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Abstract

A general integral expression is formulated for the gravitational attraction due to any solid of revolution based on the
attraction of vertical, semi-infinite, circular, cylindrical shells. The expression accommodates solids with radial variation of
density. For solids with constant density, further generalization to arbitrary orientation is made through coordinate transformation
that considers both vertical and radial components of attraction. Special solutions for solids with simple geometry are listed.
Practical applications are demonstrated by forward gravity modelling the effects of volcanic islands (cylindrical core bounded by
an outer exponentially trending surface) and inclined finite-length cylinders. Corresponding expressions for the magnetic case are
discussed in terms of using Poisson’s relation. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper extends the work presented in Part 1
(Damiata and Lee, this volume) that dealt with the
gravitational attraction of vertical, semi-infinite, circu-
lar cylinders and horizontal circular disks. The empha-
sis here is on formulating general expressions for the
gravitational attraction due to any solid of revolution.
These solutions, in turn, have wide application such as
forward gravity modelling the effects of volcanic
islands, lithospheric deflection and tunnels. Our pri-
mary motivation for these works concerns the simu-
lated gravitational response due to hydraulic testing of
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groundwater aquifers. The solution to this axisym-
metric problem calls for the attraction of a solid of
revolution with radial variation of density. Such
solution is not suited for polyhedron approximations
that are presently available (e.g., Gotze and Lahmeyer,
1988; Pohanka, 1988). Results of the groundwater
problem will be reported in a future paper.

Several studies dealing with the gravitational
attraction of solids of revolution are reported in the
literature; all assume constant density. Duska (1958)
derived solutions for the maximum gravitational
attraction (i.e., along the vertical axis) of certain solids
by using the formula for a circular lamina. Reilly
(1969) derived both gravitational and magnetic ex-
pressions for a finite-length right circular cylinder
based on an infinite series of Legendre polynomials.
His solution was used to model the effects of sea-
mounts (Woodward, 1970) and volcanic roots (Reilly,
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1972) and was generalized to any solid of revolution
by Woodward (1973). The latter’s technique is based
on numerically integrating the first and second deriv-
atives of the potential for a circular lamina. The in-
tegration is performed over the length of the solid by
using an N-point Gauss—Legendre integration scheme
that requires 4N sums of infinite series of Legendre
polynomials.

Pant and Govindarajan (1979) give a FORTRAN
code to compute the gravitational attraction of solids
that can be approximated by a set of circular disks.
Their code requires numerical integration of Bessel
and exponential functions. Bodine and Karner (1981)
discussed a technique utilizing a one-dimensional Fast
Fourier Transform that requires a linear array to
describe the shape of the solid. Their technique is
particularly useful for modelling long-wavelength
bodies such as oceanic seamounts or sedimentary
basins. Finally, Paul (1985) presented a scheme to
approximate radial profiles based on a linear combi-
nation of values computed along the vertical axis.

In this paper, general expressions are formulated
and a numerical technique is presented for calculating
the gravitational attraction due to any solid of revolu-
tion with radial variation of density. The derivation is
based on the attraction of vertical, semi-infinite, circu-
lar, cylindrical shells of infinitesimal thickness. For
solids with constant density, further generalization to
arbitrary orientation is made through coordinate trans-
formation that considers both vertical and radial com-
ponents of attraction. Practical applications are dem-
onstrated by forward gravity modelling the effects of
volcanic islands and inclined finite-length cylinders.
Corresponding expressions for the magnetic case are
briefly discussed in terms of using Poisson’s relation.

2. Mathematical development

2.1. Attraction of a vertical, semi-infinite, circular,
cylindrical shell

An expression for the vertical component of grav-
itational attraction of a vertical, semi-infinite, circular
cylinder with radial variation of density was derived
in Part 1 (Damiata and Lee, this volume, Eq. (15)).
The attraction of a vertical, semi-infinite, circular, cy-
lindrical shell of infinitesimal thickness can be ob-

tained from this expression by superimposing two
cylinders with slightly different radii, a, shrinking this
difference to zero, and replacing the volume—mass
density, p’ [F], with a surface-mass density, o’ [/'],
such that ¢ [/]=p' [F]Aa but remains nonzero as
Aa — 0. This operation is equivalent to taking the
derivative with respect to a,

gzhell [r,z (= %gz[r, z; (JAa
= 4Gd' ['] a
Vo ra? + (2
x Klk] (1)

where K[k,] is the complete elliptic integral of the first
kind (Byrd and Friedman, 1954, Eq. (110.06), p. 9)
with the modulus

dar
k= .
¢w+#+@—nz

Fig. 1 depicts normalized gravitational attractions
versus normalized vertical and radial distances for a
cylindrical shell of infinitesimal thickness. The attrac-
tions of a spherical shell of infinitesimal thickness are
also plotted for comparison. Note that a singularity
occurs in Eq. (1) when both {—z=0 and r=a
because as such, k=1 and K[1]= oo.

2.2. Technique based on vertical cylindrical shells

The vertical component of gravitational attraction
due to any solid of revolution can be determined
simply by adding the effects of semi-infinite cylin-
drical shells that bound the top surface and subtracting
the effects of those that bound the bottom surface. The
net effect for any given pair of shells is the attraction
of a finite-length cylindrical shell as schematically
illustrated in Fig. 2. The net result of integrating all
such pairs is the attraction of the solid of revolution
which is conceptually stated as

&%4=[fVW’jAﬂﬂW 2)

where the subscripts “t” and “b” refer to the top and
bottom surfaces of the solid, respectively, and f[r']
and g[7’'] are functions with form similar to Eq. (1).
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Fig. 1. Normalized gravitational attraction, g.[r, z; (]/4Gd’, of a
semi-infinite cylindrical shell of infinitesimal thickness. Upper:
attractions versus normalized vertical distance, ({—z)/a, at
normalized radial distances of 0 (solid line) and 1 (dashed line).
Lower: attractions versus normalized radial distance, r/a, at nor-
malized vertical distances of 0 (solid line) and 1 (dashed line). The
attractions of a spherical shell of infinitesimal thickness are pre-
sented for comparison.

