Journal
of

Hydrology

Journal of Hydrology 265 (2002) 1-14
www_elsevier.com/locate/jhydrol

Estimation of formation hydraulic properties accounting for
pre-test injection or production operations

D.B. Silin, C.-F. Tsang”™

Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, MS90-1116, Berkeley,
CA 94720, USA

Received 13 July 2000; revised 3 December 2001; accepted 20 February 2002

Abstract

We propose to use regular monitoring data from a production or injection well for estimating the formation properties around
the wellbore without interrupting the operations. Thus, instead of shutting-in the well for a substantial time period, we propose
to select a portion of the pumping data over a certain time interval and then derive our conclusions from these data. A distinctive
feature of our analysis is that we introduce an auxiliary parameter to account for the possible after-effects of pumping that
preceded the test interval and, consequently, the non-uniform initial pressure conditions. We demonstrate that those effects
influence not only the analysis of regular operations data, but also the analysis of a traditional pressure drawdown or pressure
buildup test with a prior shut-in period. We show that phenomena usually attributed to wellbore storage or skin effects can be at
least partially interpreted through the parameter we introduce. Unlike some traditional methods, our analysis utilizes almost the
entire test time period for curve-fitting. It turns out that it produces good data matching even if the test period is short and the
frequency of measurements is low.

Another distinctive feature of the present approach is that the parameter estimation problem is reduced to a combination of
quadratic criterion minimization and a search for the minimum of a one-variable function. Because we can obtain the solution to
the quadratic problem analytically, we significantly simplify the problem and dramatically reduce the amount of computations
required. © 2002 Published by Elsevier Science B.V.
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1. Introduction

A pumping or injection well test is common prac-
tice in hydrology and petroleum engineering. It is
performed to estimate the formation hydraulic proper-
ties in the vicinity of the well. Normally, such a test
requires either maintaining a constant pumping rate or
a full shut-in of the well for a substantial period of
time prior to the beginning of the test. Here we
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propose to use regular monitoring data from a produc-
tion or injection well for estimating the formation
properties in the vicinity of the wellbore without inter-
rupting the operations. Thus, instead of shutting-in the
well for a substantial time period, we propose to select
a portion of the regular pumping data over a certain
time interval and then derive our conclusions from
these data. A new feature of the proposed approach
is that we introduce an additional parameter, an effec-
tive pre-test pumping rate, to account for the non-
uniform pressure distribution at the beginning of
testing time interval.

The theoretical background for well test analysis
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was established in the work of Theis (1935). Since
then, a substantial number of publications on the
subject have appeared. We do not present an exhaus-
tive reference list here, since the reader can find these
references in books by Earlougher (1977), Horne
(1990), Matthews and Russell (1967), Raghavan
(1993), Sabet (1991) and Streltsova (1988), and in
the survey by Ramey (1992). The bibliography of
well test literature published in Russian by mid-
1970s is presented in Kulpin and Miasnikov (1974).

The traditional methods for estimating formation
transmissivity and other parameters are based on
graphical matching of measured data (Bear, 1979;
Earlougher, 1977; Ramey, 1992). These approaches
involve simple analytical solutions of flow equations
that are valid for constant pumping rates and a
uniform initial pressure distribution around the well-
bore. Neither one of these conditions is met when we
analyze the regular operations data. The uniformity of
initial pressure distribution does not take place even in
the case of well test performed at constant pumping
rates with a preceding shut-in period. This fact makes
data matching difficult at early test times, that was
pointed out by many authors (Barenblatt et al.,
1990; Kulpin and Miasnikov, 1974).

Variable pumping rates can be incorporated into
well test analysis through Duhamel convolution inte-
gral (Kulpin and Miasnikov, 1974; Raghavan, 1993;
Streltsova, 1988), and algorithms and procedures
based on this approach are well-known (McEdwards
and Benson, 1981). In this paper, we propose a
method to account for non-uniform initial pressure
distribution. For our analysis, we use the well-
known solution to the radial flow equation for a vari-
able injection rate, and we introduce an auxiliary
parameter estimating an effective pumping rate before
the test.

In numerous practical cases presented in the litera-
ture, the poor matching of the measured data by a
computed curve at early points of the testing period
is usually explained by assuming formation damage
around the well (skin effect) and wellbore storage
effects (Earlougher, 1977). We demonstrate through
synthetic and practical examples that deviation of the
matching curve from the data will occur if the pre-test
pressure distribution around the well is not uniform.
Moreover, this deviation is very similar to that usually
interpreted with skin and wellbore storage effects.

