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Abstract

Volcanic tremor and long-period (LP) events are characterized by sharp spectral peaks that generally result from
resonance effects at the source and which concentrate most of the radiated energy. The understanding of these
seismovolcanic phenomena requires good descriptions of the distribution in time and frequency of the different
spectral components included in the signals, as well as a separation of the resonance effects from less energetic effects
such as excitation and propagation. We address the issue of extracting from individual records information as detailed
as possible on the physical processes involved at the source. We introduce and compare several time^frequency
analysis methods, and we describe the application of autoregressive modeling and deconvolution methods to the
characterization and separation of the main spectral components. We propose a signal analysis approach based on the
joint use of a set of complementary methods, and we present applications to several examples of volcanic tremor and
LP events. The time^frequency analysis of some of the LP events taken as examples reveals short-duration
components at the seismogram onsets with energy concentrated at frequencies either higher or lower than the main
resonance frequencies. These seismic phases are probably related to the excitation processes of the volcanic
resonators. In several cases, the arrival of the main spectral peak has a delay of a few tenths of a second with respect
to the first arrival. The residual signals obtained by deconvolving and eliminating the main spectral components
contain information about the excitation, such as duration, delay, or frequency band. The residual signals are short
for LP events, and continuous for volcanic tremor. The autoregressive modeling of the sample records gives precise
estimations of the frequency and quality factor of the main spectral peaks. The measured parameters cover a wide
range of values, which is consistent with the great variety of fluids filling resonating cavities in volcanoes. 6 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

Volcanic tremor and long-period (LP) events
are the most distinctive features of the seismic
activity of volcanoes. They are thought to be di-
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rectly related with physical processes that arise in
magmatic or hydrothermal systems, and involve
£uids such as magma, water, gas or vapor ¢lling
cavities such as magma chamber, or conduits and
cracks (see Chouet, 1996a,b for a review). Their
frequent observation prior to volcanic eruptions
and their close relationship with the triggering
mechanisms of eruptions make their study crucial
for improving eruption forecasting (e.g., Chouet
et al., 1994). It is thus important to understand
the physical phenomena involved at their sources.
LP event and tremor records are generally char-
acterized by emergent ¢rst arrival and the lack of
a clear shear-wave, which makes classical methods
of seismic analysis, such as hypocenter localiza-
tion, inoperative. Their spectra usually contain
one or several narrow peaks, sometimes regularly
spaced, which allow easy identi¢cation of this
kind of event among volcano-tectonic earth-
quakes. There is now a large consensus for inter-
preting most of the spectral peaks as resonance
phenomena at the source. Nevertheless, path or
site e¡ects may be important, especially when
source resonances are weak (Gordeev, 1993; Ke-
dar et al., 1998; Lesage et al., 1999; Mora et al.,
2001). LP events and tremor seem to share com-
mon source processes and location. They di¡er
mainly in the duration of vibrations, which may
re£ect di¡erences in durations of the excitation
processes.

Source modeling splits into two aspects. First,
many models describe the resonance of £uid-¢lled
cavities with various geometries such as (1) sphere
(Crosson and Bame, 1985; Fujita et al., 1995); (2)
pipe (Chouet, 1985; Garce¤s and McNutt, 1997);
or (3) crack (Aki et al., 1977; Chouet, 1981, 1986,
1988). The resonance modes of the cavities are
related to the acoustic properties of £uid and
rock, the geometry and size of the cavity, and
the coupling between acoustic waves in the £uid
and elastic waves in the rock. Second, other stud-
ies have suggested various mechanisms of oscilla-
tion excitation, including unsteady £uid £ow (Fer-
rick et al., 1982; Julian, 1994; Morrissey and
Chouet, 1997), hydrothermal boiling (Leet,
1988; Kedar et al., 1998), or the collective oscil-
lation of bubble clouds (Lu et al., 1990; Yoon et
al., 1991; Chouet, 1996b). Among the great vari-

ety of complex mechanisms proposed to explain
LP events and tremor, the choice of a model
adapted to a speci¢c case should be guided both
by the state of knowledge of the volcano under
study, including geological and geophysical data,
and by information obtained from seismic obser-
vations.

This leads to the issue of extracting useful in-
formation from seismic signals. For this purpose,
a ¢rst domain of investigation is the estimation of
the spectral content of the records, i.e., the distri-
bution of energy with respect to frequency and
time. This includes a characterization of the spec-
tral peaks, namely, their frequency, phase, width,
amplitude, stability, arrival time, and duration.
This can be obtained by using various spectral
estimators and time^frequency analysis methods
based on the classical Fourier transform, the
parametric modeling of time series, or on other
methods such as wavelet transform (Kay and
Marple, 1981; Marple, 1987; Flandrin et al.,
1992). A second aim of signal processing is to
extract or enhance some important features of
the records. As most of the tremor and LP event
energy is concentrated in sharp spectral peaks, the
corresponding harmonic components usually con-
ceal less energetic parts of the signal, including
low-amplitude arrivals or transients, which often
have spread spectra. It is thus necessary to elim-
inate the main harmonic components by using
adapted ¢lters, deconvolution or spectral whiten-
ing methods.

From a signal analysis point of view, the ob-
served seismic signal x(t) may be considered as the
convolution product of the impulse response of
the resonator r(t) with the excitation function
e(t) and the propagation and site e¡ects p(t),
plus additive noise n(t) :

xðtÞ ¼ eðtÞW�rðtÞW�pðtÞ þ nðtÞ

The sharp spectral peaks generally result from
the resonator term r(t) and, to a lesser extent,
from site e¡ects described by p(t). The function
r(t) is composed of a superposition of decaying
complex exponential functions, which correspond
to the normal modes of the resonator. These func-
tions are solutions of second-order linear di¡er-
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ential equations, the coe⁄cients of which are re-
lated to the physical features of the resonator.
Because of the equivalence between a linear di¡er-
ential equation and a linear di¡erence equation,
autoregressive (AR) methods are well suited to
the analysis of this kind of signal. AR methods
consider a discrete time series x(t) as the response
of a linear AR (or in¢nite impulse response) ¢lter.
The poles of the ¢lter correspond to the complex
eigen-frequencies of the resonator. Thus AR mod-
els provide direct basic information on the phys-
ical system. In seismological applications, AR
models have been used by several authors under
di¡erent versions and names, such as Prony’s
method (Feng Chao and Gilbert, 1980), maxi-
mum entropy spectral analysis (Seidl et al.,
1990), or Sompi method (Fukao and Suda,
1989; Nakano et al., 1998). Once the AR ¢lter
coe⁄cients are obtained from a signal x(t), it is
possible to calculate the inverse ¢lter and decon-
volve the resonance e¡ect from the observed data
(Nakano et al., 1998). This operation is especially
well suited for harmonic tremor and LP events
which contain only one spectral peak. In this
case, the deconvolved residue is closely related
to the excitation function of the resonator and
thus contains valuable information on the driving
process at the source. Nevertheless, it is important
to note that the problem of decomposing a
signal into the convolution product of several
terms has an in¢nite number of solutions. Thus,
some assumptions or independent information
must be used in order to better constrain the
problem.

In this paper, we propose an approach of seis-
mic signal analysis based on the joint use of var-
ious complementary methods. We start with a
brief presentation of several signal processing
methods, including AR modeling and deconvolu-
tion, spectral whitening and time^frequency anal-
ysis such as short-time Fourier transform, contin-
uous wavelet transform, or Capon and Lagunas
methods. We apply these methods to a small set
of volcanic tremor and LP events and specify
their limitations and emphasize their main poten-
tialities to provide pertinent information for the
development of physical models.

