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Abstract

Horizontally layered (1D) earth models are often assumed as a model estimate for the interpretation of geophysical data

measured along 2D geological structures. In this process, the individual data sets are usually inverted independently, and it is

considered only in a later phase of interpretation that these local (1D) models have common characteristic features. Taking

account of these common attributes, instead of the successive independent interpretations, the lateral variations of geometrical

and petrophysical parameters can be efficiently determined for the whole 2D structure by applying a series expansion. Using

global basis functions, two advantages can be achieved: (i) choosing an appropriate number of basis functions helps us to

restrict the complexity of the model; (ii) the integration of all the data sets measured along the profile gives rise to the

application of simultaneous or joint inversion methods. This results in a decrease of the number of independent unknowns, a

higher stability during the inversion and a more accurate and reliable parameter estimation. In this paper, a joint inversion

algorithm is presented using DC geoelectric apparent resistivities and refraction seismic travel times measured along various

layouts above a 2D geological model. To describe lateral variations series, expansions are used, and furthermore, to improve the

often used approximation of a (locally) 1D forward modelling, the integral mean value of the horizontally changing model

parameters (calculated along an appropriately defined interval) is introduced. We call the inversion procedure that combines

series expansions and the concept of integral mean Generalised Series Expansion (GSE) inversion. The method was developed

and tested for both the simultaneous (integrating data sets of one method or methods on the same physical basis) and the joint

inversion (where data sets of methods on different physical bases are joined together), using synthetic and field data sets. It is

also demonstrated that the equivalence problem inherent in the independent inversion of DC geoelectric data can efficiently be

resolved by the use of the joint GSE inversion method in the cases of conductive and resistive equivalent geological models.

D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Geophysical data are often interpreted assuming

horizontally layered geologic models. Beard and

Morgan (1991) demonstrated that 1D inversion can

provide acceptable estimates in constructing con-

toured cross sections in case of significant 2D subsur-

face structures. The 1D geoelectric inversion often has

internal nonuniqueness and ambiguity problems

(Koefoed, 1979). To reduce these difficulties, various

regularization procedures are used (Lines and Treitel,

1984, Tarantola, 1987). An efficient way to overcome

internal ambiguities is the use of the joint inversion,
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which means the integration of various groups of data

records (arising from physically or geometrically

different methods and surveys) into a single inversion

algorithm. The joint inversion algorithm was intro-

duced by Vozoff and Jupp (1975) for magnetotelluric

(MT) and DC resistivity data and extensively studied,

e.g. by Yang and Tong (1988) and Dobróka et al.

(1991), who integrated DC geoelectric and VSP data,

and Hering et al. (1995). Kis et al. (1995) proposed a

joint inversion method for the interpretation of seismic

surface wave dispersion, refraction and DC geoelec-

tric data. Joint inversion based on global optimization

was also applied by Kis (1996, 1998, pp. 51–73) for

1D DC resistivity and refraction seismic data, and

Sharma and Kaikkonen (1999) for 1D EM and DC

measurements.

Instead of the independent (1D) interpretation of

geophysical data measured with different layouts

above an approximately 2D structure, the lateral

variations of geometrical and petrophysical parame-

ters (such as resistivities, velocities and densities) can

efficiently be determined by combining series expan-

sion methods and (simultaneous or joint) inversion

algorithms. The advantages of the Series Expansion

(SE) inversion were demonstrated by Dobróka (1994),

who applied the Wentzel–Kramer–Brillouin (WKB)

solutions (Morse and Feschbach, 1953) for the inter-

pretation of seismic dispersion data for 2D structures,

using a 1D approximation in the forward modelling.

The inversion was formulated for the coefficients of a

series expansion, where power functions and cell-wise

constant functions were applied as basis functions.

Gyulai and Ormos (1997, 1999) developed a

simultaneous SE inversion of DC sounding curves

with power and periodical basis functions (called

1.5D inversion), Kis (1998, pp. 73–99) applied

simultaneous and joint SE inversion for the interpre-

tation of DC geoelectric and seismic refraction data,

pointing out and examining the improvement possi-

bility of the approximate 1D forward modelling

applied in SE inversion methods, introducing the

integral mean concept to the SE inversion. Simulta-

neous and joint SE inversion were also applied by

Ormos et al. (1998), Kis et al. (1999, 2001), Dobróka

et al. (2001) and Török and Kis (2001) for the

interpretation of geoelectric and seismic data.