The efficiency of our approach is immediately
confirmed by examples. For instance, we applied the
procedure described later to analyze a data set from a
pressure drawdown test performed at an injecting well
at a site in Ohio, USA. We analyzed only a part of the
original data by removing some early-time data
points. Thus, on the removed early data interval the
injection rate was known. Then, we processed the
remaining data with our parameters’ estimation proce-
dure. The data curve matched very well. Moreover,
the injection rate on the removed interval was esti-
mated with remarkably high accuracy. At the same
time, the skin coefficient that was evaluated was
much smaller than the one obtained independently
via traditional Horner plot analysis. Hence, it is extre-
mely important to account for pre-test pumping in
order to correctly separate the consequences of the
different effects and to obtain correct estimates of
the formation properties.

The paper is organized as follows. To make the
presentation self-contained, in Section 2, we briefly
overview the theoretical background of traditional
pumping test analysis. In Section 3, we perform an
error analysis to estimate the consequences of ignor-
ing the pre-test pumping. In Section 4, we produce a
modified approximate radial flow solution incorporat-
ing a new parameter: an effective pre-test pumping
rate. In Section 5, we discuss short-term transient
effects. In Section 6, we formulate the parameters
estimation problem. We develop an efficient estima-
tion procedure combining analytical calculations with
numerical minimization of a one-variable function.
We verify our method with a field example. In Section
7, we present our summary and conclusions on the
proposed pumping test procedure.

2. The background

In this section, we discuss the analysis of pressure
and injection rate logs for the case of pumping into a
vertically confined horizontal layer. We also discuss
the importance of wellbore storage and skin effects in
comparison to the impact of pre-test pumping. The
same analysis can be applied to analyze formation
properties around a producing well.

By pumping, in this and the following sections, we
understand both injection and withdrawal of fluids.
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Since we mostly focus at injecting wells, the pumping
rate is assumed positive if the fluid is injected into the
formation, and negative otherwise. We assume that
during the entire test period the injected fluid has
constant temperature, density, and viscosity.

The radial transient flow of liquid from an injecting
well into a formation is characterized by a parabolic

equation

’p 14 9
Ppy 1o _ ducdp 0
ar r or k ot

along with the following initial and boundary condi-
tions:

p(r,ty) = po (initially uniform pressures) 2
p(®,1) = po,
3)
t = t, (constant initial pressure at infinity)
. ap(r, 1) K
1 = - t
—" ar 2wkH o

“

(given variable flow rate Q(¢) at the wellbore)

(Earlougher, 1977; Kulpin and Miasnikov, 1974).
Here p(t,r) is the fluid pressure at the time ¢ and
distance r from the well, ¢ is the porosity of the
formation near the wellbore, w, the viscosity of the
fluid, k, the permeability, and the coefficient ¢ char-
acterizes the compressibility of water and rock
(Shchelkachev, 1959; Barenblatt et al., 1990). In Eq.
(4), H is the thickness of the injection layer. The solu-
tion to the initial and boundary value problem (1)—(4)
can be obtained using Duhamel convolution integral
(Carslaw and Jaeger, 1959; Tikhonov and Samarskii,
1963) and is given by

( B)

expl —
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0 t

pt)=pyt+A J Q(nydr )
where A and B are defined by A = w/(4mkH) and B =
((l)/J,cr&,)/(4k). Coefficients A and B are introduced to
simplify further calculations and are expressed in
transmissivity 7 and storativity S by A = 1/(4=wT),
B = (Srz)/(4T). Conversely, transmissivity and stora-
tivity can be expressed in A and Bby T = 1/4wA, S =
2BImr?A.

In a pressure fall-off test, a period of injection at a

constant rate, say @y, from initial time 7, =0 is
followed by a shut-in period starting at t = #; during
which the injection rate is either equal or close to zero.
Assuming no pumping before the test and therefore, a
uniform initial pressure distribution (as defined in Eq.
(2)), one obtains from Eq. (5):

B
n CXP _t—T
T

0 t—

Q() d’T, t= tl

(6)

mo=p0+AJ

Integration in Eq. (6) yields

p(t) = po = AQO(—Ei(— ; il ) + Ei(—?)) (7

If both B/(t — t;) and B/t do not exceed 0.01 (Abra-
mowitz and Stegun, 1965; Bear, 1979), then Eq. (7) is
usually approximated by

p) = po = 40y In( - ) ®)
t—1
Hence, the transmissivity coefficient A can be esti-
mated from the slope of the plot of p(f) — py versus
In(#/(t — 1)), which must be, from Eq. (8), a straight
line. This is a brief description of the Horner (1951)
method.