2. Methods

A wide range of signal processing methods can
be applied to the analysis of volcanic seismic
events. It is interesting to use a combination of
several methods because (1) these generally yield
complementary results, (2) a given method may or
may not produce useful information depending on
the signal considered, and (3) spurious results ob-
tained by one method may be identi¢ed by using
other algorithms.

2.1. Fourier spectrum

Estimations of the power spectral density
(PSD) based on the Fourier transform are widely
used and their properties are extensively discussed
in most signal processing books (see e.g., Kay and
Marple, 1981). A very common PSD estimator is
the squared Fourier transform modulus, or Four-
ier spectrum. However, it must be pointed out
that this estimator can be biased, and that a res-
onance frequency in a signal does not always co-
incide with the frequency of the maximum of the
corresponding spectral peak (Mari et al., 1998, p.
405). The use of either averaged periodograms or
smoothed spectra usually improves the estimation
of the frequencies. The Fourier transform gives
information about the frequency content of a sig-
nal, but does not provide the location of these
frequencies in the time domain. Many methods
have been developed in order to describe process-
es with time varying frequencies (Flandrin et al.,
1992). Some of these methods are discussed in the
following sections.

2.2. Short-time Fourier transform, or windowed
Fourier transform, or spectrogram

Time localization can be obtained by window-
ing the data at di¡erent times with sliding window
functions g(t) (Harris, 1978). The Fourier trans-
form of this procedure applied on a signal x(t) is
called short-time Fourier transform (STFT), or
spectrogram. It is de¢ned as:

STFTðgÞ
x ðt; f Þ ¼

Z
t0
½xðt0ÞWg�ðt3t0Þ�expð32iZft0Þdt0
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where g* is the complex conjugate of g. The
STFT at a given time t is the Fourier transform
of the signal x(tP) multiplied by a shifted analysis
window g*(t3tP) centered on t. The STFT can be
seen as a local spectrum of the signal x(tP) around
the analysis time t. The result of such Fourier
transform is signi¢cantly in£uenced by the choice
of the analysis window and by its length. It is
clear that a good time resolution of the STFT
requires a narrow window in time. In contrast, a
good frequency resolution of the STFT requires a
narrow ¢lter in the frequency domain (respec-
tively, a large window in time). Unfortunately,
Heisenberg’s uncertainty principle prohibits the
existence of a window with arbitrarily small du-
ration and small bandwidth. It is well known that
once a window function g(t) is chosen, both time
and frequency resolutions are ¢xed. This means
that for any given t and f, the frequency resolu-
tion in time is ¢xed, and the entire phase space is
uniformly described by cells of ¢xed sizes. Thus,
the STFT is inadequate for the study of signals
with di¡erent size features because it is not possi-
ble to design an optimal window for analyzing the
process.

2.3. The continuous wavelet transform

Since the concept of wavelet transform was ¢rst
formalized by Morlet (Morlet et al., 1982), a huge
number of works have been published in this do-
main (Goupillaud et al., 1984; Mallat, 1989;
Meyer, 1989; Daubechies, 1990). The wavelet
transform overcomes some limitations of the
STFT and can give a more accurate time^fre-
quency description of signals containing low-
and high-frequency components. In this trans-
form, the time^frequency space is divided in
non-uniform size cells. This is achieved by using
analyzing functions called wavelets, which are
characterized by two parameters, the translation
parameter as in the STFT, and the dilatation pa-
rameter. When these parameters take continuous
values, the operation is called continuous wavelet
transform (CWT). It is de¢ned in the time fre-
quency domain as:

CWTðgÞ
x ðt; f Þ ¼

ffiffiffiffiffi
f
f 0

s
W
Z
t0
xðt0ÞWg� f

f 0
ðt3t0Þ

� �
Wdt0

where g(t) is the analyzing wavelet, which is a real
or complex band-pass function centered at t= 0 in
the time domain. The dilatation parameter f0 is
equal to the center frequency of g(t). Originally,
the wavelet transform was introduced as a time
scale representation (Daubechies, 1990; Mallat,
1989; Meyer, 1989), thus the classical formulation
can be retrieved from the time^frequency formu-
lation by taking the analysis scale a as a= f0/f.
The choice of the wavelet g(t) is neither unique
nor arbitrary. It must be a zero-mean function
with unit energy and compact support (i.e., with
su⁄ciently fast decay) to obtain localization in
time. Among the many available wavelets, the
Morlet wavelet has been widely used in geophy-
sics. It is a complex wavelet, which is able to ex-
tract information on both the amplitude and
phase. The Morlet wavelet is de¢ned by:

gðtÞ ¼ ðZt0Þ
3
1
4 exp 3

1
2

t
t0

� �2

þ 2iZf 0t

" #

Strictly speaking the Morlet wavelet does not
fully satisfy the conditions stated above because
it is not a zero-mean function. However, in prac-
tice, when the product 2Zt0f0 is in the range 5^6,
the mean value of the wavelet is close to zero, and
g(t) contains a low number of oscillations (Nguy-
en et al., 1999). An estimation of the relative am-
plitude of each spectral component can be ob-
tained by multiplying CWTðgÞ

x (t,f) by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mf =f 0M

p
.

Furthermore, it is sometimes useful to calculate
and plot the wavelet transform only for selected
frequencies, for example those of the dominant
spectral peaks.
2.4. Comparison between STFT and CWT

There is a strong similarity between the STFT
and the CWT. Both time^frequency methods can
be considered as the inner product of the signal
x(t) under consideration and a function F(t,f). In
the case of the STFT, this function is :
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Fðt; f Þ ¼ gðt03tÞWe32iZft0

and in the case of the CWT, it is :

Fðt; f Þ ¼

ffiffiffiffiffiffiffi
j f
f 0
j

s
Wg

f
f 0
ðt3t0Þ

	 


There are two essential di¡erences between the
STFT and the CWT. The ¢rst di¡erence is the
distinct behavior of the time-shift/frequency-shift
operators. Whereas the e¡ective duration and
bandwidth of the STFT are independent of the
analysis frequency f, the e¡ective duration of the
CWT is inversely proportional to f, and the band-
width is proportional to f (Kumar and Foufoula-
Georgiou, 1997). The second di¡erence is that the
analyzing wavelet g(t) is a low-pass signal in the
STFT case, and a band-pass signal in the CWT
case. Both of these techniques have the same
time^frequency resolution limitations (time reso-
lution and frequency resolution cannot be made
arbitrarily good simultaneously). However, while
the STFT resolution does not depend on the anal-
ysis frequency, the CWT has better time resolu-
tion and poorer frequency resolution at high fre-
quency and better frequency resolution and
poorer time resolution at low frequency.

2.5. Capon and Lagunas methods

The Capon (1972) method is a power level es-
timator, which consists in measuring the signal
power by building a data-dependent band-pass
¢lter (Lacoss, 1971). This ¢lter must ful¢l two
conditions: (1) for a given frequency fk, the fre-
quency response is unity; and (2) the in£uence of
the other spectral components of the signal is
minimized. The solution to this problem of mini-
mization under constraint is:

PCapðf kÞ ¼
1

SH
k R31

x Sk

where Rx is the correlation matrix of the signal,
SkT = [1, sk, sk2, T, spk], sk = e2iZf kvt, p is the ¢lter
order, T and H denote respectively the transpose
and the conjugate transpose, and vt is the sam-
pling interval.

