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Abstract

A genetic algorithm is used here to guess-estimate a close-to-true set of trial values as input to a three-staged quasi-linear

inverse modeling scheme for the determination of aquifer parameters. To validate the parameter determination, in addition to

the conventional measures of misfit root mean squares (rms) and distribution, the aquifer thickness is treated as an unknown

parameter and the model parameters are further evaluated by comparing the expected drawdown with the observed drawdown

at wells which are not used for parameter determination (extrapolation fitting). The method is tested with synthetic and observed

drawdown data from five partially screened monitoring wells in a water-table aquifer. Test results for synthetic data doped with

random errors indicate that modeling based on two or more well data can yield satisfactory parameter values and extrapolation

misfits in an ideal aquifer. For field data, the results indicate that a model misfit on par with the standard error of the data is

achievable for each individual well or a combination of two wells but the extrapolation misfit distributions are generally biased

and their rms are far greater—possibly due to aquifer heterogeneity. Consistent parameter values can be obtained from the

geometric means for multiple runs of the genetic-inverse modeling of one-, two-, three-, and four-well data. Our test aquifer can

be represented by a set of parameters with 10 to 15% consistency, including transmissivity, storativity, vertical-to-horizontal

conductivity ratio, and storativity-to-specific yield ratio, as affirmed by model aquifer thicknesses that deviate less than 10%

from the actual thickness. q 2002 Published by Elsevier Science B.V.
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1. Introduction

Curve fitting by inverse modeling of aquifer-test

data is a commonly adopted technique for the

determination of aquifer parameters. Such determi-

nation is made in order to characterize an aquifer for

modeling groundwater flow and solute transport

and for utilization of water resources. Regarding

the test results, two questions are frequently asked.

How reliable the determination is and how far are

the determined parameters applicable? The

answers obviously depend on the quality of data

and the complexity of the test aquifer. This paper

presents a method to test the reliability of results

stemmed solely from good curve matching and

assesses the determination by predicting the
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drawdown at wells where the observations have

not been used for inverse modeling.

Good curve matching, as measured typically by

root-mean-squares (rms) misfits that are near the

standard errors of the data, can often be achieved with

different combinations of parameter values for a given

choice of aquifer type. Consequently, it would befit to

report various ranges of parameter values for coping

with non-unique determinations. Such uncertainty

raises quality issue as well as doubt about the

methodology of inverse modeling itself. For chemical

quality assurance and control, a hydrogeologist may

spike a few specimens with known concentrations of

the desired constituents and deliver the spiked speci-

mens along with his or her batch of water samples for

laboratory analysis. So far, there is no equivalent

spiking practice for inverse modeling, other than

using synthetic data to verify the computer codes.

Here, we attempt to treat aquifer thickness as an

unknown parameter for inverse-modeling of the

drawdown data. Among the aquifer parameters, the

thickness is likely the best known because it can be

estimated independently by drilling, wire-line log-

ging, or surface geophysical mapping. Treating

thickness as an unknown serves as a means to re-

assure the confidence of other parameter estimates, in

addition to gauging the goodness of curve fitting,

sensitivity analysis, parameter resolution, or post-

processing variances of parameters.

Although aquifer thickness has been treated

conventionally as a given value for the purpose of

modeling, it is not always known with certainty. For

example, drilling may not extend fully to the base of

an aquifer and the thickness can only be guess-

estimated. An erroneous estimate of thickness can

lead to incorrect determination of aquifer properties as

noted by Hudak (1993). Aquifer thickness can also

become a fuzzy concept where sand, silt, and clay

zones are interlaced and their lateral or vertical

variations in thickness or particle size are gradational.

In such cases, rather than using a thickness between

ill-defined boundaries, effective thickness as a con-

cept to be assessed by hydraulic response to pumping

can be a better alternative. Therefore, by treating

thickness as an unknown parameter, we would like to

see if the drawdown responses could be used to

estimate aquifer thickness where it is not known a

priori or assign an effective thickness where it is more

appropriate.

We do not intend to simultaneously reach both the

goals of using thickness for reduction of parameter

ambiguity and of defining an effective thickness

although both are considered with the same method-

ology. Simultaneous inverse modeling of multiple

well testing has been practiced to obtain a weighted

set of aquifer parameters (Bohling and McElwee,

1992; Chen et al., 1999). Here, we practice likewise

with multi-well testing but further exercise it from the

context of extrapolation. Good extrapolation fitness

serves to validate the results of inverse-modeling an

aquifer that is free of significant lateral variation.