The argument above highlights several typical
assumptions usually made in traditional well test
analysis. In particular, the initial condition (2) implies
a uniform initial pressure distribution in the aquifer.
Therefore, the consequences of pumping before the
test period are neglected. Clearly, this initial pressure
uniformity assumption is not valid if the test is
performed on a well that has been pumped earlier.
Examples of pumping test analysis presented in litera-
ture (Bear, 1979; Earlougher, 1977; Matthews and
Russell, 1967; Ramey, 1992) confirm that there is an
on-set period of time in which the quality of data
matching is poor. This is usually attributed exclu-
sively to wellbore storage and skin effects. However,
we show later that the on-set time period can also be
explained by the non-uniformity of the initial pressure
distribution prior to the test.

To illustrate how pre-test pumping affects the pres-
sure curve, consider a synthetic example. Assume that
400 days of injection at a constant rate of approxi-
mately 272.5 m*/day is followed by a 408-h (17-
day) shut-in period. The pressures computed by
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Fig. 1. The upper graph shows injection rate in gallons per minute versus time in hours during a fall-off test. On the lower graph, the solid line
plots the pressures whereas the dashed line plots the computed pressures assuming no pumping prior to the test (1 psi = 6894.7 Pa).

solving the boundary-value problem (1)—(4) for the
entire 417-day interval will be our ‘measured’ data.
Let us assume that we were not provided with infor-
mation during the first 392 days after the start of
constant pumping and that we set the time of ‘data

x10°

P [Pa]

(a) log(t/(t-t,)) 10

measurement’ to begin at 8 days (192 h) before shut-
in. Then, accounting only for the 8 days of pre-shut-in
pumping, the solution will be different from the
measured one. In Fig. 1, both pressures from the 8-
day solution and the measured data are plotted from

— log [t/(t = 1')]

h\

As'

Alog [t/(t = 1))~ | \OB\O

(b) (s" = residual drawdown)

Fig. 2. Horner plot fitting of the fall-off pressures. Plot 2(a) is synthetic whereas plot 2(b) (Fig. 11-3 from Bear (1979)) shows an example of a

recovery test.
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Fig. 3. Synthetic pumping test data (a) and real pumping test plot from Earlougher (1977) (b) (1 psi = 6.8947 X 10° Pa). On both plots, pressure

(in psi) is plotted versus time (in hours) in semi-log scale.

the 393rd day of pumping through the end of shut-in
period. We set the initial condition for the ‘calculated’
pressures in such a way that both pressures are equal
at the beginning of the shut-in interval.

Now, if we plot the pressures on shut-in interval
versus In(#/(t — t,)), and then do the best fitting of
the measured pressures by a linear function on a
small later time interval, we get the result shown in
Fig. 2(a). The circles are the synthetic data points and
the straight line is the fitting by a linear function. The

x 10°

105

fitting is poor in the right part of the plot, i.e. for times
close to t,. The character of deviation from the straight
line shown on the synthetic plot, Fig. 2(a), is remark-
ably similar to the plot provided in Bear (1979) as an
example of a recovery test. Since the plot shown in
Fig. 2(b) from the book by Bear (1979) is qualitative
and has no units along the axes, our plot on Fig. 2(a)
also is presented in the qualitative form.

Another example is presented in Fig. 3, where we
present side-by-side a traditional matching of our

Pressure [Pa]

10' 10
log(t/(t-t .\ )

Fig. 4. Horner plot analysis of data from an Ohio site. The circles (coalescing into a thick solid line) correspond to the data and the straight line
is the result of Horner analysis performed by a service company. The deviation of the curve from the straight line is attributed to wellbore
storage and skin effects. The synthetic data are produced assuming zero skin coefficient but accounting for pre-test pumping and are plotted in

the same scale as diamonds.