The Lagunas (Lagunas-Hernandez and Gasull-
Llampadas, 1984) method is derived from Ca-
pon’s method and calculates the power spectral
density of the signal by normalizing the power
PCap by the bandwidth of the ¢lter used in the
power measure. The Lagunas spectral estimator
is de¢ned by:

DLagðf kÞ ¼
SH
k R31

x Sk
SH
k R32

x Sk

Both methods can be applied on narrow sliding
windows. This allows high-resolution estimations
of the time^frequency distribution of the power,
or power spectral density. There are no theoretical
criteria for the choice of the ¢lter order and win-
dow duration. Nevertheless, numerical experi-
ments indicate that the order must be at least
twice the number of peaks and must be increased
for low signal to noise ratio. The number of
samples in the window must be between three
and ¢ve times the order (Fernandez and Martin,
1986; Adnet, 1990). The Lagunas estimator usu-
ally has a better frequency resolution, while Ca-
pon’s estimator is more robust in the power esti-
mations. It is thus convenient to use together both
of these methods, which are well suited for the
analysis of signals containing a few strong spec-
tral components (Flandrin et al., 1992; Adnet,
1990).

2.6. Instantaneous frequency

Let us assume that near time t0, the signal x(t)
can be approximated by x(t)WA cos[x(t)], in
which x(t) = 2Zfi(t0)t+B0(t0) is the instantaneous
phase, and fi(t0) and B0(t0) respectively are the
instantaneous frequency and phase shift at time
t0. If x(t) is a pure sinusoid A cos[2Zf0t+B0], the
instantaneous frequency fi is constant and equals
f0. The frequency fi is related to the derivative of
x :

f iðt0Þ ¼
1
2Z

dx ðtÞ
dt

	 

t¼t0

and x(t) is obtained by using the Hilbert trans-
form HT[x(t)] of x(t) :
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x ðtÞ ¼ tan31 HT½xðtÞ�
xðtÞ

� �

The instantaneous frequency is easy to use and
provides a good estimation of the dominant fre-
quency of monotonic signals when the amplitude
variations are not too rapid with respect to the
period. Results are poor when the signal-to-noise
ratio is low or when the signal includes several
sinusoidal components. In that case the estima-
tion can be greatly improved by band-pass ¢lter-
ing around the dominant frequencies (Bru«stle,
1991).

2.7. Autoregressive modeling and deconvolution

The parametric methods consider a digital sig-
nal as the output yn of a stationary linear ¢lter
excited by an input xn. In the most general case, a
new output sample depends on the preceding in-
puts and outputs:

yn ¼
Xq
k¼0

bkxn3k3
Xp
k¼1

akyn3k

The ¢lter which relates the output to the input
by the above linear di¡erence equation can be
characterized by the coe⁄cients bk and ak, by its
impulse response h(t), or by the z-transform of
h(t) :

HðzÞ ¼

Xq
k¼0

bkzk

1 þ
Xp
k¼1

akzk
¼ K

Yq
k¼1

ðz3zkÞ

Yp
k¼1

ðz3pkÞ
¼ BðzÞ
AðzÞ

where z is a complex number, usually written as
z= e32iZfvt in geophysics (some authors use the
alternative de¢nition z= eþ2iZfvt), where vt is the
sampling interval, and f is the frequency. The zk
and pk are, respectively, the zeroes and poles of
the ARMA (autoregressive^moving average) ¢lter
H(z). B(z) and A(z) represent, respectively, the
MA and AR parts of H(z).

Any causal and causally invertible ¢lter, and
thus minimum phase, can be represented either
by an AR model of in¢nite order, or by an MA

model of in¢nite order. Generally, it can also be
approximated by an ARMA model of low order.
The ARMA model is the easiest model to handle
because only a limited number of coe⁄cients are
required to describe the process. A physical sys-
tem that includes oscillators is minimum phase.
Therefore, such a system can be modeled by an
ARMA ¢lter, the poles of which are related to the
spectral peaks corresponding to the resonance fre-
quencies. If the excitation of the oscillators, i.e.,
the ¢lter input, has a white spectrum, the system
is equivalent to a ¢nite-order AR ¢lter. This is the
case when the excitation is composed of a single
Dirac impulse, a large enough number of Dirac
impulses with random spacings and amplitudes,
or white noise. Otherwise a non-white spectrum
excitation can be represented by a ¢nite-order
MA ¢lter, and the entire system is equivalent to
an ARMA ¢lter of ¢nite order. In practice, the
coe⁄cients ak of the AR ¢lter can be retrieved
from the signal autocorrelation. If some additive
white noise perturbs the signal, the presence of the
noise modi¢es only the ¢rst few samples of the
resulting autocorrelation, because the autocorre-
lation of white noise is a Dirac impulse. When
estimating the AR coe⁄cients, it is then possible
to skip these samples which are related to the MA
part of the ¢lter. The corresponding relations are
the modi¢ed Yule^Walker equations, which pro-
vide a rapid and robust estimation of the AR
coe⁄cients (see e.g., Marple, 1987, p. 181).

The simplest ¢lter that can be associated to one
spectral peak is an order-2 AR ¢lter. In this case,
the relation between outputs and inputs is:

a0yn ¼ xn3a1yn313a2yn32

and the z-transform of the impulse response is:

HAR2ðzÞ ¼ 1
a0 þ a1zþ a2z2

¼ 1
a2ðz3p0Þðz3p�0Þ

If the discriminant of the associated character-
istic equation, v= a2

134a0a2, is negative, this func-
tion has two complex conjugate poles p0 and p�0.
The AR2 ¢lter is then equivalent to a harmonic
oscillator governed by a second-order di¡erential
equation. There are simple correspondences be-
tween the poles p0, coe⁄cients ak, and the reso-
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nance frequency f0 and quality factor Q of the
oscillator (Bellanger, 1981). The poles are de¢ned
as:

p0 ¼ 3
a1

2a2
þ i

2a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a0a23a2

1

q
¼ b e3ia

which yields the relations between the pole mod-
ulus and argument:

Mp0M ¼ b ¼ a0

a2

� �1=2
D
a2

a0
¼ 1

b
2

Reðp0Þ ¼ bcosa ¼ 3
a1

2a2
D
a1

a0
¼ 3

2cosa
b

Furthermore, if the condition cosa6 [(2b)/
(1+b2)] is satis¢ed, then the ¢lter has a resonance
frequency f0 such as:

cosð2Zf 0vtÞ ¼ 3

a1 1 þ a2

a0

� �
4a2

¼ cosa
2b

ðb 2 þ 1Þ

and a quality factor:

Q ¼ Zf 0vt

13
1
b

When the poles are close to the unit circle (i.e.,
bW1 and QE2Zf0vt), the ¢lter displays a sharp
resonance at the frequency f0, and the following
relations are obtained:

cosð2Zf 0vtÞWcosaDaW2Zf 0vt

In this case, the ¢lter selects frequencies near f0
and its impulse response is a decaying complex
exponential. The AR2 ¢lter is causal and mini-
mum phase and its associated inverse ¢lter is the
order-2 MA ¢lter with impulse response:

HMA2ðzÞ ¼ a0 þ a1zþ a2z2

Once the frequency f0 and quality factor Q of a
spectral peak are determined, it is easy to elimi-
nate this peak by convolving the signal with
the impulse response of the corresponding MA2
¢lter.