In this paper, DC geoelectric apparent resistivities

and refraction seismic travel times measured along

various lines parallel to the strike direction of the 2D

geologic model are integrated into a joint inversion

algorithm. To describe the variation of the geomet-

rical and petrophysical parameters, a series expan-

sion method is used. In our approach, we introduced

the integral mean of these functions calculated for an

appropriately chosen interval instead of the local

values of the functions expressing the lateral change

of thickness and petrophysical parameters, respec-

tively. These laterally averaged quantities serve as

model parameters in the 1D forward modelling. We

call the inversion method, which applies series

expansion in combination with the concept of inte-

gral mean, Generalised Series Expansion (GSE)

method. In our investigations, Chebyshev polyno-

mials and interval-wise constant functions are used

as basis functions. The algorithm was constructed

for both the simultaneous and the joint inversion

versions and tested using synthetic and field data

sets. It is also demonstrated that the equivalence

problem of the DC geoelectric inversion can effi-

ciently be resolved by the use of the joint GSE

method.

2. Simultaneous and joint SE (and GSE) inversion

In order to expand the Generalised Series Expan-

sion (GSE) method, we used the notation in Fig. 1,

where the measurement layout is shown. The x-axis of

a Cartesian coordinate system is directed parallel to

the dip direction, while the measurement lines are in

the strike direction. In this case, the thickness and the

petrophysical parameters are functions of the x and z

coordinates only. We solved the 2D inverse problem

using the data of all layouts.

As an example, let us consider the thickness of the

ith layer below the jth measurement line. In 1D

forward modelling, it is reasonable to define it as

the local value of the hi(x) thickness function at the

point x = xj,

h
ðjÞ
i ¼ hiðxjÞ; ð1Þ

as it is considered in the SE algorithm (Gyulai and

Ormos, 1997, 1999).The thickness functions and the

petrophysical parameters are to be discretized. Let us

assume Uk(x) to be a (usually orthogonal) set of basis
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function of a series expansion and, for instance, write

the thicknesses in the form of the series expansion

hiðxÞ ¼
XKh;i

k¼1

B
ðkÞ
i UkðxÞ; ð2Þ

where Bi
(k)’s are the expansion coefficients and Kh,i

are the number of coefficients for the thickness

functions.

On the other hand, it is obvious that not only the

local thickness beneath the xj coordinate (Eq. (1))

participate in determining the data set measured along

the measurement line positioned at xj but all the

thickness within a certain interval around this xj
coordinate. Because of this, in order to improve the

SE algorithm using the 1D approximation where the

series expansion is formulated for the local thickness

values, we substituted the actual thickness with the

integral mean

ĥ
ðjÞ
i ¼ 1

2D

Z xjþD

xj�D
hiðxÞdx; ð3Þ

where D is an appropriately chosen distance defined

along the x-axis.

This approach serves for providing a more com-

plete ‘‘lateral sight’’ for the GSE method incorporat-

ing the lateral parameter changes, in spite of applying

the 1D approximation in the forward modelling. It is

also obvious that in the course of application the GSE

algorithm is capable of giving back the SE method by

choosing the extreme case of D! 0.

Formulating the series expansion (Eq. (2)) for the

integral mean thickness (Eq. (3)), it can be written

as

ĥ
ðjÞ
i ¼

XKh;i

k¼1

B
ðkÞ
i Sk;j; ð4Þ

where

Sk;j ¼
1

2D

Z xjþD

xj�D
UkðxÞdx: ð5Þ

In the following, we expanded the joint inversion

algorithm called Generalised Series Expansion (GSE)

method, which is based on the combination of the

series expansion and the integral mean formulae.

Besides the improvement, the GSE inversion

method keeps the advantage of the SE algorithm,

namely that the (mean) thicknesses along all the

measurement lines are expressed by the same

expansion coefficients. This results in a reduction

of the number of independent unknowns (relative to

the number of data) and a higher stability in the

inversion.

The basic assumption of the GSE inversion algo-

rithm is that 1D calculations are used for the forward

modelling (using the mean model parameters) but the

unknowns are the expansion coefficients of thickness

functions (representing the whole 2D variation of

boundaries) as well as the petrophysical parameters

(assumed to be laterally constant at this step of

constructing the algorithm).