6 D.B. Silin, C.-F. Tsang / Journal of Hydrology 265 (2002) 1-14

90

t, t,i Time

| (=]

[
~ >
~ >

Beginning phase | Test phase

Observation interval

Operations
start

Fig. 5. The scheme of a test interval.

synthetic data in semi-log plot and the data matching
for a real test as given in Earlougher (1977). The
synthetic data was produced by solving boundary-
value problem (1)—(4) assuming constant rate produc-
tion, followed by 350 h of well shut-in and then test
pumping at the rate of 272.5 m*/day. The similarity
between the two plots is clear. Note that in Earlougher
(1977), the deviation of the matching straight line
from the data points is attributed exclusively to well-
bore storage and formation damage effects, whereas
our calculations for this particular example assume
neither of these effects.

One more example confirming the importance of
accounting for pumping before the test is presented
in Fig. 4. Horner plot (diamonds) of synthetic data
remarkably mimics the Horner plot of real measured
injection pressure data (circles), see Section 6 for
further details. The synthetic data were generated
assuming no wellbore storage or skin effect; only
the after-effects of the pumping before the test were
accounted for.

To summarize, accounting for pumping that
occurred before a well test including a period of
shut-in and then pumping is important in analyzing
well test data. In Section 4, we propose a parameter
estimation method that accounts for the unknown or
uncertain flow rate before the test.

3. Error estimate

In this section, we rigorously analyze the model and
estimate the error introduced by neglecting the effects
of pumping that occurred before the test. Based on this
analysis, a modified solution to be used for a new

parameter estimation method will be developed and
analyzed in Section 4.

Denote by ¢ the elapsed time from the beginning of
pumping at the well to the moment when data begins
to be available. The injection pressures and rates are
measured on a time interval [fy,,] where only the
value of the difference #, — fy is known. The only
available information about the time ¢, is that estimate
ty > t, — ty holds true. Select a time ¢, such that 7, <
t; < t,. Let us estimate the influence of the pumping
prior to the beginning of measurements f, on pressures
over the time period [#,, #,] (Fig. 5).

Comparison between the solution (5) evaluated at 7,
and any ¢ (1; <t < 1) yields

expl ———
P tl_T
T

t —

B )]
ool 2)
+AJ’ QO(7dr,
0 -7

H=t=t

p(D) = plty) — A jo o(ndr

Eq. (9) expresses the pressures on the time interval
[#,1,] through p(#,), whose value is available through
measurements. Since the injection rate on the interval
[0, 7] is not known, we replace Eq. (9) by

B
n SXP _ll_T
T

fo =

( B

; expl ——

+AJ' t— T
)

where

p(5) = pl1y) — A J o(ndr

) O(ndt + R(?) (10)

11
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The remainder term R(f) can be estimated in the
following way. Let

B
o 1%)
S W —— A PP (12)

so that Q,..(f) is an effective injection rate for the
interval (0,17,) evaluated at time ¢ = ¢;. Note, that
O.v(?) in Eq. (12), in general, depends on ¢. Let Qy =
maxy, ;) Qave(t). Clearly, Oy does not exceed the
maximal injection rate on [0, #y]. From Eq. (12), we
get:

( B . B
R() = —AQO(El( - 7) - El( i to>

13)
_Ei(_B)m(_ B ))
L I — 1
Using estimates
exp
sy sy y)
El(——)—Ei(——)=J L dn
I t a1 n
B\t —t 1, —t
Sexp(—_) 2”h o hh (14)
t f f
and
B B
Bi( -2 ) B2, )
t— 1ty t—1

we get the following inequality:

h—1

R(t) = AQ0< B )tz —h

h—hJ)h—1

+ exp(— ) (16)

1

Inasmuch as t, — #; < t;, the principal term on the
right-hand side of estimate (16) is the second one. In
practically important cases, the exponential is close to
one. Thus, the main criterion of error is the ratio (¢, —
t)/(t, — to). For example, the relative error will be
guaranteed not to exceed 10% if the matching interval
[#1,%,] is 10 times less than the preceding part of the
whole observation interval [7, #,].

However, constraints exist on how small the inter-
val [#1, #,] can be. The measurements inevitably incor-
porate random errors. The impact of error is greater on
a smaller interval than on a larger one for at least two
reasons. First, for a smaller interval, we have fewer
sample data points, and averaging of errors may be
insufficient. Second, over a smaller interval the
measurement error can be comparable or even larger
than the variation of the pressure. Hence, changes in
pressure would be unobservable. Also, in our selec-
tion of the interval [#, f,] we need to comply with the
remarks in Section 5 (i.e. we must have
t, —t; > 4B).