Most LP event and tremor spectra include a
¢nite number of peaks indicating that either sev-

eral oscillation modes of a resonator or various
distinct resonators are excited. Each mode of each
resonator corresponding to a spectral peak can be
represented by one AR2 ¢lter. Those ¢lters are
connected together either in series, in parallel,
or in a combination of both. The shape of ¢lter
i is completely described by the ratios ai1/a0

i and
a2

i/a0
i. The coe⁄cients a0

i represent the ampli¢-
cation or attenuation factors, or the relative levels
of excitation of the eigen-oscillations of a resona-
tor.

In the serial case, the physical system is equiv-
alent to M AR2 ¢lters in a chain in which the
input of ¢lter 1 is the excitation function e(t),
and the output of ¢lter M is the observed signal
x(t). Each ¢lter is characterized by an impulse
response, or its z-transform:

HiðzÞ ¼
1

ai0 þ ai1zþ ai2z
2

The z-transform of the resulting impulse re-
sponse of the entire system is the product of the
M functions Hi(z) :

HSðzÞ ¼
YM
i¼1

HiðzÞ

The corresponding inverse ¢lter of the system is
thus the product of the individual inverse ¢lters:

1
HSðzÞ ¼

YM
i¼1

1
HiðzÞ

¼
YM
i¼1

GiðzÞ

with

GiðzÞ ¼
1

HiðzÞ
¼ ai0 þ ai1zþ ai2z

2

Once the impulse response of each ¢lter is esti-
mated, it is easy to deconvolve the observed signal
from the response of the whole system. The result-
ing time series is proportional to the excitation
function e(t), plus noise.

When the M ¢lters are in parallel, the function
e(t) is the input to each ¢lter and the resulting
signal in the sum of all the ¢lter outputs. The
z-transform of the resulting impulse response
is :
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HeðzÞ ¼
XM
i¼1

HiðzÞ ¼
XM
i¼1

1
GiðzÞ

¼

XM
i¼1

Y
jg1

GjðzÞ

YM
i¼1

GiðzÞ

¼ HSðzÞW
XM
i¼1

Y
jgi

GjðzÞ

This is an ARMA ¢lter, which has the same
AR part HS(z) as the corresponding serial ¢lter.
It is thus easy to estimate the characteristics of the
AR part and deconvolve the signal. Nevertheless,
the MA part of the ¢lter is not easy to calculate
from the AR ¢lter characteristics because the co-
e⁄cients a0

i, which determine the relative ampli-
¢cation of the various ¢lters, are not given by the
Yule^Walker algorithm. It is thus di⁄cult to ob-
tain the excitation function from the output of
several parallel ¢lters. The procedure, which con-
sists in low-pass ¢ltering the signal to isolate the
fundamental mode and deconvolving the corre-
sponding peak, does not always give results pro-
portional to the excitation function. In this paper,
only the AR part of the signals is deconvolved.
More complex algorithms are required to process
the MA part. It is easy to con¢rm the conclusions
of this discussion by doing numerical experiments
on synthetic signals.

When processing real signals, a further di⁄-
culty is to select the AR ¢lter order. There is no
general-use reliable criterion to determine the op-
timal order (Adnet, 1990). This order must be at
least twice the number of peaks to be evaluated,
but it is necessary to include some poles to take
into account the noise and the eventual MA part
of the ¢lter. The estimated frequency and quality
factor of the main spectral peaks must be stable
with respect to the ¢lter order. Furthermore, it
may be useful to under-sample the signal in order
to better spread the main poles over the Shannon
frequency band.

The choice of the analyzed window of the sig-
nal is also important. At the onset of an LP event,
for example, the in£uence of the excitation func-
tion e(t) on the spectral content of the record can
be strong, especially when it is not a Dirac im-

pulse or white noise, and this can induce pertur-
bations in the AR analysis when looking for the
resonance frequencies. It is thus convenient to
apply the AR modeling only on the event coda,
i.e., after the excitation is over and when the sig-
nal is mainly composed of decaying sinusoids, but
before the signal-to-noise ratio become too low.
Furthermore, when using this approach, it is no
more necessary to take into account a high-order
MA ¢lter to represent the non-white spectrum
excitation. A time^frequency analysis of the rec-
ord can help determine the window to analyze. In
the case of tremor, the excitation is continuous.
Such excitation may be considered as noise, so its
in£uence on the signal spectrum and on the AR
analysis is probably smaller. Furthermore, it is
possible to carry out AR analysis on short-dura-
tion sliding windows of signal. In this case, only a
small number of poles can be resolved, but this
processing provides the temporal variations of the
dominant frequencies with good resolution.

2.8. Spectral equalization

An alternative way to reduce the in£uence of
harmonic components and enhance low-ampli-
tude information is the use of spectral equaliza-
tion, also named whitening techniques, which are
frequently used for seismic prospecting data (Cop-
pens and Mari, 1984). This method, which is very
easy to implement, consists in reducing the di¡er-
ences between the amplitudes of the spectral
peaks. This can be done, for example, by dividing
the Fourier transform S(f) of the signal by the
square root of its power spectral density P(f)
plus a small constant to avoid divisions by zero.
The Fourier transform of the resulting whitened
signal is :

W ðf Þ ¼ Sðf Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPðf ÞN

p
þ K Wmaxð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPðf ÞN

p
Þ
; 09K61

Furthermore, the whitening operator can be
made causal by modifying the Fourier transform
phase as (Oppenheim and Schafer, 1975, p. 346):

Bminðf Þ ¼ HT½lnMW ðf ÞM�
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3. Examples of application

3.1. Synthetic signals

As a ¢rst example, we present an analysis of

synthetic data. Two signals are obtained by con-
volving an excitation function e(t) with the im-
pulse response of a resonator r(t), which includes
two attenuated autoregressive processes (¢lter 1:
f1 = 2 Hz, Q1 = 30, amplitude = 1; ¢lter 2: f2 = 3.5

Fig. 1. Time^frequency analysis of a synthetic signal. The duration of the analysis windows is indicated in parentheses, when rele-
vant. (A) Signal. (B) Cross-section in frequency of the STFT displayed in D at time t=24 s. (C) Cross-section of the CWT dis-
played in E at time t= 24 s. (D) STFT (2.56 s). (E) CWT. (F) Capon’s method (1.2 s). (G) Lagunas method (1.0 s). (H) Instanta-
neous frequencies in two 1-Hz-wide spectral bands centered at 2 and 3.5 Hz. (I) Autoregressive model on sliding window (0.8 s).
A logarithmic amplitude scale has been used in D^G.
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Fig. 3. Time^frequency analysis of an LP event at Galeras Volcano (Colombia). The duration of the analysis windows is indi-
cated in parentheses, when relevant. (A) First 41 s of the record. (B) STFT (5.12 s). (C) CWT. (D) Capon’s method (1.7 s). (E)
Lagunas method (1.9 s). (F) Instantaneous frequency in spectral bands centered at 1.3 and 3.4 Hz. (G) Autoregressive modeling
(1.4 s). Logarithmic amplitude scale for B^E.