In the present study, the lines along which the

geoelectric and seismic measurements have been

carried out are parallel to the strike direction of the

model. The method needs further improvement in the

future, e.g. for the two-variable (superficial) series

expansion or combined application of regularisation

equations (Gyulai, 2000) in order to be applicable for

the more common case of layout directions, e.g. being

parallel to the profile direction.

The flowchart of the algorithm is presented in Fig. 2.

In this approach, if all the different data sets are

integrated in the joint GSE inversion, the combined

calculated and measured data vectors are given as

Fig. 1. The model and layouts assumed in the GSE inversion.
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follows. Let us denote the calculated data vector (
!
dcðjÞq)

as

dtc
ðjÞq ¼ gtqðpt; xj; stqÞ; ðq ¼ 1; . . . ;QÞ; ð6Þ

and the measured data vector (dtm
ðjÞq ) belonging to the

qth geophysical method at the measurement line

placed at the coordinate xj. stq denotes the positional

parameter of the datum, e.g. s1,k(AB/2)k in case of the

kth VES data (in case q = 1), and s2,k= rk, the source-

geophone distance in case of refraction seismics

( q = 2). Q is the number of the methods involved in

the joint inversion.

In the case that all the data integrated in the

inversion procedure are of the same physical nature

(Q = 1), we speak of simultaneous GSE inversion.

Integrating the data measured by all the Q methods

at a certain xj, the combined data vector is to be

defined as

dtc
ðjÞ ¼ fgðjÞ1;1; . . . ; g

ðjÞ
1;N1

; . . . ; g
ðjÞ
Q;1; . . . ; g

ðjÞ
Q;NQ

gT; ð7Þ

similarly to Dobróka et al. (1991). In case of GSE

joint inversion, the data sets represented in Eq. (7) are

ordered in the sequence of j = 1,. . .,J as

dtc ¼ fgð1Þ1;1; . . . ; g
ð1Þ
Q;NQ

; . . . ; g
ðJ Þ
1;1 ; . . . ; g

ðJ Þ
Q;NQ

gT: ð8Þ

The same form is applied for the measured data:

dtm ¼ fdð1Þ1;1 ; . . . ; d
ð1Þ
Q;NQ

; . . . ; d
ðJ Þ
1;1 ; . . . ; d

ðJ Þ
Q;NQ

gT: ð9Þ

In order to construct the joint inversion algorithm, we

have to introduce the combined parameter vector,

which must contain the local or integrated parameters

or simply the expansion coefficients, which represents

the functions of parameters. For instance, combining

the DC geoelectric sounding (VES) and seismic

refraction methods, we get:

pt ¼ fĥð1Þ1 ; . . . ; ĥ
ð1Þ
n�1; . . . ; ĥ

ðJÞ
1 ; . . . ; ĥ

ðJ Þ
n�1;

q1; . . . ; qn; vp1; . . . ; vpngT; ð10Þ

Fig. 2. The simultaneous and joint SE/GSE inversion algorithm.
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where qi, and vpi are the resistivity values and the

velocity of longitudinal waves for the ith layer

(i= 1,. . .,n), respectively, which are assumed to be

laterally constant at this step.

If we assume a more general geologic case in

which the model is laterally (weakly) inhomogeneous,

the GSE parameter vector should also be modified.

Expanding the resistivity function q(x) in terms of the

same Uk basis function as in Eq. (2), we find

qiðxÞ ¼
XKq

k¼1

B
ðkþKhÞ
i UkðxÞ: ð11Þ

Using the integral mean as a more realistic approx-

imation in 1D forward modelling, we can introduce

the local (mean) resistivity at x = xj as

q̂ðjÞ
i ¼

XKq

k¼1

B
ðkþKhÞ
i Sk;j; ð12Þ

where Sk,j is given in Eq. (5). Similarly, assuming a

laterally (weakly) varying P-velocity (vp(x)), we can

write

v̂
ðjÞ
pi ¼

XKa

k¼1

B
ðkþKhþKqÞ
i Sk;j: ð13Þ

The more general parameter vector combined for joint

GSE inversion can similarly be written as

pt ¼ fBð1Þ
1 ; . . . ;B

ðKhÞ
1 ; . . . ;B

ð1Þ
n�1; . . . ;B

ðKhÞ
n�1 ; . . . ;