4. Modified solution

In the Section 3, we estimated the remainder term
in Eq. (16). Here, we enhance our analysis and modify
Eq. (10) by introducing an effective pre-test pumping
rate parameter. As a consequence, the remainder term
estimate (16) is improved. We emphasize that we use
the same solution (5) to radial flow equation (1) that is
usually employed in the analysis of a pumping test.

Note that the significance of accounting for the
pumping prior to test was pointed out in earlier
works (Barenblatt et al., 1990; Kulpin and Miasnikov,
1974). However, the distinctive feature of our
approach is that we propose a constructive procedure
including estimation of the effective pre-test injection
rate parameter. Thus, we use the pre-test pumping rate
as a fitting parameter and recover an estimate of its
value.

To explain the idea, let us assume a constant injec-
tion rate Q_, on the interval [0, #y]. Then Eq. (9) can
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be formally transformed into the following:

B
PO = pitg) + AQ i~ )

0

( : )

exp| ———

_AJ’IO Ip— 7T
T
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B
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+A| — -T2
o=

t—

The last integral on the right-hand side of Eq. (17) can

be rewritten as

J’ (=)
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R.() = AQ_, (Ei(— %) —~ Ei(

If the injection rate is constant Q(f) = Q. only over
some part [f_1, #y] of the entire interval [0, )], then by
putting O_; = Q. and using an argument analogous
to the one we applied to derive estimate (16), we

term estimate (23) refines the earlier estimate (16).

O(ndr
0 t—T
obtain
B B
=0 (s(7=5) (7))
t= 1t f R.(1) SAQO( 214 exp(—
4
B
fo exp(— t— T)
] om0 Here
B Qo = max Q).
" exp(— p_— T) =Istog
+ _ 7 d 18
|, === o (18 Clearly,
max Q(f) = max Q(r)
Hence, from Eq. (17) we obtain 0=r=r_, 0=r=1
and t; —t_; =t — ty, and, therefore the remainder
p(0) = pity) — AQ Ei( 2 )
0

( : )
; expl ——
+AJ L=
f t—T

where

Thus, we replace Eq. (9) with an approximate equality

B
p(0) = plto) + AQ*lEi(_ p

( B

; expl ——

+AJ t—1
N t—T

O(ndr+ R.(t)  (19)

B
B eXp (_ H — 7) In many practical situations, the hydraulic conductiv-

X(Q(1) — Q_p)dr

o (o(-1)-

0

Similar to estimate (14), we obtain

(- 2)-af)

Hence, the last term in Eq. (20) is negligibly small as

to > t, — ty. The magnitude of the first term on the
O(r) — Q_pdr right-hand side of Eq. (20) can be minimized by an

appropriate choice of Q_;. For instance, if injection

rate Q(¢) is constant on the whole interval [0, ], i.e.

O(t) = Q., then by putting Q_; = Q, the first term in
Q(ndr an Eq. (20) cancels and the equation reduces to

ity around the wellbore can be considerably different
from that of the bulk formation. For example, the
hydraulic conductivity around the well can be artifi-
cially increased by acidization (Bidaux and Tsang,
B 1991). To account for such a phenomenon in well-
Ei(——)) (20) test analyses, the concept of skin effect was intro-

! duced (Earlougher, 1977). The skin effect is then
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usually handled by adding an additional pressure drop
proportional to the injection rate into the solution (5),
where the coefficient of the proportionality includes a
dimensionless skin factor. For our modified solution
(24), we obtain

B
PO = plig) + AQ B~ )
0

B
. exp(— - T) (25)
+ A J — O(ndt + sAQ(1),

f t—

H=t=t
where s is the skin factor.

In summary, given an injection rate Q(¢), the
(downhole) pressures on the interval [f;,f,] are
controlled by five parameters: p(t;), O-;, A, B and s.
In Section 6, we discuss how these parameters can be
estimated.

5. Remarks on short-term transient effects

In our solution, we have assumed zero wellbore
radius. It has been shown that in some situations,
e.g. in slug test analysis (Karasaki, 1990) it is impor-
tant to account for the finite wellbore radius. In such a
case, the solution to the radial flow Eq. (1) is more
complicated than the solution given by Eq. (5). It can
be obtained through the inverse Laplace transform of
a combination of Bessel functions (van Everdingen
and Hurst, 1949).