More specifically, for solids of revolution whose
top and bottom surfaces are described by single
functions (e.g., spheroid and cone), the integrals can
be combined such that

fe Kk]
-|r, z) = 4G
§ AI ¢@+mﬂuzm—@2

Klko]

V7Y + (%l] - 27
x p' [/ ]7dr (3)

where R; and R, are the inner and outer radii of the
solid, respectively, Z,[#'] describes the vertical varia-

tion of either the top (v="t") or bottom (v="b")
outer surface as a function of radial distance, and

This integral can be evaluated numerically using a
general or adaptive Simpson’s rule for which algo-
rithms are readily available (e.g., Press et al., 1992;
Shampine and Allen, 1973). Care in numerical inte-
gration is needed, however, when the observation
point lies on the surface of the solid because of the
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Fig. 2. Schematic diagram illustrating the technique of semi-infinite
cylindrical shells to determine the gravitational attraction of a solid
of revolution. The net effect of subtracting the attraction of a semi-
infinite shell that bounds the bottom surface of the solid from one
with the same radius that bounds the top surface is the attraction of
the finite-length shell denoted by the shaded volume.
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apparent singularity that occurs in the integrand even
though the integral itself is finite. For this case, an
analytical solution should be incorporated into the
algorithm if available (e.g., see (Eqgs. (A4) and (AS)
in Appendix A for observation along the surface of a
solid cylinder). Alternatively, the integral should be
rewritten such that the singularity occurs at one of
the limits and then a numerical integration scheme
that does not require evaluation at the endpoints used
(e.g., adaptive quadrature routine QAGS in QUAD-
PACK sublibrary, Piessens et al., 1983; Zwillinger,
1992).

Table Al in Appendix A lists the defining param-
eters for numerically evaluating the vertical compo-
nent of gravitational attraction for various solids of
revolution. Note that more than one integral may be
needed to fully describe solids with relatively com-
plicated surfaces. Also note that as a special case, the
gravitational attraction along the rotational axis (i.e.,
r=0 in Eq. (3)) has the form

1

Ry
h V@) -y

1
VP @l 27

g.[0, z] = 2nG

plrrdr(4)

which often can be solved explicitly for solids with
simple shape and variation of density. Appendix A
also contains special solutions that are provided
without derivation for those solids listed in Table
Al.

2.3. Technique based on horizontal circular disks

For comparison purposes, we briefly state an
alternative but more cumbersome technique that can
be used to calculate the gravitational attraction due to
a solid of revolution. This procedure involves the
“stacking” of horizontal circular disks of finite thick-
ness as schematically illustrated in Fig. 3.

Refinement of the stacking can be achieved by
integrating the solution for a disk with infinitesimal
thickness as depicted in Fig. 4. The general solutions
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Fig. 3. Schematic diagram illustrating the technique of stacking
horizontal circular disks of finite thickness to approximate the
gravitational attraction of a solid of revolution.

for a thin disk with radial variation of density and
constant density were derived in Part 1 (Damiata and
Lee, this volume, Eqgs. (45) and (48), respectively).
The vertical attraction due to a solid of revolution is
obtained by integrating along the axial length of the
solid. As an example for the case of constant density,
the desired expression for r<a is

gZ [r’ Z]r<a

—26p [ {n- € —2)
g Vel + -2

x Klk] — g/lo[dh k) Sdr (5)
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Fig. 4. Schematic diagram illustrating the technique of horizontal
circular disks of infinitesimal thickness to approximate the gravita-
tional attraction of a solid of revolution.

where

o \/ 4all')r
(alt'] +7)* + (U= 2)"

a[{'] is the radius of the outer surface of the solid as a
function of vertical length, and other variables as
previously defined.

We note that the numerical technique based on
cylindrical shells as given by Eq. (3) is easier to
implement compared to that based on disks since it
requires only the evaluation of a single integral con-
taining an elliptic integral of the first kind. For the
case of radial variation of density, the latter technique
requires the evaluation of a double integral (i.e.,
integration of Eq. (45) in Part 1) while for constant
density, it involves integrating both an elliptic integral
of the first kind and the lambda function (e.g., Eq. (5)).

3. Demonstration of technique based on cylindrical
shells

An example involving the gravitational attraction of
volcanic islands is presented to demonstrate the tech-
nique based on cylindrical shells. Figs. 5 and 6 give
Bouguer anomaly values for the islands of Mauke and
Mitiaro, respectively, which belong to the Southern
Cook Group of islands in the Pacific Ocean (see
Robertson, 1967a,b). The values were computed from
observed gravity by applying free-air, Bouguer and
terrain corrections and subtracting normal gravity as
defined by the 1930 International Gravity Formula.
Bouguer and terrain corrections were based on den-
sities of 2.67 and 2.30 g/cm? for areas of volcanic rock
and coral, respectively. Sea water, however, was not
replaced by rock and, therefore, the reduced values
represent the distribution of mass below sea level.