B
ðKhþ1Þ
1 ; . . . ;B

ðKhþKqÞ
1 ; . . . ;BðKhþ1Þ

n ; . . . ;BðKhþKqÞ
n ; . . . ;

B
ðKhþKqþ1Þ
1 ; . . . ;B

ðKhþKqþKaÞ
1 ; . . . ;BðKhþKqþ1Þ

n ; . . . ;

BðKhþKqþKaÞ
n gT: ð14Þ

The calculated data given in Eq. (8) are nonlinear

functions of the elements of the model parameter

vector (Eq. (14)). Using global optimization methods,

we search for a solution by minimizing directly a

certain norm of the prediction error vector et ¼ dtm

� dtc.

If one tries to use the faster linearized methods, the

function expressing the connection between the calcu-

lated data and the model parameters need to be

approximated by its Taylor series truncated at the

linear term. Minimizing the L2 norm of the normalized

prediction error vector f i ¼ yi �
PM

k¼1Gikxk, one can

get the normal equation

GTG x
t ¼ GT y

t; ð15Þ

where

yi ¼
dmi � d

ð0Þ
i

dmi
; xk ¼

dPk

p
ð0Þ
k

;

Gik ¼
p
ð0Þ
k

dmi

Bdci
Bpk

� �j
pt¼ ptð0Þ

; dPk ¼ ðpk � p
ð0Þ
k Þ ð16Þ

and ptð0Þ is an initial estimate of the parameter vector

as it is often used (Dobróka et al., 1991). In the

relative prediction error vector f, the deviation of data

( yi) and parameters (xk) are normalized after the

magnitudes of data and parameters participating in

the inversion. Applying this normalized equation set

based on f, one can avoid the biasing effect of the

different orders of magnitudes of data that should be

handled together during the joint inversion. In the

following investigations, the algorithm will be tested

in the faster linearized version.

The choice of the basis functions (Eq. (2)) mainly

depends on the geologic model, which usually

requires prior knowledge. In this paper, we apply

two specific kinds of basis functions, the Chebyshev

polynomials of the kth order (Tk(x)) and interval-wise

constant functions defined as

UjðxÞ ¼
1; if xaVj

0; if xgVj

8<
: ð17Þ

where Vj denotes an interval around the point x = xj.

3. Numerical investigations

In order to test the reliability and accuracy of the

GSE inversion method, we used synthetic and field

data sets. In this paper, data of the seismic refraction

and DC geoelectric sounding (VES) methods are

integrated in the GSE inversion process.

For the generation of synthetic data, we defined a

two-dimensional model, shown in Fig. 1, where:

h1ðxÞ ¼ 2þ e�ð2:5xÞ2 ; ð18Þ

h2ðxÞ ¼ 4þ 2e�ð2xÞ2 : ð19Þ

The petrophysical parameters given in Table 1 are

independent of x.
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For simplicity, the x coordinates are transformed to

the interval of [� 1,1]. The geoelectric data are

calculated in a Schlumberger array for 30 logarithmi-

cally equidistant points from 0.5 to 300 m. The

refraction travel times are generated for 50 geophone

arrays assuming equidistant geophone layouts with 5

m distance between the source and first receiver and

1.5 m between the neighbouring ones.

Theoretical data were calculated by using 2D and

3D finite difference forward codes, for which I wish to

express my special thanks to Dr. Á. Gyulai, Dr. T.

Ormos, E. Prácser (Eötvös Loránd Geophysical Insti-

tute) and Ms. I. Török. The data are contaminated by

1% random noise.

3.1. Results based on the use of interval-wise constant

functions

We start our investigations with the special case of

the GSE method, using the interval-wise constant

functions as basis functions. This particular case

provides the opportunity that the expansion coeffi-

cients, given by the GSE inversion, can be directly

interpreted as the local thicknesses of the layers (Eq.

(4)). Accordingly, the covariance matrix COVð ptÞ ¼
r2ðGTGÞ�1

, where r2 is the variance of the data

(Menke, 1984), also has a direct meaning; its elements

characterize the reliability of the direct petrophysical

and geometrical parameters ( pt) of the problem.

Numerical tests were carried out to investigate how

the accuracy and reliability of the GSE parameter

estimation depend on the number of measurement

lines in the cases using a single VES method and

jointly using the refraction seismic method with VES.