Subject to the condition of good model fitting, poor

extrapolation fitting indicates significant aquifer

heterogeneity or it may signal other causes.

Our inverse-modeling algorithm is modified from

the Gauss–Newton method described by Tarantola

(1987) and Lee (1999). Such quasi-non-linear inver-

sion methods work when the initial trial parameter

values are close to the actual values. Otherwise, the

iterative modeling may not converge or it may end

with the incorrect answers at a local rms minimum in

the parameter space. Several sets of trial values should

therefore be run to ensure that the iterations have

converged to the global minimum which is believed to

associate with the desired solutions. For commonly

encountered aquifers of several parameters, some

parameters may range in values by several orders of

magnitude and the task of manipulating trial-and-error

input can be very daunting. Hence, we adopt a genetic

algorithm, as a search engine, to find ‘close-to-true’

trial values for initiating an inverse modeling. A

comprehensive review on the genetic or evolutionary

algorithms can be seen in Lee et al. (2001) and

references therein.

To test the idea of treating thickness as an unknown

for model quality assurance and validating model

results by extrapolation, drawdown data from five

partially screened monitoring wells in the Mojave

Desert of California are used. Reflecting the condition

of data collection in a typical study for environmental

remediation, our drawdown data were chanced upon

rather than being the product of a designed test for our

method. The aquifer is unconfined. We assume that it

behaves like a Neuman water-table aquifer (Neuman,

1972, 1974, 1975) although an ideal Neuman aquifer
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may not always be applicable in the field (Nwankwor

et al., 1992). Depending on and varying with the

nature of an unconfined aquifer, the issue whether the

decline of water table is instantaneous (Neuman’s) or

non-instantaneous (Moench, 1995) will not be

addressed here. A comparison study at one field site

seems to favor the former (Chen and Ayers, 1998).

Aquifer response to pumping can be affected by

well construction. According to Lee (1999, p. 179),

from the viewpoint of discriminatable field obser-

vations, the effect of finite well diameter for full-

penetration pumped wells is negligible at distances

beyond 10 times well radius. In our case, the distance

from the nearest observation well to the pumped well

is 170 times the well radius. Hence, we can safely

neglect the wellbore storage effect for our partial-

penetration wells in an unconfined aquifer. A plethora

of literature on the subject of storage effect can be

traced from recent works of Novakowski (1989),

Kabala and Cassiani (1997), Cassiani and Kabala

(1998), and Cassiani et al. (1999) on confined

aquifers. These cited authors also deal with the effect

of finite or infinitesimal skin thickness. The skin effect

varies greatly from well to well, depending on drilling

method, type of drilling mud, and well completion

method (e.g. well cleaning, gravel packing, and

screening). Relative to intrinsic aquifer properties,

the skin can enhance or suppress the hydraulic

conductivity in the vicinity of the wellbore. The

effect on drawdown can be acute at early time of

pumping or observation. Early time data are hence

crucial for deciphering the skin effect. Unfortunately,

the noise-to-signal ratio is relatively high at early time

when the drawdown is low or at distant wells where

drawdown is also low. As seen in our records

presented later, the skin effect is intractable and will

be of secondary concern to us for the determination of

aquifer parameters. The effect will be addressed again

in the discussion of modeling the real data.

Pumping tests on a Neuman’s aquifer can usually

yield estimates of transmissivity, storativity, specific

yield, and conductivity anisotropy to various extents

of uncertainty. These four parameters plus the

thickness are here chosen as the unknowns to test

our methodology, which also has been adapted for

other ideal aquifers including Theis’ confined aquifer,

Hantush’s leaky aquifer, and Lee’s (1999, p. 134)

boundary flux model. Only the results for a Neuman

aquifer are reported as follows.