Fig. 2. Deconvolution of two synthetic signals obtained by using two autoregressive processes connected either in parallel or in
series. (A) Parallel-¢lters signal, and corresponding Fourier spectrum. (B) Serial-¢lters signal, and its spectrum. In A and B, the
spectra of the impulse responses of both AR2 ¢lters are also represented. (C) Parallel-¢lters signal after deconvolution, and its
spectrum. (D) Serial-¢lters signal after deconvolution, and its spectrum. (E) Excitation function used for both synthetic data, and
corresponding spectrum. The deconvolved signal is much more similar to the excitation function in the serial case than in the
parallel one. (F) Causal spectral equalization of the serial ¢lter signal, and corresponding spectrum; parameter K (see 2.8: Spec-
tral equalization) is equal to 2U1034.
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Hz, Q2 = 60, amplitude = 2) connected either in
parallel or in series. The common excitation func-
tion (Fig. 2E) is composed of two parts: (1) white
noise tapered by a Hamming window (from 4 to
11 s); and (2) a Dirac pulse at t= 21 s. The result-
ing signals include 1024 values with a sampling
frequency of 25 Hz. The time^frequency represen-
tations of the parallel-¢lters signal, obtained by
the methods described above, are displayed in
Fig. 1. As usual, the STFT (Fig. 1D) yields rough
information in the frequency and time domains.

The frequencies of oscillation are approximately
determined but the power attenuation is well de-
¢ned. While the Dirac pulse and white noise are
well described in terms of energy in a large fre-
quency band, their locations in time are not very
precise. The analysis by CWT (Fig. 1E) produces
approximately the same results as the STFT, ex-
cept that the time^frequency plane has a di¡erent
structure. Better resolution in time is achieved by
using the CWT, especially for the Dirac pulse at
t= 21 s which is well located at high frequency.

Fig. 4. LP event at Galeras. (A) First 65 s of the record, and corresponding spectrum. (B) Residual signal after deconvolving the
dominant spectral component, and its spectrum. (C) Signal obtained by causal spectral equalization (K=1032), and corresponding
spectrum. (D) Amplitude of the wavelet transform at the frequencies 1.33 and 2.4 Hz. All spectra are represented with linear am-
plitude scale. The main spectral peak at 1.335 Hz is well described by one AR2 ¢lter and is almost completely eliminated by us-
ing the corresponding inverse MA2 ¢lter. The amplitude of the wavelet transform at 2.4 Hz is similar to the envelope of the de-
convolution residual.
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The cross-section of the CWT at t= 24 s (Fig. 1C)
illustrates that the frequency resolution increases
when frequency decreases. Furthermore, at low
frequency, CWT can provide more accurate val-
ues of the oscillation frequencies than STFT (Fig.
1B). Capon’s method (Fig. 1F) yields information
on power, and provides a good resolution of the
two spectral peaks in the portion of the signal
where their contributions are magni¢ed by the
excitation processes. In other parts of the signal,
the spectral peaks vanish almost completely. The
analysis by the Lagunas method (Fig. 1G) is char-
acterized by high resolution in the time and fre-
quency domains for the entire signal. Both the
instantaneous frequency method and the autore-
gressive method (Fig. 1H,I) produce precise and
robust estimations of the peak frequencies in the
portions of the signal where the excitation is zero.
Nevertheless, spectral information about the
white noise and Dirac pulse is completely lost as
these excitations cannot be represented by discrete
frequencies. This example illustrates that a com-
bination of several methods greatly improves
the description of signals in the time^frequency
plane.

Pure AR analysis of the parallel-¢lters signal
yields an estimation of the frequency and quality
factor of the decaying sinusoids:

f 1 ¼ 2:00 
 0:02 Hz; Q1 ¼ 30 
 7

f 2 ¼ 3:50 
 0:02 Hz; Q2 ¼ 60 
 10

where the errors are estimated from the dispersion
obtained by varying the AR order. The ¢rst 15 s
of the signal, which contain the excitation, are
skipped for this analysis. Taking into account
one MA coe⁄cient in the Yule^Walker algorithm
reduces the errors and leads to:

f 1 ¼ 2:00 
 0:01 Hz; Q1 ¼ 29:8 
 0:5

f 2 ¼ 3:50 
 0:01 Hz; Q2 ¼ 60:0 
 1:0

Both parallel-¢lters and serial-¢lters signals are
then deconvolved by successively applying two
MA2 ¢lters corresponding to the two original
AR2 ¢lters used to construct the synthetic data.
The resulting deconvolved signals, and their spec-
tra, are compared with the original excitation in
Fig. 2. As expected, in the serial case (Fig. 2B,D)
the resulting signal is almost identical to the orig-
inal excitation, while in the parallel case
(Fig. 2A,C) the exact form of the excitation is
not recovered. Furthermore, in the latter case,
the MA part of the corresponding ARMA ¢lter
produces a zero in the residue spectrum. The spec-
tral equalization (Fig. 2F) cancels the harmonic
components of the signal and yields a good ap-
proximation of the excitation function.

Table 1
Frequencies and quality factors estimated by the AR analysis of the coda of several events

Signal spectral band Frequency Error Quality factor Error
(Hz) (Hz)

Galeras LP event [0^6.25 Hz] 1.335 0.005 170 30
3.40 0.04 30 5
5.85 0.05 20 6

Purace LP event [0^12.5 Hz] 4.93 0.01 150 40
8.21 0.01 260 60

10.02 0.01 230 40
10.86 0.01 280 50

Misti LP event [0^12.5 Hz] 2.53 0.03 23 8
4.39 0.01 210 60
7.21 0.03 80 50
9.16 0.03 200 100

12.26 0.03 90 40
Ruapehu tremor [0^6.25 Hz] 2.08 0.06 11 4

2.94 0.06 10 3
6.20 0.04 25 7

Errors are estimated from the parameter variability obtained by changing the total AR order.
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3.2. LP event at Galeras Volcano

Figs. 3A and 4A show an LP event recorded at
Galeras Volcano, Colombia on June 5, 1993 (Go¤-
mez and Torres, 1997). The record is from station
CRA (1 Hz vertical seismometer) of the Galeras
network. This signal contains a dominant spectral

peak at 1.33 Hz (Fig. 4A), and small secondary
peaks at 3.4 and 5.9 Hz which are not visible on a
graph with a linear scale. The time^frequency dia-
grams obtained by several methods (Fig. 3B^G)
indicate that the frequency of the main peak
is constant along the entire signal, and that
the corresponding energy arrives about 1 s after

Fig. 5. Time^frequency analysis of an LP event at Purace Volcano (Colombia). (A) Seismogram. (B) STFT (5.1 s). (C) CWT.
(D) Capon’s method (1.2 s). (E) Lagunas method (1.4 s). (F) Instantaneous frequencies in spectral bands centered at 4.9, 8.2,
10.0, and 10.8 Hz. (G) AR modeling (1.6 s). Logarithmic amplitude scale for B^E.
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the ¢rst arrival. It also reveals a seismic phase
near the seismogram onset, with frequency of
about 2.4 Hz and duration of roughly 4 s (Fig.
3B^E).