In order to quantify the accuracy of data fitting of

the different procedures used in the numerical inves-

tigations, the relative data distance E

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

dmj � dcj

dmj

 !2
vuut ð20Þ

is used, where N is the number of data. To characterize

the accuracy of the parameter estimation, we use the

relative model distance D

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
j¼1

pexactj � pestimated
j

pexactj

 !2
vuut 
 100% ð21Þ

(Dobróka et al., 1991), and Dh, calculated for the local

thickness beneath the measurement lines

Dh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nh

XNh

i¼1

hexacti � hestimated
i

hexacti

� �2

vuut 
 100%; ð22Þ

where M is the number of the model parameters and

Nh is the number of the local thickness. In order to

quantify the reliability of the parameter estimation,we

used the mean variance MV

MV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
i¼1

COVii

vuut ð23Þ

(COVii denotes the parameter variances, Menke,

1984), and the correlation norm T, defined as

T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MðM � 1Þ
XM
i¼1

XM
j¼1

CORRij � dij
� �2vuut ; ð24Þ

where CORR denotes the correlation matrix,

CORRij ¼
COVijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

COViiCOVjj

p ; ð25Þ

and dij is the Kronecker symbol.

In Fig. 3a–d, the results concerning the different

numbers of measurement lines are shown, for the

cases of the simultaneous (geoelectric VES) and the

joint (refraction seismic–geoelectric) inversion.

The results demonstrated that increasing the num-

ber of measurement lines ( J) involved in the simulta-

neous or joint GSE inversion, the quantities D and Dh

(characterizing the distance in the model space, or the

accurate fitting between the exact and estimated

values of the model parameters) monotonically

decrease, demonstrating a definite improvement in

Table 1

The parameters of the exact model used in the numerical test

i q [V m] vp [m/s]

1 25 700

2 50 1500

3 100 2300
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the accuracy of parameter estimation. The same ten-

dency can be observed for MV and T qualifying the

estimation of the inversion, which indicates a more

reliable parameter estimation.

As an example, for J = 7, the exact thickness

functions are given by solid lines in Fig. 4, while

the estimated local thicknesses based on the simulta-

neous inversion and on the joint inversion are given

by squares and circles, respectively.

3.2. Results based on Chebyshev polynomials

Chebyshev polynomials are often used in geo-

physical applications. Their use has also appreciable

numerical advantage in the framework of the GSE

method. Here, the basis functions will be defined as

Chebyshev polynomials and the set of equidistant

integration intervals will be chosen to cover the whole

range of interest along the x direction without over-

lapping. In our numerical test, we assumed three kinds

of measurement arrays with J = 21, J = 11 and J = 7

measurement lines.

As a first step, we tested the discretization error of

the GSE method. We generated a noise-free VES data

and reconstructed the thickness functions of the geo-

logical model. The results are given in Fig. 5 at

various orders (P) of the Chebyshev polynomials.

As it is shown, the GSE inversion is unacceptably

inaccurate below the order P= 4 even in the case of

noise-free data. So in the later tests, we use Cheby-

Fig. 3. (a–d) The qualifying results of the simultaneous and the joint GSE inversion in the function of the number of the measurement lines ( J).
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shev polynomials of order P= 5 and P= 7. We must

note that choosing an appropriate order (P) has great

importance as the higher order the better fit we have,

but at the same time, the number of the unknowns is

increased comparing to the number of measurement

lines ( J).

Fig. 5. The discretization error when Chebyshev polynomials are used in the approximation of the depth functions ( P is the order of the

polynomials).

Fig. 4. The results of the simultaneous (rectangles) and joint (circles) GSE inversion based on interval-wise constant functions ( J= 7).
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In order to characterize the reconstruction accuracy

of the thickness functions, we introduced:

Df ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nf ðn� 1Þ
Xn�1

j¼1

XNf

i¼1

hexactj ðxiÞ � hestimated
j ðxiÞ

hexactj ðxiÞ

 !2
vuut

 100%; ð26Þ

where

xi ¼ �1þ ði� 1Þ 2

ðNf � 1Þ ;

n is the number of layers and Nf is a sufficiently large

integer (Nf = 101 in our investigations). The quantity

Df serves to measure the relative distance between

the exact and the estimated thickness functions

along the whole interval (� 1,1) and not only at

points at which the measurement lines are posi-

tioned.