2. Forward modeling

Assuming the test aquifer to behave like a

Neuman’s water-table aquifer and neglecting the

skin effects and well-bore storage, the theoretically

expected drawdown Dh in the Laplace-transform

domain (the overbar designates a transformed vari-

able) at radial distance r and elevation z due to

pumping through a well screened between elevation

Ztop and Zbot at a rate of Q is (Moench, 1996; Lee,

1999, p. 170)

Dh½r; z; s� ¼
Q

pTs

X1
n¼0

ln
part cos½znz�K0½jnr� ð1Þ

where

ln
part ¼

b

Ztop 2 Zbot

sin½znZtop�2 sin½znZbot�

sin½znb�
ln

ln ¼
c

b þ c þ bc2zn
2

� �
cos½znb�

¼
sin½znb�

znb þ 0:5 sin½2znb�
¼

ð21Þn sin½un�

znb þ 0:5 sin½2un�
ð2Þ

where b is the aquifer thickness, T the transmissivity,

c ¼ Kz=Sys; Sy the specific yield, Kz the vertical

hydraulic conductivity, and s is the Laplace transform

parameter. With the coordinate origin at the base of

the unconfined aquifer, the elevation z is upward

positive. K0½jnr� is the zeroth-order modified Bessel

function, and its argument is defined through

jn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zn

2kD þ q2

q
ð3Þ

where zn satisfies the root equation

tan½znb� ¼
1

czn

; znb ¼ npþ un;

0 # un # p=2

ð4Þ

with vertical-to-horizontal conductivity ratio kD ¼

Kz=Kr; q2 ¼ s=k; hydraulic diffusivity k ¼ T=S;
storativity S ¼ Ssb; and Ss the specific storage.

The time-domain solution is obtained numerically
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from (Stehfest, 1970),

Dh½r; z; t� ¼
ln 2

t

XM
j¼1

vjDh½r; z; sj� ð5Þ

where sj ¼ ðj ln 2Þ=t; t is the time, M a computer-

dependent optimal number (an even number, typically

around 10 for personal computer) for maximum

accuracy, and vj is a weighting coefficient,

vj ¼ ð21ÞjþM=2
Xmin½i;M=2�

i¼m

�
iM=2ð2iÞ!

ðM=2 2 iÞ!i!ði 2 1Þ!ðj 2 iÞ!ð2i 2 jÞ!
ð6Þ

with m being the integer part of ðj þ 1Þ=2:
Introducing three independent, dimensionless vari-

ables: s ¼ S=Sy; b ¼ ðr=bÞ2kD; and u ¼ r2S=4Tt; the

drawdown in the time domain is

Dh½r; z; t� ¼
Q

4pT
W½u;s;b�

W½u;s;b� ¼
XM
j¼1

4vj

j

X1
n¼0

ln;j cos½zn;jz�K0½jn;jr�

ð7Þ

where zn;jb is the root of

tan½zn;jb� ¼
ju

sb

ln 16

zn;jb
ð8Þ

The argument of the modified Bessel function

K0½jn;jr� is

jn;jr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðnpþ un;jÞ

2 þ ju ln 16
q

ð9Þ

and ln;j follows the definition of zn;jb:
The root finding is the most time-consuming

procedure in the computation of drawdown. The un

is adopted for computational efficiency by bracketing

root znþ1b;

znb þ p2 ðun21 2 unÞ , znþ1b , znb þ p; n $ 1

ð10Þ

because un decreases with increasing n and ðun21 2

unÞ diminishes as n increases (Lee, 1999, p. 92).

Further reduction in root-finding time can be achieved

by noting the fact that un;j also decreases with

increasing j. In this study, the root zn;jb is obtained

with a bi-section method (Press et al., 1986) to a

precision better than 1028.

For a given discharge rate Q, drawdown Dh½r; z; t�

is completely defined by four independent variables T,

s, b, and u, provided that the implicit pumping-screen

interval between Ztop=b and Zbot=b is given. In other

words, any values of aquifer parameters that can be

combined to give the same set of values for the four

independent variables will yield identical Dh½r; z; t�:
Hence, one can choose any four independent par-

ameters to describe the drawdown in a Neuman water-

table aquifer if these four can be re-combined to

define T, s, b and u completely. The four independent

variables chosen for this study are transmissivity T,

storativity S, vertical-to-horizontal conductivity ratio

Kz=Kr; and the ratio of storativity to specific yield s.

The addition of aquifer thickness as an unknown

makes our model a five-parameter water-table aquifer.

The average drawdown Dh½r; t� for an observation

well screened between elevations Obot and Otop (as

symbolized by deleting z as a variable) is

Dh½r; t� ¼
1

Otop 2 Obot

ðOtop

Obot

Dh½r; z; t�dz

¼
Q

4pT

sin½zn;jOtop�2 sin½zn;jObot�

ðOtop=b 2 Obot=bÞzn;jb

�
XM
j¼1

4vj

j

X1
n¼0

ln;jK0½jn;jr�

ð11Þ

which provides the expected drawdown for sub-

sequent modeling.