20° 08'30"S8 —

157° 21' 20" W

L ] 1 1 I km

Fig. 5. Bouguer anomaly values (mGal) for the island of Mauke.
The central portion of the island (average radius of 1.3 km) consists
of weathered basalt (denoted by dark shade) at elevation of about 30
m above sea level and is surrounded by a coral platform (denoted by
light shade) at about 20 m. The radius of a circle of an equivalent
area that lies inside the outer reef’s edge for the entire island is
R=2.51 km (modified from Robertson, 1967b).
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Fig. 7 depicts an idealized model of an uncompen-
sated island platform consisting of a circular volcanic
island (cylindrical core) bounded by an outer platform
(exponentially trending surface lying below sea level).
The top and bottom surfaces of the model are
described by (see Robertson, 1967a, noting change
in coordinate origin; Robertson and Kibblewhite,
1966)

Zt[”/’ z CL’SR =0
Z[r, z; {,sp = H{1 — exp[C(R — 7 )]}

Zb[r,’ z C] =

where H is the depth to the surrounding ocean floor
(=4.6 km), R is the radius of a circle of equivalent
area that lies inside of the outer reef’s edge for a given
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Fig. 6. Bouguer anomaly values (mGal) for the island of Mitiaro.
The central portion of the island (average radius of 1.3 km) consists
of weathered basalt (denoted by dark shade) at elevation of about 10
m above sea level and is surrounded by a coral platform (denoted by
light shade) at about 6 m. The radius of a circle of an equivalent area
that lies inside the outer reef’s edge for the entire island is R=2.76
km (modified from Robertson, 1967b).
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Fig. 7. Idealized representation of an uncompensated island
platform. The platform consists of an inner circular volcanic island
of radius R and constant density p. (cylindrical core denoted by
dark shade) that is surrounded by an outer platform of constant
density p, (denoted by light shade). The top surface of the outer
platform is described by an exponential function where C is an
empirically derived constant and / is the depth to the surrounding
ocean floor.

island (=2.51 and 2.76 km for Mauke and Mitiaro,
respectively), and C is an empirically derived constant
that describes the topography of the top surface
(=0.10 and 0.11 km ~ ' for Mauke and Mitiaro, res-
pectively).

Two general cases have been considered for mod-
elling: (1) the core and outer platform have the same
constant density and (2) the core and outer platform
have constant but different densities. The solution for
the latter case with observations on the island (i.e.,
r < R) and at sea level (i.e., { — z=0) is the sum of the
following two components.

attraction due to cylindrical core:

gz{ra Z]rSR
K
= 4GAp / rJ (ko] rdr
r+ (r+r/)2+H2
=4GAp . RE / S
£/ ( r—i—r’ —l—H2
Vary 4y
kt - ) kb - 2 (6)
r+v (r+7) +H?
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Fig. 8. Modelling results for the island of Mauke. Dashed vertical
line denotes island’s radius of equivalent area. Solid circles denote
Bouguer anomaly values. Solid lines are forward models using the
following densities. Upper: p.=2.90 g/em® (Ap.=1.87 g/em®).
Middle: p.=2.89 g/em® (Ap. = 1.86 g/em®). Lower: p.=2.88 g/cm’
(Ap.=1.85 g/cm®). For all three cases, pp=2.37 g/em® (App,=1.34
g/ecm?). Upper short-dashed line corresponds to p,= pp=2.67 g/em?
(Ap.=Ap,=1.64 g/em®) and lower to p.= pp=2.37 g/em’
(Ap.=Ap,=1.34 g/em).

attraction due to outer platform:

Rinax
g z,p = 4GApp/R
) Kkl
V47 + (H — HexplC(R — 1))’
Kkl Ly, (7)
(r++)* +H?
b — 4ry
N+ + (H - HexplCR — 7))
4ry
ST

where E[r/R] is the complete elliptic integral of the
second kind (Byrd and Friedman, 1954, Eq. (110.07),
p. 10) with modulus /R, Ap.= p. — psw 1s the contrast
in density between the core, p., and surrounding sea
water, pg (=1.03 g/em?), App=pp— Psw is the con-
trast in density between the outer platform, p,, and sea
water, and R, 1S the maximum radial distance of the
platform. This distance was set to the extrapolated
distance to where the platform lies approximately 100
m above the surrounding ocean floor (=34 and 38
km, for Mauke and Mitiaro, respectively; see Robert-
son and Kibblewhite, 1966).

An adaptive Simpson’s rule (Shampine and Allen,
1973) was used to provide a more efficient numerical
integration (as compared to a conventional Simpson’s
rule) given that the integrands, in general, decrease
rapidly with increasing 7. Note that the first term in
Eq. (6) is the closed-form solution for the gravitational
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Fig. 9. Modelling results for the island of Mitiaro. Dashed vertical
line denotes island’s radius of equivalent area. Solid circles denote
Bouguer anomaly values. Solid lines are forward models using the
following densities. Upper: p.=2.90 g/em® (Ap.=1.87 g/em?).
Middle: p.=2.89 g/em® (Ap,=1.86 g/em?). Lower: p.=2.88 g/cm®
(Ap.=1.85 g/em®). For all three cases, pPp=2.40 g/em’ (App,=137
g/cm®). Upper short-dashed line corresponds to p,= pPp=2.67 g/em?
(Ap.=Ap,=1.64 g/em®) and lower to p.= pp=2.40 g/em®
(Ap.=Ap,=134 g/em?).
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attraction along the surface of a semi-infinite cylinder
(see Eq. (AS5) in Appendix A).

Figs. 8 and 9 display the results of modelling for
Mauke and Mitiaro, respectively. The best-fit models
assume a high-density core of 2.89 g/em® (Ap.=1.86
g/em®) surrounded by a less-dense outer platform of
2.37 and 2.40 g/em?, respectively (Ap,=1.34 and
1.37 g/em®). The modelled density of the core falls
within the range of wet density determined for six
samples of massive olivine basalt (2.86—3.04 g/cm®,
Robertson, 1967a). The modelled densities for the
outer platform are consistent with vesicular and clastic
basalts.