Figs. 6 and 7 show the results of the simulta-

neous and joint GSE inversion for P= 7 and P= 5,

respectively. It can be seen that the fewer measure-

ment lines ( J) are applied the more the accuracy

decreases.

In Fig. 8, we showed the results based on 21

measurement lines, applying Chebyshev polyno-

mials of order P= 7. As it was shown in Fig. 5,

the discretization error is almost negligible in this

case, and therefore, Fig. 8 shows the effect of noise

only.

Fig. 6. The results of the simultaneous and joint GSE inversion

at various number of measurement lines (polynomial order is

P= 7).

Fig. 7. The results of the simultaneous and joint GSE inversion

at various number of measurement lines (polynomial order is

P= 5).
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The results show that the accuracy of joint GSE

inversion increases approximately by a factor of 2

relative to the simultaneous inversion.

4. The resolution of geoelectric equivalence

problem by means of GSE joint inversion

It is well known that the interpretation of DC

geoelectric data has internal ambiguity and equiva-

lence. This problem is well established in 1D geo-

electric inversion (Koefoed, 1979). In order to resolve

the equivalence problem, various kinds of geoelectric

data were integrated in joint inversion algorithms

(Raiche et al., 1985; Sharma and Kaikkonen, 1999).

It was shown by Hering et al. (1995) that the internal

ambiguities of the geoelectric method can efficiently

be resolved by integrating seismic surface wave data.

Carrying out the ambiguity and equivalence exami-

nations also has a great importance for the GSE

method.

The appearance of geoelectric equivalence has two

basic types. In the first case, called H-type or con-

ductive equivalence (Koefoed, 1979), a conductive

layer is embedded between two more resistive layers

(qbqi� 1,qi + 1). The sounding curves of two or more

H� type models of this kind can be equivalent if there

is no difference in their lateral conductance (Si = hi/qi),
though the hi and qi parameters of the two or more

structures can be completely different.

Fig. 8. The results of the simultaneous (rectangles) and joint (circles) GSE inversion based on Chebyshev polynomials ( J= 21, P= 7).

Fig. 9. The model (thickness functions) used for the simulated

equivalence investigations.
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If a resistive layer is embedded in the structure

(qbqi� 1,qi + 1), the effect of this layer can be char-

acterized by the transverse resistance Ti= hiqi. Sim-

ilarly, the sounding curves of two or more K-type

models (Koefoed, 1979) can be equivalent if their Ti

are equivalent. This phenomenon can be called K-type

or resistive equivalence.

In both cases, the difference between the equiv-

alent layer structures cannot be interpreted using DC

geoelectric measurements only. In the first case of

equivalence when a single DC geoelectric inversion is

carried out, only the lateral conductance (Si), while in

the second case, only the transverse resistance (Ti)

may be determined. While there is a functional con-

nection between the thickness and the resistivity of the

equivalent layer, it is impossible to have enough

information to separate these parameters, which are

perfectly correlated by their product or ratio during

the inversion.

For a unique separation, one needs a priori knowl-

edge about either the resistivity or the thickness of the

layer. In this section, the resolution of both types of

equivalence phenomena will be investigated with the

help of seismic refraction–DC geoelectric GSE joint

Table 2

(a) The local values of the thickness functions at the five x

coordinates chosen for the measurement layouts

x= 0 x= 0.2 x= 0.4 x= 0.6 x= 0.8

h1(x) [m] 5.000 4.779 4.368 4.105 4.018

h2(x) [m] 6.000 5.704 5.055 4.474 4.155

(b) Resistivities and longitudinal velocities of the layers, used for the

simulated conductive equivalence investigations

qi [V m] vpi [m/s]

200 700

10 1500

200 2200

Fig. 10. (a–c) The results of the conductive equivalence investigations. (a) Functional connection between the thickness and resistivity of the

second layer at the five measurement lines during the simultaneous (numbered lines, 1,. . .,5) and joint (circles) GSE inversion. (b) Model-and,

(c) data distances during simultaneous (squares) and joint (circles) GSE inversion for the first measurement line ( j = 1).
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inversion, in which the common thickness parameters

can provide additional information to resolve the

problematic parameters.