3. Inverse modeling

The desired model parameters are obtained by a

quasi-non-linear Gauss–Newton method. Minimiz-

ation of the objective or misfit function

S ¼ 1
2

�
ðdobs 2 gÞtCd

21ðdobs 2 gÞ

þ ðpguess 2 pÞtCp
21ðpguess 2 pÞ

�
ð12Þ

with respect to the parameter p yields an iterative

algorithm for updating parameter pk at step k to pkþ1 at
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step k þ 1 (Tarantola, 1987; Lee, 1999, p. 355)

pkþ1 ¼

pk þ eCp0k Gk
tCd

21 dobs
2 gk

	 

þ Cp

21 pguess
2 pk

� �n o
ð13Þ

where column vector pguess ¼ ðT ; S; b; kD;sÞ
t is the

guessed trial parameters, and superscript t designates

transpose of a matrix or vector (a matrix is symbolized

with a bold, capital letter while a vector with a bold,

lower-case alphabet). The multiplier e ð0 , e # 1Þ is

introduced here to adjust the size of iterative upgrade

Dpk from pk to pkþ1: Other variables are defined next.

Symbol dobs is the observed drawdowns expressed

as an n £ 1 column vector (n being the number of data

points) and gk is the corresponding drawdowns Dh

calculated according to Eq. (11) at iteration step k for

parameter pk. The squares of the standard errors

constitute the diagonal entries of the n £ n data

covariance matrix Cd. Assuming the data are inde-

pendent of one another, the off-diagonal entries of Cd

are nullified. The five aquifer-defining parameters are

presumably not correlated and consequently the m £

m parameter covariance matrix Cp is diagonal also

ðm ¼ 5Þ: The diagonal entries of Cp are the squares of

the standard deviations of the aquifer parameters but

the standard deviations are unknown and they are

represented here by a fraction of their respective

parameter values (e.g. 2%). The fractional uncertainty

of Cp does not significantly affect the determination of

pkþ1 but it does affect the post-processing parameter

covariance matrix Cp0 and the resolution of parameter

determination Rpk;

Hk ¼ Cp0k
21 ¼ Cp

21 þ Gk
tCd

21Gk

Rpk ¼ I 2 Cp0kCp
21

ð14Þ

where the Hk is the Hessian. The n £ m matrix Gk at

step k represents the sensitivity of gk (or theoretical

drawdown Dh ) to an infinitesimal change in par-

ameter pk. Its entries Gij at step k are

Gij ¼
›gi

›pj


pk

ð15Þ

which is differentiated numerically in this study,

typically at a ›pj of around 0.01 pj.

Rewrite Eq. (13) as

Dpk ¼ 2eHk
21gk ð16Þ

where the m £ 1 column vector gk is the gradient of

the misfit function (i.e. gk ¼ ›Sk=›p). It can be shown

that gk is equal to the negative of the braced term in

Eq. (13).

If the multiplication of eHk
21 is restricted to the

diagonal entries of Hk
21 only, in other words if e ¼

1=ð1 þ ldijÞ (where dij ¼ 1 if i ¼ j otherwise it

vanishes), then Eq. (16) is equivalent to the

Marquardt–Levenberg algorithm

ð1 þ ldijÞHkDpk ¼ 2gk ð17Þ

which represents a method of steepest descent

Dpk ¼ 2lk
21Hk

21gk; if lk q 1 or e p 1 ð18Þ

or a Gauss–Newton method

Dpk ¼ 2Hk
21gk; if lk p 1 or e ¼ 1 ð19Þ

In this study, e is usually set at 0.75. Thus, we regard

our method as a modified Gauss–Newton method.

Even though the misfit function S is minimized to

obtain parameter pkþ1 in Eq. (13), we use root-mean-

squares at each iteration step,

rmsk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dobs 2 gk

� �t
dobs 2 gk

� �
n 2 m

s
ð20Þ

as a criterion to gauge misfit. The p associated with

the minimum of all rmsk for a given pguess is the final

for that particular pguess. By varying pguess, many

plausible solutions, of which the rms are near the

standard error of data, can be obtained if model

constraints besides drawdown data are not available.

The task of finding a correct p is to have a pguess that is

close to the true but unknown p true.