The modelling is intended to demonstrate the tech-
nique only and the results do not necessarily represent
the best fit of the data. More complicated geologic
models that include, for example, flexure of an elastic
(Brotchie, 1971; McNutt and Menard, 1978) or a
viscoelastic (Beaumont, 1978) lithosphere in response
to surface loading caused by islands themselves can
also be easily accommodated by the proposed techni-
que. Solutions to surface-loading problems are usually
given in terms of vertical deflection as a function of
radial distance (and time for the viscoelastic case).
Using the disk technique to calculate the corresponding
gravitational effect would require a recasting of
parameters combined with time consuming root-find-
ing in order to perform the necessary integration in
the vertical direction. Similarly, the solutions to a
variety of other physical problems that are cast in a
like manner are also better suited using the procedure
based on cylindrical shells (e.g., the gravity response
associated with drawdown in an aquifer where the
drawdown solution is given as a function of radial
distance).

4. Generalization to arbitrary orientation

In the following, a general procedure is outlined
to calculate the gravitational attraction of an arbitra-
rily oriented solid of revolution with constant den-
sity. This procedure is based on vector analysis of
the vertical and radial components of attraction
combined with coordinate transformation. The verti-
cal component is given by Eq. (3) and the radial
component (assuming constant density) is derived in
Appendix B.

An integral expression for the radial component of
gravitational attraction due to a solid of revolution has
the form

ol
=29 [yt @ -7

ST PR PR

where the variables are as previously defined. This
solution, based on the disk technique, contains only
complete elliptic integrals of the first and second
kinds and thus is easier to numerically implement as
compared to an equivalent expression based on cylin-
drical shells which requires integrating the lambda
function (see Egs. (B6a—6¢) in Appendix B). Taken
together, Eqs. (3) and (8) provide the requisite vector
components needed to calculate the attraction of an
arbitrarily oriented solid using the following scheme.

\. R nOYtb

N>

~

Fig. 10. Body (unprimed) and survey (double primed) coordinate
systems adopted for an inclined solid of revolution. The azimuth, ,
is the angle between north and the X axis. The deviation, V, is the
angle between vertical and the 7 axis as measured in the xz plane.
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Initially, define two right-handed coordinate sys-
tems (termed body and survey) that have a common
origin located at the top and center of the solid (i.e.,
{={"=0) as depicted in Fig. 10. For convenience,
unprimed notation is adopted for the body system and
double-primed notation for the survey system. The Z
axis is defined to coincide with the rotational axis of
the body while for the survey system, the X", y” and
2" axes correspond to north, east and vertically down-
wards, respectively. Further, define an azimuth, w, as
the angle between north and the X axis, and a devia-
tion, \, as the angle between vertical and the 7 axis as
measured in the xz plane. The positive sense of both @
and y is counterclockwise as viewed toward the origin
along the negative direction of Z and X, respectively.

The coordinates of an observation point in the
survey system (x”, )", Z”) are translated to the body
system (7, z) according to

X cosw sinw 0 X’
y | = | —sinwcosyy  coswcosy  siny | | )
z sinwsinyy ~ —coswsiny  cosy | | 2’

©)

where » = /x% + 32 Egs. (3) and (8) are now used to
calculate the vertical and radial components of grav-
itational attraction in the body system, noting that
gdx, y, z1=g[r, O]cosO and g[x, y, z]=g,[r, 0]sin0,
where 0=tan ~ ' [y/x]. The gravitational attraction in
the survey system is determined by using the inverse
of the 3 X 3 matrix in Eq. (9) such that

g cosw —sinwcosy  sinwsiny e
gy | = | sinw  coswcosy —coswsiny | | gy
o 0 sinys cosys g
(10)
from which
gy = gxCosw — gysinwcosy + g:sinwsiny, (11)
gy = gSinm + g,cosmwcosy — g cosmsiny, (12)

and

g = g,siny + g.cosy. (13)

For brevity, the notation for the functional arguments
has been omitted in the above expressions and will be
excluded hereafter.

As an example, Fig. 11 shows the results of
modelling an inclined finite-length cylinder with
w=0 and y ranging between 0 (i.e., rotational axis
oriented vertically) and 90° (i.e., rotational axis lying
horizontally in the yz plane). For convenience, we
have defined the deviation to be relative to the rota-
tional axis of a vertically oriented cylinder and not
according to the general geologic definition of dip
which is the angle with respect to the horizontal plane.
For the latter definition to apply, one needs to replace
Y in Egs. (3.9) and (3.10) with — (}y — 90°).

16.0 —
14.0 3

12.0 H

g.[r,z] (mGals)
1 |

I[I[[I[l[llllllllll

-12.0 -8.0 -4.0 0.0 4.0 8.0 12.0
”n
" (km)

xz plane

0

Fig. 11. Vertical gravitational attraction of an inclined finite-length
cylinder for various values of deviation, i, and with the following
parameters: density contrast, Ap=1 g/cm?; depth to center of top of
cylinder, |Z”’| =2 km; radius, a=1 km; length, /=4a=4 km; and
azimuth, ®=0°.
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The present scheme is particularly convenient for
modelling the vertical gravitational attraction of a
finite-length horizontal cylinder. This attraction (Eq.
(13) with y=90°) is given as

g7 =8y
= g,sinf

:_&:ina/ol {\/(a+r)2+(z—z)2

x [(1 —%‘2>K[kl] —E[kl]} }dé_j (14)

where / is the length of the cylinder. This solution is
easy to numerically implement. Alternatively, a
closed-form solution can be derived using Eq. (B3c)
(see Appendix B) and superposition to yield

s = {Z (7 — ) (Aol k] — Aol k)
+ (zb — z)\/(a +r)’ 4 (2 —2)°
L2224 (z — 2)?
y (E[kb] _ Z(a : rz)z :(ibb_ Z)i K[kb]>
~ -+ @2
B 20 + 217 + (z — 2)°
x (E[kt] P K[kd) } (15)
where

Fig. 12 gives percent differences between solutions
for finite-length and infinite-length horizontal cylin-
ders. The latter is commonly used in modelling to
approximate a variety of features such as anticlines
and tunnels. The comparison indicates that significant

yll/a
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Fig. 12. Percent difference in vertical gravitational attraction versus
normalized perpendicular distance (i.e., along y” axis) between
finite- and infinite-length horizontal cylinders. Each pair of solid
and dashed curves corresponds to a specific normalized length, //a,
of cylinder. Also, solid curves correspond to a normalized depth-to-
center of cylinder, |Z”|/a=2, while the dashed curves =5. Cal-
culations were made along profiles that were oriented perpendicular
to the midpoint for each finite-length cylinder (e.g., for the upper pair
of curves with //a =50, calculations were made for a profile crossing
the midpoint at 25).

errors may result when using the infinite-length sol-
ution to model finite-length features.