A more precise AR analysis is then carried out
by using the Yule^Walker algorithm. The ¢rst 25
s of the signal, which contain the excitation, are
deleted and a 40.96-s-long duration is used. This
makes it possible to resolve several poles in the
seismogram coda (Table 1). The main spectral
peak is characterized by f= 1.335 W 0.005 Hz and
Q= 170 W 30. Fig. 4B shows the residual signal
and its spectrum after deconvolving the dominant
spectral components (1.33, 3.4, and 5.9 Hz). It
includes a short-duration oscillation of about 5 s
in the band [2.3^2.8 Hz] which is also detected by
the time^frequency analysis. After this oscillation,
the residual signal amplitude decreases until tW20
s and then remains constant. The signal obtained

by spectral equalization (Fig. 4C) shows similar
features. However, the corresponding spectrum
is whiter and does not display as clearly the spec-
tral content of the excitation. The amplitudes of
the wavelet transform at frequencies 1.33 Hz and
2.4 Hz are displayed in Fig. 4D. It shows the
short-duration phase at the beginning of the rec-
ord. The amplitude at 1.33 Hz is similar to the
signal envelope. It reaches its maximum 5.5 s after
the ¢rst arrival, slowly decreases during 15^25 s
and then decreases faster. The results obtained by
the di¡erent analysis methods suggest that the
source resonator is ¢rst strongly excited during
4^5 s at the beginning of the event. Next, the
resonance is sustained by a low-level excitation
during about 20 s in the same manner as a vol-
canic tremor. The coda, which corresponds to the
free oscillation of the resonator, actually begins
after this period of low-level excitation.

Fig. 6. LP event at Purace. (A) Record, and its spectrum. (B) Residual signal after deconvolving the dominant spectral compo-
nents, and corresponding spectrum. (C) Signal obtained by causal spectral equalization (K=1032), and its spectrum. A large neg-
ative pulse is obtained by both deconvolution and spectral equalization.
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3.3. LP event at Purace Volcano

This LP event (Figs. 5A and 6A) was recorded
at station CUR, located about 1 km from the
crater of Purace Volcano, Colombia, on Septem-
ber 15, 1994 (Go¤mez and Torres, 1997). It is char-
acterized by several spectral peaks, the frequencies
of which are almost constant during the entire
signal (Fig. 5B^G). The time^frequency analysis
reveals that the main spectral component (f= 4.93
Hz) is preceded by an arrival at lower frequency
(V3 Hz). This feature is particularly well resolved
by the CWT and the Lagunas method (Fig.
5C,E). The AR modeling of a 40.96-s-long win-
dow in the coda (after deleting 10 s at the record
onset) requires a relatively high-order AR ¢lter
with a small MA part. The frequency and quality
factor of the main poles are given in Table 1. The
residual signal obtained by applying the corre-
sponding inverse ¢lters (Fig. 6B) includes a large
negative pulse about 1.7 s after the ¢rst arrival.

The causal spectral equalization applied to the
same record produces similar results (Fig. 6C),
although, as expected, the corresponding spec-
trum is much whiter.

3.4. LP event at Misti Volcano

This LP event, displayed in Fig. 7, was re-
corded on April 7, 1998, by a three-component
short-period temporary station located close to
the crater of Misti Volcano, Peru (Me¤taxian, per-
sonal communication). The corresponding Four-
ier spectra (Fig. 7) contain a main peak at 4.4 Hz
and several secondary peaks (2.5, 7.2 Hz, 9.2 Hz,
12.2 Hz, etc.). Fig. 8 shows results of the time^
frequency analysis of the vertical component per-
formed by several methods. Similar diagrams are
obtained for the horizontal components. The
STFT (Fig. 8B) has a poor time resolution and
reasonable frequency resolution, which makes it
possible to see up to six spectral components

Fig. 7. LP event at Misti Volcano (Peru). Records of the three components and their Fourier spectra. (A) Vertical component.
(B) North component. (C) East component.
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along the signal. The low-frequency resolution of
the CWT (Fig. 8C) prevents the identi¢cation of
high-frequency spectral peaks ^ notice, for exam-
ple, the spreading of the 7.2-Hz peak. On the
other hand, both the STFT and CWT show an
arrival of short duration (6 2 s) and low fre-
quency (6 2 Hz) at the beginning of the event.

The Capon and Lagunas methods (Fig. 8D,E)
clearly have better time and frequency resolutions
and can resolve four spectral peaks (4.4, 7.2, 9.2,
and 12.2 Hz). The instantaneous frequency in
four spectral bands has been calculated by suc-
cessively applying 1-Hz-wide band-pass ¢lters
centered at the frequencies of four peaks (Fig.

Fig. 8. Time^frequency analysis of the vertical component of the LP event at Misti. (A) First 20.5 s of record. (B) STFT (2.56 s).
(C) CWT. (D) Capon’s method (0.6 s). (E) Lagunas method (0.8 s). (F) Instantaneous frequencies in spectral bands centered at
2.5, 4.4, 7.2, and 9.2 Hz. (G) AR modeling (0.8 s).
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8F). The AR analysis, with a 0.8-s-long sliding
window, yields similar results for the time varia-
tion of the main spectral peaks frequencies (Fig.
8G).

By compiling and comparing the results from
the di¡erent time^frequency methods, it is possi-
ble to extract several robust features from the re-
cords. (1) Several dominant spectral components
are present during almost the entire signal dura-
tion and their frequencies are constant in the
coda. (2) The energy corresponding to the main
spectral peak (4.4 Hz) seems to arrive 0.5^0.8 s
after the ¢rst arrival. (3) The frequency of
the main peak slightly decreases, from about
5 Hz to 4.4 Hz, during the ¢rst 0.5^0.7 s. In the
event coda, the frequency of the main peak is very
stable. (4) At the very beginning of the vertical
seismogram, a low-frequency (6 2 Hz) phase of
short duration is detected by all the methods. This
arrival is not present in the horizontal compo-
nents.

For a precise AR analysis with the Yule^
Walker algorithm, the ¢rst 20 s of signal are de-
leted and 40.96-s-long signal windows are used.
Table 1 lists the estimated frequency and quality
factor for the ¢ve principal poles. The main spec-
tral peak is characterized by a frequency f=
4.39 W 0.01 Hz and quality factor Q= 210 W 60.
Similar results are obtained for all three compo-
nents. In contrast, the Q factors of the secondary
poles sometimes di¡er signi¢cantly between di¡er-
ent components.

Next, the e¡ects of the dominant spectral peaks
are eliminated by ¢ltering the signal with a series
of MA2 ¢lters. Fig. 9 displays the resulting decon-
volved signals, and their spectra, for the three
components. An interesting feature of these resi-
dues is the presence of a short-duration (V1.7 s)
low-frequency arrival at the onset of the vertical
component. This phase was already revealed by
the time^frequency analysis and is not observed
in the residues of the horizontal components.

Fig. 9. First 20 s of the residual signals obtained by deconvolving the main spectral components of the three-components of the
Misti event and their Fourier spectra. (A) Vertical component. (B) North component. (C) East component.
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After their onset, the amplitude of the residual
signals progressively decreases during more than
10 s.