A rigorous asymptotic analysis of the influence of
wellbore radius on the distribution of pressures is
performed in Barenblatt et al. (1990). In particular,
it is demonstrated there that after a sufficiently long
time, the pressure distribution does not depend on the
wellbore radius and, therefore, we can use the asymp-
totic solution that coincides with the solution defined
by Eq. (5). In our context, sufficiently large r means
that 7 > (qbpwrfv)/k, where r,, is the wellbore radius.
In our notations, this condition can be rewritten as t >
4B. Hence, if the characteristic time scale of injection
rate variation is substantially larger than 4B, then the
solution represented by Eq. (5) is appropriate. In a
review of real data from an injection well (Section
6), we have found that the coefficient B obtained as
the result of data fitting was of the order of minutes.

Thus, a characteristic injection variation time of a few
hours is a reasonable lower bound. With this condi-
tion, in our analysis we can use intermediate asymp-
totics at r, — 0. In other words, instead of dealing
with the solution expressed through the inverse
Laplace transform of a combination of Bessel func-
tions, we can use a simpler solution from Eq. (5). The
high quality of fitting real data verifies the validity of
such approach.

Another important issue impacting the processing of
early-time pumping data is wellbore storage effect. In a
short-time transient pressure variation, the flow rate at
the bottomhole and at the tubing head may differ
because of the compressibility of the fluid in the tubing,
afterflow, etc. The time scale over which the wellbore
storage effect is important is estimated by Matthews and
Russell (1967) to be several minutes.

Accounting for wellbore effects is especially
important when the bottomhole pressures and injec-
tion rates are calculated from the measurements at the
wellhead. The accounting for wellbore storage can be
done straightforwardly using methods described in
detail by Matthews and Russell (1967) and Earlougher
(1977). In our studies here, we focus our attention on
the bottomhole pressures and assume that they are
already calculated, with due correction for wellbore
storage effects, see Eq. (2.18) in Earlougher (1977).

6. Parameters estimation and a case example

In this section, our purpose is to estimate para-
meters A and B. We use Eq. (25) and propose an
estimation procedure based on minimization of a
quadratic matching criterion. Three other parameters
in Eq. (25), O_1, p(ty) and s are also fitting parameters
to be estimated by our procedure.

Mathematically, we are looking for the minimum of
the functional

J= % Jtz wp(D)(p(r) — P*(I))zdt (26)

where p.() is the pressure measured on [#, ,], wp(?) is
a positive weight function, and p(¢) is defined by Eq.
(25). Although the measurements of pressures and
pumping rate is available on entire interval [#y,7,],
the matching is performed over a smaller interval
[#1,1,], which we call the matching test interval. The
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weight function wp(7) usually reflects the reliability of
the data obtained at different times. A higher weight
value is assigned on those portions of the matching
interval where the measurements are trustworthier. In
an example below, we put wp(f) identically equal to
one due to the uniform quality of the data set we
analyzed. More sophisticated function wp(f) can be
incorporated straightforwardly if needed.

The functional (26) depends on four parameters:
p(ty), O-1, A, B and s through Eq. (25), ie. J =
J(p(ty), O-1,A, B, s). Although p(#)) is the pumping
pressure at t = t, and its value is available, we keep it
as an estimation parameter. We do so because any single
measurement is subject to error, so that at r = ¢, the
measurement produces not exactly p(ty), but p(¢y) + &,
where ¢ is a measurement error. If we substitute p(t;) +
¢ instead of p(ty) in Eq. (25), then this error ¢ will be
present in the right-hand side for every ¢, therefore, it
will affect the quality of fitting. Allowing a slight varia-
tion of p(#) in the course of fitting the data over the entire
matching interval can actually correct the measurement
error at one particular point, because in this case the
result will be affected by the average error, which is,
presumably, negligible for a large data set.