5. Extension to magnetic case

The static magnetic field due to a magnetized solid
of revolution can be derived from its gravitational
field through Poisson’s relation which can be written
as (Garland, 1951; Grant and West, 1965, Eq. (8-4), p.
213)

M, D

F, =t "
! Gp Boc,g

(16)
where F, is the anomalous magnetic field intensity,
either remanent (t=“p”) or induced (t=i"), M, is
magnetization and o, is in the direction of magnet-
ization. The above relation assumes a homogenous
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mass distribution in which both M, and p are constant
throughout the body. Note that for the magnetic case, it
is convenient to define a right-handed coordinate sys-
tem such that X” is directed towards magnetic north
(and not geographic north as was adopted for the case of
gravity) and Z” is positive downward. We have retained
the double-primed notation for the survey coordinate
system to avoid confusion with the systems that have
been previously defined for the case of gravity.

For the moment, consider induced magnetization
only. The direction cosines are

d d d d
aoc,»_lax”era)/’Jrnaz” (17)
where |=coslycosDy, m=coslysinD,y, n=sinl, and
(Do, Iy) are the magnetic declination and inclination
of the Earth’s field, respectively. Substitution of Eq.
(17) into Eq. (16) yields the following expressions for
the components of the anomalous magnetic field
intensity

M; 0 0
AXY =211 y 18
Gp { ax’ +m 8)/’ }gx’ ( )
M; 0 0 8
AY" =111 1
and
M; 0 0 8
Az =24 . 2

The total anomalous magnetic field intensity due to
induced magnetization is given as

ATI-” — \/AX'Z_I/Z +AY,-”2 +AZ,'”2. (21)

For a body with vertical magnetization ([o=90°,
I=m=0, n=1), Eq. (21) reduces to

M; dge\* (g \ [dgr)’
AT[” — )
Gp \/(05) +(M a7

(22)

A similar set of expressions can be written for
remanent magnetization. The direction cosines are

0 d 0 0
—=L—+M—+N
doy ox” + 9y’ + oz

(23)

where L=cos I cos D, M=cos I sin D, N=sin [ and
(D, I) are the magnetic declination and inclination of
the remanent magnetization, respectively. The total
anomalous magnetic field intensity can be obtained
from the vector sum of the induced and remanent
components.

The magnetic effects due to solids of revolution
can be numerically calculated in a straightforward
manner by incorporating the expressions for gravity
that were derived in the previous section. Solutions
for a vertical cylinder and horizontal circular lamina
have been given by Singh and Sabina (1978) and
Singh et al. (1979), respectively.

6. Concluding remarks

Simple integral expressions have been formulated
and a numerical technique presented to describe the
gravitational attraction due to any solid of revolution.
The technique is easy to implement and only requires
algorithms that are readily available. The main
advantage of the technique is that numerical integra-
tion is performed with respect to the radial direction as
opposed to the vertical. As a result, axisymmetric
solutions that describe various physical problems
(e.g., gravitational effect due to lithospheric deflection
near seamounts, gravitational response associated
with hydraulic testing of groundwater aquifers, etc.)
are easily handled that otherwise would require time
consuming root finding using existing techniques that
are based on disk-type solutions. Solids with compli-
cated geometry or consisting of composite shapes—
such as the modelling of volcanic islands—are easily
accommodated through superposition. In addition,
the technique can be used to determine the attraction
of solids with constant density and arbitrary orienta-
tion through coordinate transformation that considers
both vertical and radial components of attraction. An
example of this case is an inclined finite-length
cylinder which can be used to model the effects of
tunnels.
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Appendix A. Gravitational attraction of solids of
revolution: parameters and special cases

The use of solids of revolution, although in some
instances a gross simplification, is instructive in for-
ward gravity modelling various geological features.
Examples include mountains and volcanoes (cone),
atolls and guyots (frustum), salt domes, batholiths and
solution cavities (cylinder), circular depressions such
as impact craters and lakes (inverted cap) and volcanic
roots (inverted cone).

Table Al lists the defining parameters needed to
numerically evaluate the vertical component of grav-
itational attraction for various solids of revolution
using Eq. (3). Table A2 lists the parameters to
calculate the radial component using Eq. (8). Figs.
A1-9 provide schematic diagrams with appropriate
notation for these solids. Finally, Eqs. (A1-37) are
special solutions that are given without derivation.
Some of these are cross-referenced with equivalent

solutions available in the literature. Note that P
denotes the point of observation.

A.1. Vertical semi-infinite circular cylinder

P along vertical axis (r=0, p'[F']=po(4+Br +
Ccr2y).

g:(0, z; {] =2nGp, (A + % —C( - 2)2)

x a4+ ({—z)* —A(L —2)

L B-2’, (-2
2 a+/a+ (C—2)?
e
(A1)

where p is density at the center and the units of 4, B
and C are dimensionless, L ~ !, and L ~ 2, respectively.