4.1. Resolution of conductive-type equivalence prob-

lem

In this investigation, an H-type model was defined

(Fig. 9; Table 2a,b) and synthetic DC geoelectric and

seismic refraction data sets were generated along five

measurement profiles by using 2D and 3D finite

difference forward codes with the x coordinates of

{0, 0.2, 0.4, 0.6, 0.8}. The data are contaminated with

1% random (Gaussian) noise. The accuracy and reli-

ability of parameter estimations were examined by the

help of the simultaneous and joint GSE inversion

using cell-wise constant base functions. Though the

simultaneous geoelectric GSE inversion was started

from the most favourable model (the exact model,

shown in Table 2a,b), at either measurement line, a

stable solution was not achieved. In Fig. 10a, the

estimated parameters q2 are presented in the function

of the parameters h2 during the iterations of the

inversion with numbered solid lines (1,. . .,5) at the

five measurement lines. Fig. 11 shows that the lateral

conductance (S2,j = h2,j/q2,j) remains constant during

the iterations ( j denotes the measurement lines,

j = 1,...,5). The curve shows functional connection

between the estimated parameters h2,j–q2,j during

all steps of the inversion, which is proved by the

value of the correlation between these parameters

(CORR(h2,j,q2,j) = 1). It means that in this case, the

single inversion is able to determine the ratio of these

parameters and it is impossible to resolve their correct

values. At different measurement lines, the simulta-

neous geoelectric GSE inversion diverges along the

functions q2,j= kjh2,j, where the values of coefficient kj
are the reciprocal of the lateral conductances S2,j. It is

important to note that during the inversion, every

point (h2� q2 combination) of the above functions

Fig. 11. The results of the resistive equivalence investigations. Functional connection between the thickness and resistivity of the second layer at

the five measurement lines during the simultaneous (numbered lines, 1,. . .,5) and joint (circles) GSE inversion. The numbered arrows show the

estimated parameter-combinations of the joint GSE inversion.
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q2,j(h2,j) is a solution of the inversion in the sense that

the fitting of the ‘‘observed’’ and calculated sounding

curves characterized by the relative data distance (E)

is the best (and equivalent) estimate at every point,

though in the model space, the procedure diverges

from the exact model, characterized by the model

distance (D), which is continuously growing during

the iterations of the inversion. Demonstrating this, the

typical behaviour of the relative data distances (E) and

model distances (D) are shown in Fig. 10b,c as a

function of iteration steps by using the results of the

first line ( j = 1).

After carrying out the seismic refraction–DC geo-

electric joint GSE inversion (which was convergent),

the equivalence interval became smaller at every line.

One can see these results in Fig. 10 with circles. It is

obvious that the joint inversion follows the same

functions q2,j(h2,j), but the additional data set provides

more information about h2,j ( j = 1,. . .,5), and the

inversion process converges to the exact values and

reduces the equivalence intervals to a great extent.

Furthermore, the correlation values become more

Table 3

Resistivities and longitudinal velocities of the layers, used for the

resistive equivalence investigations

qi [V m] vpi [m/s]

10 700

200 1500

10 2200

Fig. 12. The measured VES sounding curves (circles) and the fitted data (continuous lines) calculated from the model estimated by the

simultaneous GSE inversion using Chebyshev polynomials. r denotes the half distance between current electrodes A and B.
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favourable, the functional connections (maximal cor-

relation) between h2,j and q2,j have disappeared.

Based on these results, it can be stated that the joint

GSE inversion is capable to resolve the inherent

geoelectric equivalence and to produce significantly

narrower equivalence intervals.

4.2. Resolution of resistive-type equivalence problem

For these investigations, a K-type model was

defined by the same thickness functions as presented

in the previous section (Fig. 9; Table 2a) and by

petrophysical parameters shown in Table 3. Similarly

to the previous examinations, synthetic DC geoelec-

tric and seismic refraction data sets were generated

along the five measurement profiles, which are con-

taminated with 1% random noise.

We examined the accuracy and reliability of

parameter estimation of the simultaneous geoelectric

and the seismic refraction–DC geoelectric joint GSE

inversion of these data sets. In Fig. 11. the estimates of

q2,j are presented as a function of h2,j during the

iterations at the five different measurement lines

( j= 1,. . .,5). The numbered lines denote the results

for the five measurement layouts of simultaneous

geoelectric GSE inversion. These results are similar

to those of the conductive equivalence investigations,

with the difference that, in this case—as it can be

seen in Fig. 11—the transverse resistances T2,j =

h2,jq2,j of the second layer remain constant during

the iterations, as the procedure diverges along the

functions q2,j = T2,j/h2,j. The correlation between the

resistivity and thickness values of the second layer

(CORR(h2,j,q2,j) =� 1) also shows the functional

(hyperbolic) connection.