Now we could straightforwardly apply a gradient
descent method for minimization of criterion (26)
depending on five scalar variables. Further analysis,
however, allows us to considerably simplify the
problem. Let us fix parameter B; then the minimiza-
tion with respect to the other four parameters can be
performed analytically. Let us denote

Zy = p(ty), Z, =AQ_y, Zy=A  Z,=As

27)

Clearly, given Z,, Z,, Z; and Z;, we can determine
p(ty), O-1, A and s, and vice versa. Substitution of
Eq. (27) into Eq. (24) and then into Eq. (26) yields

5]
J=1 j wo(D(Z + ¢(B:1Zn + ¢(B; D,
1

(28)
+(B; )Zy — p.(0)*dt
where
B;t) = Ei| — B
g( ) ) - 1( — tO ),
B
. exp(— R T) (29)
wB.0) = J —— = 0(ndr,
to t—T
W(B; 1) = Q)

For a fixed B, the functional (28) is quadratic with
respect to Z,, Z,, Z3, and Z,. Consequently, its mini-
mum can be explicitly calculated. Indeed, the neces-
sary and sufficient condition for minimum with
respect to Z; is obtained by equating to zero the
derivative of the functional J in Eq. (28):

t t
J wp(2)dtZ, +J wp()g(B; t)dtZ,

1 t

+ JtZ (D) o(B; NdiZy + r WO W(B; 1A1Z,

_ J: Wwp(t)pa(D)dt (30)

The minima with respect to Z,, Z; and Z, can be
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Fig. 6. Example of analysis of injection data: injection rate versus cumulative time.
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Fig. 7. Example of fitting pressure curve: the circles are the data points and the solid line is the fitting curve. The estimated skin factor is equal to

—0.07.

analyzed in a similar way. Thus, we obtain a system of
four linear equations similar to Eq. (30) with four
unknown variables. Such a system can be solved
analytically, for example, using the Cramer’s rule.

As a result, we express Z;, Z,, Z; and Z, through B
analytically: Z; = Z,(B), i = 1,2,3,4, and the criter-
ion (28) reduces to a function of one variable

fBy=1 f wo((Zy(B) + g(B; 1Z>(B)

+@(B; 1)Z3(B) + Y(B; Z4(B) — p.(1))*dt
€29

which can then be minimized numerically via a
simple procedure, such as a Golden Section method.

Note that the minimization procedure we propose
here does not include an iterative gradient descent
method and allows us to avoid dealing with stiffness
of the problem coming from large variations in magni-
tudes of the coefficients.

Kulpin and Miasnikov (1974) proposed a procedure
of estimating the storativity and transmissivity coeffi-
cients from analysis of a multiple flow rate test. Their
procedure does not use logarithmic or Horner time
scale and in this respect is similar to the one we
described earlier. However, Kulpin and Miasnikov,
in their calculations, neither include a parameter
characterizing the pumping rate prior to the test, nor
estimate the consequences of neglecting it. Moreover,
in their calculations they assume that this rate is equal
to zero (Kulpin and Miasnikov, 1974, p. 43). In our

approach, the pre-test pumping rate is one of the
fitting parameters and in Sections 3 and 4 we estimate
how the calculations are affected if this parameter is
ignored. The practical importance of this parameter is
demonstrated on data from a real practical field case.

Let us consider an application of the method
described earlier to the analysis of data from an inject-
ing well in Ohio, USA. The computations have been
performed using our code Operation Data Analysis
(ODA), which incorporates the method described
earlier.

The injection well is located in a formation consist-
ing principally of finely crystalline dolomite, sandy
and argillaceous dolomites. The confining zone
formation consists of finely crystalline limestone.
The wellbore perforation intervals in the well were
located at depths between 1669 and 1764.5 m. The
base of the packer was set at 1661.7 m depth. The
perforation is in protective casing of 17.8 cm (7 in.)
diameter. Core analysis of injection interval indicates
porosity varying between 0.5 and 5%. The nearest
other injection well is located at a distance of about
700 m.

The test was performed as follows. After a short
shut-in of about 4.5 h, pumping was conducted at an
approximately constant rate of 360 m'/day for
approximately 90 h except a short break at about
15 h after the pumping started. Then the well was
shut in for approximately 100 h, see Fig. 6. Informa-
tion about operations prior to the present test is not
available. For our analysis, we selected only a part of
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Fig. 8. Example of fitting pressure curve: the circles are the data points and the solid line is the fitting curve. The skin effect is neglected.