3.5. Tremor at Ruapehu Volcano

The next example (Figs. 10A and 11A) shows

the onset of volcanic tremor at Ruapehu Volcano,
New Zealand, recorded at station DRZ on Au-
gust 5, 1990 (Hurst, personal communication).
The Fourier spectrum (Fig. 11A) shows that
most of the energy is in the band [1.5^3.0 Hz].
The time^frequency representations of this signal
have a complex structure. The highest-resolution

Fig. 10. Time^frequency analysis of volcanic tremor at Ruapehu Volcano (New Zealand). (A) Record. (B) STFT (5.12 s). (C)
CWT. (D) Capon’s method (1.6 s). (E) Lagunas method (2.4 s). (F) Instantaneous frequencies in spectral bands centered at 2.0
and 2.9 Hz. (G) AR modeling (2.4 s).
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analysis (Fig. 10D^G) points to rapid £uctuations
of the frequency of the dominant spectral compo-
nents. Similar £uctuations are also observed in
other records of Ruapehu tremor. The CWT
(Fig. 10C) displays many short-duration, broad-
band peaks, which coincide with a series of energy
bursts. AR modeling of the whole signal identi¢es
a main pole with frequency f= 2.08 W 0.06 Hz
(Q= 11 W 4) and secondary poles at 2.94 and
6.20 Hz (Table 1). A more detailed analysis of
the ¢rst 10 s of the record shows that oscillations
at a frequency of about 2.1 Hz are also present in
the noise before the tremor. After deconvolution
or spectral equalization, the residual signal
(Fig. 11B,C) is characterized by a broadband
spectrum and by an amplitude which varies rap-
idly and simultaneously with the tremor ampli-
tude. In the present case, estimations of the qual-
ity factor probably do not provide an accurate
picture of the resonator properties because the
analyzed signal includes a non-stationary excita-
tion process.

3.6. LP events at Kelut Volcano

As a ¢nal example, we present the analysis of a
set of 16 LP events (Fig. 12A and Table 2) which
were recorded from December 25, 1989 to Janu-
ary 7, 1990, i.e., about a month before the Feb-
ruary 10, 1990 eruption of Kelut Volcano, Java
(Lesage and Surono, 1995). The station features a
1-Hz vertical seismometer and is located inside a
tunnel about 500 m from the crater. All the events
have short durations and low amplitudes and
their spectra (Fig. 12B) are characterized by one
dominant peak in the range [5.0^6.2 Hz]. There
are some double events.

Fig. 13 displays the results of time^frequency
analysis performed on one of the events. These
clearly show high-frequency arrivals at the onset
of the seismogram and during the second part of
the double event. The dominant frequency is con-
stant over the entire signal. Estimations of the
frequency and quality factor of the main spectral
peak, obtained using the Yule^Walker algorithm,

Fig. 11. Volcanic tremor at Ruapehu. (A) Original signal and its spectrum. (B) Residual signal after deconvolving the dominant
spectral components, and corresponding spectrum. (C) Signal obtained by spectral equalization (K= 1033), and its spectrum.
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are given in Table 2. Filters including a small
number of complex poles (6^12) allow an accurate
modeling of the resonance e¡ects. In some cases,
the introduction of an MA1 ¢lter in the algorithm
improves the result. Table 2 indicates that the
main frequency is generally stable between events
within intervals ranging from one to a few days.
From December 25, 1989 to January 1, 1990,
the frequency equals 5.9 W 0.05 Hz, besides one
event with f= 6.23 Hz. On January 3, its value
is about 6.15 Hz and during days 6 and 7, it
is in the range 5.04^5.40 Hz. The values of
Q are in the interval 13^30, but this greater var-
iability is probably due in part to estimation er-
rors.

Fig. 14 displays the residual signals, obtained
by deconvolving the main spectral peak, and the
corresponding Fourier spectra. The resulting ex-
citation functions are very short. Their durations
are between 0.2 and 0.9 s, although most dura-
tions are near 0.7 s. For six events, the excitation
is divided into two parts, the ¢rst of which is
generally more impulsive with a higher frequency

content. The second part arrives between 0.3 and
1.8 s after the ¢rst arrival and consists of either
another short pulse or a progressive increase of
the amplitude. The polarity of the ¢rst arrival of
the excitation functions is generally positive
although some of them are negative or emergent.
A large part of the excitation function energy is
concentrated in a narrow band ^ a few Hz wide ^
centered between 12 and 16 Hz. The residual sig-
nals also include higher-frequency energy, which
could be noise.

4. Discussion

In this paper, we have presented a small selec-
tion of signal processing methods among the great
variety of methods that are available today. Our
main objective was to emphasize, through a few
examples, the abilities ^ and limitations ^ of these
methods to produce interesting information about
the physical processes related to LP events and
volcanic tremor.

Fig. 12. (A) LP events at Kelut Volcano (Java). (B) Their Fourier spectra.

VOLGEO 2407 28-5-02

P. Lesage et al. / Journal of Volcanology and Geothermal Research 114 (2002) 391^417 411



4.1. Time^frequency analysis

The STFT yields the rough features of a signal
in the time^frequency domain. Although it has
limited resolution, it is widely used because of
its robustness and the ease with which it can be
programmed from fast Fourier transform subrou-

tines. The CWT resolution is not constant in the
time^frequency domain. This property makes it
possible to detect some details which are not re-
vealed by the STFT method. For example, the
time resolution of an impulsive arrival is much
better at high frequency in the CWT. The Capon
and Lagunas methods can produce high-resolu-

Fig. 13. Time^frequency analysis of Kelut LP event at 04:02 h on January 3, 1990. (A) Signal. (B) STFT (1.28 s). (C) CWT. (D)
Capon’s method (0.4 s). (E) Lagunas method (0.4 s). (F) Instantaneous frequencies in bands centered at 6 Hz and 12 Hz. (G)
AR modeling (0.6 s). The CWT, Capon and Lagunas methods all clearly display the broadband and short-duration characteris-
tics of the ¢rst arrival.
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Fig. 14. (A) Residual signals obtained by deconvolving the main spectral component of the Kelut LP events. (B) Corresponding
Fourier spectra.

Table 2
Same as Table 1 for the 16 LP events of Kelut Volcano

No. Date and hour Frequency Error Quality factor Error
(Hz) (Hz)

1 89/12/25 18:30 5.89 0.05 20 2
2 89/12/26 18:21 6.23 0.02 30 10
3 89/12/27 04:45 5.86 0.04 22 4
4 89/12/28 12:24 5.85 0.02 30 10
5 89/12/29 00:11 5.91 0.02 25 3
6 89/12/30 12:32 5.91 0.04 20 4
7 90/01/01 03:49 5.91 0.04 17 3
8 90/01/03 04:02 6.08 0.03 13 2
9 90/01/03 10:03 6.22 0.02 23 3
10 90/01/03 10:53 6.22 0.04 25 7
11 90/01/03 17:19 6.23 0.03 24 5
12 90/01/06 09:25 5.40 0.06 18 4
13 90/01/06 21:04 5.04 0.02 24 4
14 90/01/06 21:14 5.08 0.02 24 4
15 90/01/06 23:58 5.15 0.05 13 2
16 90/01/07 00:05 5.15 0.08 16 4
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tion time^frequency representations, especially for
signals that contain strong harmonic components
such as LP events and volcanic tremor. Neverthe-
less, the results are somewhat dependent on win-
dow length and ¢lter order. The sliding AR anal-
ysis yields precise estimations of the spectral peak
frequencies with good time resolution. Although
it does not produce a complete description of the
time^frequency space, it can be used to measure
rapid frequency gliding of volcanic tremor. The
instantaneous frequency yields roughly similar in-
formation, but it is very sensitive to noise and
requires a priori band-pass ¢ltering around each
spectral peak frequency. The analysis of the syn-
thetic and real signals presented above illustrates
that the simultaneous use of several time^fre-
quency methods greatly improves the description
of the recorded phenomena.