Table Al
Parameters for calculating the vertical component of gravitational attraction for various solids of revolution
Solid of revolution Figure Limits of integral Z[r] Z[r']
Right circular cylinder Fig. 1 (Part 1) 0—a b b+1
Right circular cone Fig. Al 0—a, b+r £ b+l
Frustum® Fig. A2 0—a, b+c a}’ b+c+l
a — ay b+r’ai bt+c+l ;
Inverted right circular cone Fig. A3 0—a b ' b+l—v o
Inverted frustum® Fig. A4 0—a b b+l .
ap— ay b b+l+c—r -
Spherical cap Fig. AS 0—+/2a, — I2 b—y/a2 —7? b—ag+l
Inverted spherical cap Fig. AS 0—+/2al — 12 b+a,—1 b+y/a2 — 7 2
Oblate or prolate spheroid Fig. A6 and 0—h bf%v Wy b+£\/ Wy
Fig. A8
h
Oblate or prolate Fig. A7 and 0~ Vvl — 12 bfi\/ n— 2 b—v+l
spheroidal cap Fig. A9 P N
Inverted oblate or Fig. A7 and 0——V2vl — 2 b+v—1 bJer h—7 2
prolate spheroidal cap Fig. A9 v

? Two integrals are required to define the top surface.
® Two integrals are required to define the bottom surface.
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Table A2

Parameters for calculating the radial component of gravitational attraction for various solids of revolution

363

Solid of revolution Figure Limits of integral ald']
Right circular cylinder Fig. 1 (Part 1) b—b+l a a
Right circular cone Fig. Al b—b+l (CLb)T
a
Frustum Fig. A2 b+c—b+c+l (C’*b)?t
Inverted right Fig. A3 b—b+l a
circular cone (b+l—C')7

Inverted frustum Fig. A4 b—b+l ap

(b+l+c7C’)?
Spherical cap Fig. AS b—as—b—as+l

Va— b=y
Inverted spherical cap Fig. A5 b+as—I1—b+ag

Oblate or prolate spheroid® Fig. A6 and Fig. A8

Oblate or prolate
spheroidal cap

Fig. A7 and Fig. A9

Inverted oblate or
prolate spheroidal cap

Fig. A7 and Fig. A9

b—v—b

b—b+v

b—v—b—v+l

b+v—I—b+v

a — (¢ —b)?

Mooy

< |l <>

< | >

V= (b =)
V= (@ —by?

? Two integrals are required to define radial variation.

P at center of top surface (r=0, z={, p' [F']=
po(A+Br +Cr?)).

Bds*: Cd?
20, ¢ (] = 2nGp0{Aa +T“+Ta} (A2)

P at edge of top surface (r=a, z=_, p'[r']= po(4 +
BY +CF?)).

g:la, §; (]

Ba [l =\ 5Ca
4Gpoa{A+7a<5+G>+ 9a} (A3)

where G is Catalan’s constant (= 0.91596559).

g &

(Talwani, 1973, Eq. (39))

& G Uy = 4Gp{ (a0 |

P along top surface (p’ [r']= p =constant).

a—+r

Vﬂ _rgm}

= ZGP{(a - r)K[ﬁ] +(a+ r)E[;/ﬁ} }
(A4)
(Nabighian, 1962, Eq. (9))
&lr, & {,, = 4Gpak [ﬂ (A5)
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Axis of
Symmetry
|
| P
I
| T
i -1z]
(0,0) !

| i
]

Fig. Al. Schematic diagram for right circular cone.

el = some[2] - (1))

(Singh, 1977, Eq. (8))

P at edge of top surface (r=a, { —z=0, p'[//]=
p = constant).

gz, & {] =4Gpa (A8)

P along vertical edge (r=a, p’' [F']= p=constant).

gla, z; (]

_ sz{ 42 + (¢ — 2)°Elky] fg(c - z)}

(A9)
(Talwani, 1973, Eq. (35))
Axis of
Symmetry
|
|
| P
!
|
! -1z]
(0,0) !

|

i‘—ab_’i

Fig. A2. Schematic diagram for frustum.
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Axis of

Symmetry g0, 2] = ZnGp{z —[A-(b-2)]

x cos’at (b — z)sin®acosa

AT \/a + PF(b—z)coso
xIn (b — z)(1Fcosu) ] }

(Al1)

Axis of
Symmetry

Fig. A3. Schematic diagram for inverted right circular cone.
A.2. Right circular cone

P along vertical axis (r=0, p’ [r']= p=constant).

g:[0, 2] = 2nGp{ 1 — [A = (b - 2)]

x cos?a+ (b — z)sin®ocosa

(b —z)(1£cosu)

A+ /a} + >+ (b — z)coso

X In

(AIO) Fig. A4. Schematic diagram for inverted frustum.
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Axis of A.3. Frustum
Symmetry P along vertical axis (r=0, p’[/]= p = constant).
!
| P 2:10, Z]
|
i T =2nGp{ | — (4 — B)cosa+ (b — z)cosasin’
! -1z|
(0,0) : < In Bt\/at + 2+ (b — z)cosn
T = A E A+y/a? + (c+ 1>+ (b — z)cosa
Iad :
I™ A (A13)
! Zz
!
|
Axis of
Symmetry
|
} P
| T
|
i -12]
0,0) |

Fig. AS. Schematic diagram for spherical and inverted spherical

caps.

where 4 = \/a?
gives one form of this solution with p=ay,, d=b —z,

H= /& +Pandr = /a+ (b—z+1).
P at vertex (r=0, b—z=0, p' [//]=p=constant).

2.0, z] = 2nGpl(1 — cosa)

=2nGp

\/a* + (b — z+ 1)*. Duska (1958, Eq. (5))

1—

i !
! —— |
(A12) i |

2 12
\ @ T . L .
Fig. A6. Schematic diagram for oblate spheroid.
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Axis of
Symmetry

Fig. A7. Schematic diagram oblate and inverted oblate spheroidal
caps.

