral Hn(tN) can then be written as a sum over

intervals:

HnðtÞ ¼ UR,0
XN�1

j¼1

Z njþ1

nj

dv
dF

dv
ðvÞ


 expð�lnðnN � vÞÞ: ð38Þ

A feasible approximation is

dF

dv
ðvÞ � Fjþ1 � Fj

njþ1 � nj
ðnjVvVnjþ1Þ: ð39Þ

The ensuing value for the integrals is

Z njþ1

nj

dv
dF

dv
ðvÞexp



� lnðnN � vÞ

�

� Fjþ1 � Fj

njþ1 � nj

1

ln



exp


� lnðnN � njþ1Þ

�
� exp



� lnðnN � njÞ

��
: ð40Þ

By this, the problem is solved.

Appendix B. Comparison with the method of

Lovera et al. (1989)

This section is intended for readers acquainted

with the method and notation of Lovera et al.

(Lovera et al., 1989; McDougall and Harrison,

1999); therefore, we employ the same notation with-

out explanation. It will be shown that their method is

equivalent to ours, which is not immediately ob-

vious. It will also be shown how, in accordance with

our more straightforward method, some of the ex-

pressions of Lovera et al. (1989) can be considerably

streamlined.

Lovera et al. (1989) use a function In, but a more

fundamental quantity appears to be Hn (our notation):

HnðnÞ ¼ InðnÞ � expð�ksh0Þ, ð41Þ

as will be seen. The right-hand side occurs in the

expressions for the argon fluxes that they derive, but

the fundamental character of this quantity is insuffi-

ciently noted. Using their expression for In(t), one

finds as expression for Hn(t):

HnðnÞ ¼ expð�a2nnÞ � expð�ksh0Þ

þa2n

Z n

0

dvexpð�kshðvÞÞ


exp


� a2nðn � vÞ

�
: ð42Þ

An important point is that it can be shown that this is

equivalent to

HnðnÞ ¼
Z n

0

dv
d

dv
ð1� expð�kshðvÞÞ


expð�a2nðn � vÞÞ, ð43Þ

by applying integration by parts to the latter form, and

using that h(n) = h0 and h(0) = 0. This new form for Hn

corresponds to Eq. (36).

For the evolution of the concentration, Lovera et al.

(1989) give the expression

C

!
x,h0

�
=C0 ¼ 1� expð�ksh0Þ

�
X1
n¼1

ð�1Þnþ1a�1
n U



an
!
x
�
ð1� InÞ:

ð44Þ

However, this can be considerably simplified by

substitution of In=Hn + exp(� ksh0), and using the
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equation for the expansion of the unity function in

eigenfunctions:

X1
n¼1

ð�1Þnþ1a�1
n U



an
!
x
�
¼ 1, ð45Þ

which yields

Cð!x,h0Þ=C0 ¼
X1
n¼1

ð�1Þnþ1a�1
n U



an
!
x
�
Hn: ð46Þ

This is not only simpler than the old form, but also

contains a faster converging sum. Averaging over the

spatial domain, using that the average of U(anx) is

(� 1)n + 1b/an, yields

Cavðh0Þ=C0 ¼ b
X1
n¼1

Hn=a
2
n, ð47Þ

corresponding to Eq. (32).
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