4.2. Autoregressive analysis and deconvolution

The autoregressive modeling and related decon-
volution of the records o¡er interesting perspec-
tives for the analysis of signals that include reso-
nator e¡ects. While the dominant spectral peaks
provide information on the acoustic properties of
the source resonator, it can preclude the observa-
tion of other phenomena involved in the genera-
tion of the event. The removal of the principal
decaying sinusoids that are included in the re-
cords, via the use of data-dependent ¢lters, pro-
duces residual signals which contain, in some
form, the excitation function of the resonators.
Nevertheless, this kind of method cannot separate
the excitation and the propagation and site ef-
fects. Such a separation would require the knowl-
edge of Green’s functions and site response.

The main spectral peak of a monochromatic
event may be modeled by one AR2 ¢lter. In this
case, the deconvolved signal yields a direct esti-
mation of the excitation function if the noise level
is low enough. On the other hand, when dealing
with more complex signals, it is di⁄cult to deter-
mine whether the system can be represented by
serial or parallel ¢lters, or by a complex combi-
nation of both. In the serial case, a ¢rst resonator
is excited and radiates waves which excite a sec-
ond resonator and so on. A single mode of £uid-

¢lled cavity embedded in a structure that includes
a shallow soft layer inducing a resonance e¡ect is
an example of serial ¢lters. In the more common
non-serial cases, the residual signal obtained by
AR analysis and deconvolution does not provide
directly the waveform of the excitation function,
because it is not possible to deconvolve the MA
part of the corresponding ¢lter with the methods
presented here. In any case, the residual contains
information, including duration, arrival time and
some spectral characteristics of the excitation,
which can help constrain the physical source mod-
els. The spectral equalization easily yields rough
information on the non-harmonic part of the sig-
nal. It can be used, for example, to estimate the
duration of the excitation process.

The AR analysis yields precise estimations of
the resonance frequencies as long as (1) the results
are stable with respect to the AR order, and (2)
the analyzed signal window does not include the
excitation function. However, when the excitation
can be described by one Dirac impulse or by con-
tinuous noise with wide band spectrum, as in the
case of tremor, the calculated frequency is not
signi¢cantly a¡ected by the excitation. On the
other hand, the quality factors of the resonators
are estimated with higher precision in the coda
when the excitation is no longer active and the
analyzed signal is mainly composed of decaying
sinusoids. However, numerical experiments show
that the results of the deconvolution are not very
sensitive to errors on the Q values.

4.3. Application to seismovolcanic signals

Among the examples presented above, the main
resonance peaks of three LP events are character-
ized by high values of the quality factor (Galeras:
f= 1.33 Hz, Q= 160; Purace: f= 4.92 Hz,
Q= 180; Misti : f= 4.4 Hz, Q= 200). Kumagai
and Chouet (1999) give a consistent estimation
of Q for LP event at Galeras. On the basis of
the acoustic properties of various mixtures of liq-
uid, gas and ash, and carrying out numerical sim-
ulations of the radiation of a £uid-driven crack,
Kumagai and Chouet (1999, 2000) conclude that
Q values in the range 160^200 can be generated
by a resonator ¢lled with a basalt^gas mixture or

VOLGEO 2407 28-5-02

P. Lesage et al. / Journal of Volcanology and Geothermal Research 114 (2002) 391^417414



with dusty or misty gas. In contrast, the quality
factors are very low for the 16 LP events of Kelut
(20 on average) and for the Ruapehu tremor (10^
25). These values are consistent with a crack ¢lled
with either water or basalt including a small gas
volume fraction (Kumagai and Chouet, 1999,
2000). Nevertheless, the existence of crater lakes
with degassing inside at both volcanoes and their
andesitic nature suggest that the resonator is
probably ¢lled with bubbly water (Lesage and
Surono, 1995).

The sample seismograms studied here generally
have a more complex spectral content at the be-
ginning than in the coda. In many cases, the time^
frequency analysis identi¢es, near the signal onset,
arrivals of relatively short-duration seismic phases
with energy concentration in a narrow spectral
band. The frequency of this band is either higher
(Galeras and Kelut events) or lower (Purace and
Misti events) than the main resonance frequency
which dominates the coda. Furthermore, in the
case of the events at the three Andean volcanoes,
the waves corresponding to the resonance fre-
quency arrive with delays of several tenths of a
second after the ¢rst arrivals. A possible interpre-
tation of these observations is that the excitation
process, which has its proper characteristic fre-
quency band, generates elastic waves which form
part of the ¢rst arrivals. The coupling between
this process and the resonator produces standing
waves which need some time to become estab-
lished and to radiate waves at the resonance fre-
quency.

The excitation mechanism of the LP events of
Galeras, Purace, and Misti is strongly active dur-
ing a few seconds, rapidly inducing the resonance
e¡ect. After this ¢rst part of the forcing, the res-
onance is still sustained by a low-level excitation
during tens of seconds, in the same manner as
volcanic tremor. This, together with the high Q
values of the resonators, explains the long dura-
tion of the corresponding seismograms.

The excitation function of the Misti event in-
cludes a low-frequency and very short-duration
oscillation which produces mainly vertical move-
ments near the crater. The observation of this
phase is limited at low frequency by the natural
frequency of the 1-Hz seismometer used. More

observations of this kind of event with several
broadband sensors should produce useful infor-
mation about the excitation process.

The LP events of Kelut volcano share several
features. Their onsets are relatively broadband
while their codas are quasi-monochromatic. No
signi¢cant variations are observed in their domi-
nant frequency within a time scale of up to about
1 day. These LP events may be compared to nu-
merical simulations of the resonance of a £uid-
¢lled crack model (Chouet, 1988). The corre-
sponding synthetic seismograms generally display
high-frequency onsets related to the impulsive
pressure transient applied as excitation. Their
spectra are usually complex, re£ecting the excita-
tion of many resonance modes of the rectangular
crack. The source resonator of the Kelut events
produces very simple spectra, denoting that only
one oscillation mode is excited. Although some
particular con¢gurations of the £uid-¢lled crack
model can yield quasi-monochromatic signals
(Chouet, 1992), other models with a di¡erent res-
onator geometry or with damping mechanisms of
the oscillations are also consistent with the obser-
vations at Kelut Volcano. For example, a £uid-
¢lled conduit with depth-dependent gas content
can produce one dominant spectral peak (Neu-
berg et al., 2000). In this case of unique oscillation
mode, it is easy to analyze the signals and to
deconvolve the resonance e¡ects. The resulting
residuals are then almost proportional to the ex-
citation functions, plus noise. In the case of the
LP events of Kelut Volcano, most of the energy
of excitation is at relatively high frequency, com-
pared to the resonance frequency.

The features of the signal obtained by deconvo-
lution of the volcanic tremor at Ruapehu ^ am-
plitude variations, broadband spectrum ^ are con-
sistent with a mechanism of resonator excitation
by a white noise signal due, for example, to high-
pressure gas £ow, as suggested by Hurst (1992)
and Hurst and Sherburn (1993). Thus the tremor
initiation is probably due to the increase of the
excitation process level. The time^frequency anal-
ysis of the Ruapehu signal reveals fast £uctua-
tions in its amplitude and frequency content.
This observation suggests that the equivalent
AR ¢lters are not stationary and that the AR
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model and deconvolution of this record are not
fully appropriate in this case. Other methods us-
ing higher-order representation could be applied
to improve the analysis of this kind of signal.
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