2:[0, z] = 2nGp{ | — (4 — B)coso* (b — z)coso

\/ﬁ

tz AF (b—z)cosoc

— Z CoSsa

x sin®aln

(A14)

where Z:\/alz)—i—(b—z—i—c—f—l)2 and B=

\/a? + (b—z+c)*. Duska (1958, Eq. (7)) gives

one form of this solution with =0, p,= at, O1= ay,
a=1l,¢c=b—z+c,d=b—z,1n=A4 and r,=

P at centerpoint of top surface (r=0, b+c—z=0,
o' [F']1= p=constant).

2.0, z] = 2nGp I — {\/aﬁ + 12— at] cosa + esin’o
\/ @t + 2cosa + esin®o + 1

a;coso + csin’a

X cosodn

(A15)

Axis of
Symmetry

Fig. A8. Schematic diagram for prolate spheroid.
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Axis of
Symmetry

Fig. A9. Schematic diagram for prolate and inverted prolate
spheroidal caps.

P at apex of extrapolated cone (b —z=0, p'[/]=
p = constant).

.10, 7] —ZnGp{l— @+ (c+1)

—4/at2+02

cosoc} (A16)

A.4. Inverted right circular cone

P along vertical axis (r=0, p’ [#']= p = constant).

g0, 2] = 2nGp{l - [(b —z+1) —A} cos’a

+(b — z + [)sin*acoso

“1n Fi\/atz +Pt(b—z+ l)cosa] }

(b —z+1)(1%cosa)

(A17)
&0, 2] = 27tGp{l - [(b —z+1) —Z} cos’a

+(b — z + [)sin*acoso
xln[ (b—z41)(1Fcosa) 1}

A++/a} +PF(b—z+ I)cosu
(A18)

where 4 = 1/a? + (b —z)*. Duska (1958, Eq. (9))

gives one form of this solution with f=o, p=a,
c=b—z, d=b—z+I, H=+\/a’+ [ and ry, =
A+ (b—z+1)7>

P at centerpoint of base (r=0, b—z=0, p'[//]=
p = constant).

g0, z] = ZnGpsinoccosoc{at + [+ accosa

|

atl Cltl
= 2nGp | -2 [T
i p(ale) {a‘Jr RV
2 2 -
« In ll(— V“””)] } (A19)

coso (1 Fcosa)
sino(1 sina)

a(vVa*+ Pta)

A.5. Inverted frustum

P along vertical axis (r=0, p’ [']= p = constant).
g:[0, Z]
= 2nGp{l — (4 — B)cosa
+(b — z + ¢ + I)sin®ocoso

‘I Fcosai(b —z+Dx(b—z+c+ l)sinzoc} }
BeosaF (b —z)%(b — z + ¢ + )sin’a

(A20)
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&[0, 7]
= 27er{l — (4 — B)cosa

+(b —z + c + I)sin*acosa
" ln{ Beosat (b — z)F (b — z + ¢ + )sin®a }}

Acosot(b—z+ ) F(b —z+ ¢+ [)sin’a
(A21)

a2+ (b-z+0)* and B=

\/a? + (b —z)*. Duska (1958, Eq. (10)) gives one
form of this solution with f=a, p,=a;, p1=ay, a=1,
c=b—z,d=b—z+c+I[ r,=B and r=A.

where 4=

A.6. Spherical cap

P along vertical axis (r=0, p’ [ ]= p=constant).

g0, z] = % {ag —3(as—1)(b— 2)2

+2(b—2)" + [ + (@, = (b - 2)

~2(b —2)2} \/(b —z—ay)* +20(b —z)}
(A22)

4
g:[0, z] = gnGpl

24y +b—z—\J(b—z—a)? +21(b-2)

[b—z—as—&—\/(b—z—as)2+2l(b—z)]2
(A23)

X

(Duska, 1958, Eq. (13))
P at vertex (r=0, b —z=a,, p'[r']= p=constant).

:00, z] = 2nGpl {1 - % 2—1} (A24)

as

P at vertex of half sphere (r=0, [=a,, p' [/ ]=p=
constant).
V2

g:[0, z] = 277:Gpas{1 — T} (A25)

P along vertical axis of cylinder with spherical cap
(r=0, p'[']= p = constant).

g0, z] = %{ai +3(b _2)2 (c —z

— \/Zasl—lz+(c—z)2) —(b-z2)°
+\/(b—z—a5)2+21(b—z)

X [ag + (as—1)(b—z) + (b —2)2} }
(A26)

where c is vertical distance between origin and bottom
of cylinder.

A.7. Inverted spherical cap

P along vertical axis (r=0, p’ [ ]= p=constant).

g0, z] = 35?5;'2)2 {a;’ —3(as = 1)(b 72)2

—2(b—2z) - [ag —(as—1)(b—2)

—2(b —2)2] \/(b —z4a)* —2I(b —z)}
(A27)

4
&[0, z] = gnGpl2

25— (b—2) + /(b= +a, —2I(b—2)

X 2

[b—z+as\/(b—z+as)2 _2U(b—2)
(A28)

(Duska, 1958, Eq. (15))

P at centerpoint of base of inverted cap (=0,
b—z=1—a, p'[F]=p=-constant).

2nGp
3(as—1)°

x {ag — (a5 — 1)* = (2a5l — 12)3/2} (A29)

&z [07 Z] =

MacMillan (1958, #6, p. 22) with x=a, — L.
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P at centerpoint of inverted half sphere (=0,
b—z=0, [=a,, p'[/']=p=constant).

g0, z] = nGpas (A30)
A.8. Oblate spheroid

P along vertical axis (=0, A>v, p/ [F']=p= con-
stant).

h?v
&0, z] = 4nGp <m)

{ b_Z _Il hz_vz‘|}
X <1 — tan
h* —?2 b—z

(A31)

MacMillan (1958, p. 18) with a=h, c=v, z=(b — z),
K =G, o=p and change of sign.