The estimates of the refracted-geoelectric joint

GSE (started from a starting model with q2,j = 150

( j = 1,. . .,5)) are shown with circles for each layout in

Fig. 11. The numbered arrows show the estimated

parameter combinations of joint GSE inversion, which

stabilized close to the exact values.

Based on the results we found, the joint GSE is

successful in resolving the resistive-type equivalence,

too.

5. Field results

The numeric experiments presented above show

that the simultaneous GSE inversion method provides

stable and reliable estimates. It was shown that,

relative to the independent inversion of data from a

single VES layout, the accuracy of the parameter

estimation appreciably increases with the number of

layouts integrated into the GSE simultaneous inver-

sion. Because of this improvement in stability and

Fig. 13. The model resulting from the 1.5-D interpretation (after Gyulai and Ormos, 1997) and depths of layers below the measurement lines

estimated by simultaneous GSE inversions using fifth-degree Chebyshev polynomial (circles) and interval-wise constant (rhombuses) base

functions.
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reliability, the GSE method can efficiently be applied

in the interpretation of field data sets.

We used the simultaneous GSE to interpret the

geoelectric VES data sets measured at the Hungarian

village Korlat. The six measurement lines were

aligned with the strike direction of the approximately

2D geologic structure. The measured sounding curves

are presented in Fig. 12 by circles.

The data were previously interpreted by Gyulai and

Ormos (1997) by using the 1.5D inversion method.

The results of the 1.5D interpretation are shown in

Fig. 13 together with the depth values calculated from

the thickness functions estimated by GSE inversions

based on Chebyshev polynomials and piecewise con-

stant basis functions. It can be seen that there is a good

agreement between the depth curves calculated by the

1.5D and the GSE inversion, the latter being derived

independently.

The GSE inversion based on fifth-degree Cheby-

shev polynomials started from the initial model in

Table 4 yields the parameters shown in Table 5. The

close fitting (E = 3.4%) of the measured and calculated

data can be seen in Fig. 12.

The data set was also interpreted by means of GSE

based on interval-wise constant functions using the

starting model given in Table 4. The results are shown

in Table 6 and the corresponding depth values are

shown in Fig. 13 (rhombuses). The relative distance

between the measured and calculated data was

E = 4.6%. It can be seen that the two results found

by the simultaneous GSE method based on Cheby-

shev polynomials and interval-wise constant functions

were in good agreement.

6. Conclusions

A new joint inversion scheme for the interpretation

of DC geoelectric and refraction seismic data meas-

ured above 2D geologic structure was introduced and

analysed. The laterally varying model parameters

were discretized by series expansion. In the approx-

imate (1D) forward modelling, the integral mean of

the functions describing the laterally varying model

parameters were used. The data were assumed to be

collected along various measurement lines laid out

parallel with the strike direction of the 2D geologic

model.

It was shown that the proposed Generalised Series

Expansion (GSE) method results in a more stable and

reliable parameter estimation, compared to the local

(1D) inversion using only one data set collected

along a single measurement line. This is valid for

both cases of simultaneous and joint GSE inversion.

It was also shown that the geoelectric equivalence

problem (inherent in DC inversion) can be efficiently

resolved by integrating refraction seismic data sets

into the inversion in the framework of the joint GSE

method.
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of Love and Rayleigh wave group velocities, refraction travel-

times and DC apparent resistivities measured above a 2D geo-

logical structure. Publication of the University of Miskolc,

Series A, Mining, Geosciences 59, 23–39.

Koefoed, O., 1979. Geosounding Principles: 1. Resistivity Sound-

ing Measurements Elsevier, Amsterdam.

Lines, L., Treitel, S., 1984. Tutorial: a review of least squares in-

version and its application to geophysical problem. Geophysical

Prospecting 32, 159–186.

Menke, W., 1984. Geophysical Data Analysis: Discrete Inverse

Theory. Academic Press.

Morse, P.M., Feschbach, H., 1953. Methods of Theoretical Physics.

McGraw-Hill, New York.
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