the data from about 90-h time interval starting after
approximately 60 h since the beginning of data acqui-
sition. Thus, in term of time elapsed from the begin-
ning of measurements, we get t, = 60 h, t, = 150 h,
and we selected #; = 90 h. Due to this artificial trun-
cation of data, we know that the injection rate was
fluctuating between 354.3 and 362.5 m’/day with a
short rate temporary drop-down about 35 h before ¢,
The injection pressure and rate were measured every
minute. For our analysis, we selected only data points
at intervals of about half an hour, so that the analyzed
data file is much smaller than the entire set of
measurements. We performed data fitting two times:
assuming a skin effect and assuming zero skin effect.
The results are presented, respectively, in Figs. 7 and
8. In both cases, the matching curve and data curve
almost coincide over the entire time interval. The
estimated skin factor is equal to —0.07, i.e. is very
close to zero. Remarkably, the pre-test injection rate
was estimated very close to the measured value at
360.3 m*/day with account for skin effect and at
362.5 m*/day with zero skin effect. This fact confirms
the physical sensibility of the parameter we intro-
duced. The estimated coefficients A and B, and conse-
quently the transmissivity and storativity, are very
close to each other in both cases. Moreover, variations
of 1, t; and 1, did not lead to substantial changes of the
results, although the storativity coefficient varied
more than the transmissivity. Note, that for Horner
plot analysis only a small interval of data at later
time can be used.

Coefficient B, having dimension of time, was esti-

mated at 5.5 min if skin effect is accounted for and at
8.4 min otherwise. The transmissivity estimate that
came with the data was obtained by Horner plot
analysis. It is estimated at 3.68 [d-ft/cp] with skin
factor s = —4.4. Our estimate of transmissivity is
2.78 [d-ft/cp] with skin factor s = —0.07, Fig. 7. In
kinematic transmissivity units, the results are 9.2 and
6.9 m*/day, respectively. If the skin effect is ignored,
we get T =2.6 [d-ft/cp] (6.5 m%day; Fig. 8). We
think that the difference between our estimates and
the other estimate is the result of the high sensitivity
of Horner plot method with respect to the selection of
‘straight’ segment of the curve, see Fig. 4. The result
obtained by our method is accurately reproduced even
with a wide range of choices of values of #,, #; and f,.
Overall, the Horner analysis yields a significantly
larger negative value of skin factor. The value of s =
—4.4 from Horner analysis compared with ours s = 0
indicates probably an erroneous picture of the skin
effect in the vicinity of the wellbore.

7. Conclusions

In this paper, we have revisited methods of well test
analysis. We use regular pumping operation logs instead
of specially designed tests in order to monitor the forma-
tion hydraulic properties in the vicinity of wellbore. In
our analysis, we select a section of pumping data that we
further divide into two parts: the observation interval
and the matching or test interval. We emphasize the
importance of appropriate accounting for the after-effect
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of the pumping done prior to the testing. For this
purpose, in addition to traditional transmissivity and
storativity coefficients, we introduce a new parameter
which characterizes an effective pumping before the test
and use this parameter in the data fitting procedure.
Some phenomena usually attributed exclusively to well-
bore storage and skin effects can also be explained at
least partially through this parameter. Its importance is
crucial for analyzing regular pumping operations
because there is no shut-in period and, therefore, the
immediate history of operations prior to the test period
needs to be accounted for.

We demonstrate that accounting for pumping
before the test may be important even in traditional
well test analysis. Our method produces results, which
are stable with respect to variations in selection of test
period and will yield probably more accurate estimate
of the skin parameter. Moreover, our approach
requires a shorter test time interval and less frequent
measurements on this interval.

In conclusion, the following procedure of estimat-
ing formation properties in the vicinity of the wellbore
using operation data is proposed. First, a test interval
in the recorded operations data has to be specified (cf.
interval [#, t,] above; see Fig. 5). The choice is case-
specific, dependent on the period of available data and
on the frequency of sample points. In test examples,
we have found that an interval of about 100 h with
measurements performed every half an hour is good
enough. We split the whole observation interval into
two parts: the beginning phase and the test phase
(intervals [fy,#;] and [#1,%,] above). This splitting is
conventional rather than physical. The injection rate
should not be constant over the entire observation
interval since the functional (26) is almost insensitive
to variations in parameters if there is no variation of
injection rate. Of course, the range of pressure varia-
tion during the matching interval has to substantially
exceed the measurement error.

A similar analysis can be applied to testing frac-
tured wells, wells injecting or pumping from fissured
formation, wells in bounded reservoirs, etc. We will
investigate those cases in future publications.
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