A.9. Oblate spheroidal cap

P along vertical axis (r=0, h>v, p'[f/]=p= con-
stant).

.00, 2] =2nGp I — (v— (b —2z) + A4)

2 VI (b — z)
x (11— -
h? —2 (h2 — v2)3/2
W2l
V—h*— W+ — —v(b—2)
v

I =22 + (b — 2’
v — h? —v(b z)

I =22 + (b — 2’

-1

X | sin

—sin~!

(A32)

— h?
where 4 = \/V—2(2v1—12)+(b—z+l—v)2.

A.10. Inverted oblate spheroidal cap

P along vertical axis (=0, h>v, p/'[F']=p= con-
stant).

2.[0, z] = 2nGp I — (v+ (b —2) — A)

n? vh*(b — z)
X [1-— —
h? —2 (h2 — 2)3/2

Wl

v — h? lv—i———i—v(b z)
x | sin™!
I =22 + (b — 2
— h? b—
— sin”! v i v( 2)

I =22 + (b — 2

(A33)

— h?
where 4 = \/vz(ZVl —PY 4 (b—z+1—v).
A.11. Prolate spheroid

P along vertical axis (r=0, v>h, p'[F']=p= con-
stant).

(A35)
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A.12. Prolate spheroidal cap

P along vertical axis (r=0, v>h, p'[F']=p= con-
stant).

2[0, 2] =2nGp I — (v— (b —z) + 4)

<14+ s N Vi (b — z)

V2 — 2 (V2 _ h2)3/2
P v vy S )
x In V2 — b2
- / v(b—z)
A 7 O I I St
R CR (B R =

(A36)
B )

where 4 = (vl —P)+ (b —z 41 —v)*

V2
A.13. Inverted prolate spheroidal cap

P along vertical axis (r=0, v>h, p'[F']=p= con-
stant).

200, z] =2nGp{ 1 — (v+ (b —z) — A)

><<1+ » >+(vh2(b—z)

V2 — K2 2 h2)3/2
b—Z—‘y—V-i—W/Vz—hz—l—M
I V2 — K2
X n
- / v(b—z)
A+ VWV —n(1-2) +———L
v < V>+vv2—h2

(A37)

_ h?
where 4 = \/—(2vl—lz)+(b—z+l—v)2.

12

Appendix B. Radial component of gravitational
attraction due to vertical, semi-infinite, circular
cylinder and horizontal circular disk of
infinitesimal thickness

The gravitational potential at [r, z] of a semi-

infinite cylinder with constant density is (Singh,
1977, Eq. (4) with /=~ and change in sign)

Ulr, z; {]

o J —n({—z2)
g [ AT
0

where J,[x] is the Bessel function of order p and
argument x and other variables as previously defined.
Noting that

Jo' [rm] = —nJi[rn],

the radial component of gravitational attraction has the
form

oU
gr[”, Z, (] - 87"
%0 —n({~z)
= —27tGpa/ Silanlilrmle dn.
0 n

(B2)

This integral is of the Lipschitz—Hankel type and has
been evaluated by Eason et al. (1955, Eq. (4.9)). The
resulting closed-form solutions are

gi‘[r’ Z; C]r<a

N (R N e

(2a® + 2% + ({ - 2)%)

X Elky] —({—2)
Viatry +(¢-2?

Klki]

+ = (a* — 1) Ao[¢.ki] (B3a)

]
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gl z (-,
— —% na® + ({ —2)\/4a? + ({ — 2)°Elki]

(4a® + ({ —2)))

(-2
4a? + ({ - z2)

Kk (B3b)

gr[r’ z; C]r>a
- _Grp{naz + (C—Z)\/(a+r)2 + (-2

(2a® +2r% + ({ - 2)%)

x Elk] = ({—2)
V6@t + (-2
x K[k] +g(r2 —az)/lo[qb,kl]}. (B3c)

Along the top of a semi-infinite cylinder (i.e., z={)
with constant density, Eqs. (B3a—3c) reduce to

gr[l’, Z; C]r<a = —TEGpr (B4a)

&lr, z; {,_, = —nGpa (B4b)
a2

el 0. = n0p( ). (Bde)

The radial component of gravitational attraction
caused by a vertical, semi-infinite, circular cylindrical
shell can be obtained from Eq. (B2) by superimposing
two semi-infinite cylinders with slightly different radii
Aa and then shrinking this difference to zero. In this
case, the volume—mass density, p, is replaced with a

surface-mass density, o, such that ¢ = pAa but remains
nonzero as Aa — 0. Taking the derivative of Eq. (B2)
with respect to a yields

9
g, 2] = so&ln 7 {Aa

= —2nGaa/ Jolan)Jy[ry)e " dy.
0
(BS)

This integral has the closed-form solutions (Eason
et al.,, 1955, Eq. (4.7))

gz O,
a ((—2)
— 2Gq(%)! - Klki]
(I") \/(a+r)2+(§_z)2
+ g/lo[qs’kﬂ (B6a)
"Mz O,
EYER F N (k)
402 + (L —2)*
WK|——2t (B6b)
4a? + ({ —2)*
shell

+ 5 Aol k] - (B6e)

The radial component of gravitational attraction
caused by a horizontal circular disk of infinitesimal
thickness is obtained from Eq. (B2) by superimposing
two semi-infinite cylinders separated by the vertical
distance A{ and then shrinking this distance to zero.
For this case, the volume—mass density is replaced
with a surface-mass density such that o=pA{ but
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remains nonzero as A{ — 0. Taking the derivative of
Eq. (B2) with respect to { yields (see Eason et al.,
1955, Eq. (4.2))

g2 = — gl = (AL
= —271Gaa/9O Jilan)Ji[rmle " dy
0
=25 Jarrp -7
k2
x{<1—2‘>K[k1]—E[k1]}. (B7)
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