4. Finding model parameters

Our iterative computation (13) for p starts with a

pguess picked from large ranges of potential parameter

values. The process of picking is based on genetic

algorithm (GA).
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4.1. Genetic algorithm

The GAs are generally robust search engines that

can typically find global optima in highly non-linear

and multi-modal landscape. The algorithm borrows

the concept in Darwinian evolution of natural

selection in which the fittest individuals produce

more offspring while the poorer perish. Being

problem-dependent, genetic algorithms have many

forms and names. A recent review can be found in Lee

et al. (2001) and references therein. Here, we describe

only what has been implemented for our inverse

problem. It is essentially an iterative search procedure

for pguess.

(1) A range of values is defined for every

parameter. (2) A number Np of individuals serving

as the parent (initial) population is assigned and each

individual bears five randomly selected parameter

values, which are logarithmically transformed for the

selection with the genetic algorithm. (3) Each of the

Np individuals yields a rms for n misfits ðDhobs 2

DhcalÞ at the n observation points. The best (the

minimum) among Np rms is identified, rmsmin. (4) A

standard deviation srms for Np rms is calculated. (5)

Any individual whose rms is within a fraction of srms

from the rmsmin is deemed as a survivor. At the end of

selection, there are Ns survivors ðNs , NpÞ to produce

the next generation of Nc children (offspring).

The Nc offspring are generated from the Ns

survivors by four different ways, essentially parameter

retention, exchange, perturbation, and recombination.

Each way is selected at random and approximately has

a 0.25 probability of being exercised if the random

number generator is unbiased and Nc is sufficiently

large (.30). Individuals from the Ns survivors are

randomly selected to reproduce and a survivor may

participate more than once to co-produce offspring as

follows. (a) An offspring can inherit all parameter

values of a survivor without any modification. (b) It

can possess the geometric means of two survivors’

respective parameter values. These means are inver-

sely weighted by the squares of the two survivors’

misfit rms. (c) Two survivors can cross-breed to

produce an offspring through exchange of two

randomly selected parameters. (d) An offspring can

be produced by mutation of one survivor by increas-

ing or decreasing some of its parameter values by a

factor determined randomly between 0 and
ffiffiffi
10

p
(this

factor is somewhat arbitrarily set). The mutation

provides an opportunity for the search of pguess to go

outside the ranges encompassed by the survivors since

the survivors may not be necessarily among the best

fitted.

When the number of offspring reaches the size

of the original parent population Np (i.e. Nc ¼ Np),

they become the new parents and go through the

selection and reproduction processes to yield

another generation of offspring. The population

size in each generation stays the same in our

scheme. These processes are recycled through Ng

generations. There are Np sets of parameters in

each of Ng generations and each generation has a

best-fitted parameter set that yields a rmsmin as

described above. Among those Ng best sets, the set

associated with the smallest rmsmin is the p1
guess:

The preceding numerical process constitutes the

first batch of our genetic algorithm (hence the

subscript 1 in p1
guess). One can either stop

operating the genetic algorithm here and proceed

to use the inverse modeling, or continue similar

batch processes for a total of Nb times.

The second batch process is essentially the same as

the first except that the parameter ranges are now

centered around pi
guess by a factor of 12/nb, where nb

is the nbth batch of the Nb batch processes

(i ¼ 1; 2;…;Nb; and Nb , 12). There are Nb sets of

pi
guess and among them, the one with the least rms is

named pmin
guess: Those pi

guess whose misfit rms are

within 0.75 standard error of the data from the

pmin
guess are combined in accordance with the

weighting

pguess ¼
XJ

j¼1

pj
guess 1

rmsj
minA

; A ¼
XJ

k¼1

1

rmsk
min

ð21Þ

to find a final weighted pguess where J is the number of

pi
guess that are within the defined limit. This weighting

is intended to move pguess slightly from the pguess

generated by the selection and reproduction pro-

cesses. By trial and error, Nb is set at 3 in this study.

This pguess generally yields a rms that is near the

standard error of data but the distribution of misfit as

measured by dobs 2 g is frequently biased or skewed.

Hence, such a pguess is not necessarily the desirable
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answer and it is appropriately labeled as a guessed set

despite the possibility that its low rms may render a

determination of acceptable p. An inverse modeling

based on an algorithm like Eq. (13) is thus required to

minimize misfit and improve misfit distribution for

better estimates of parameters.

4.2. Inverse modeling

Inputting p guess into Eq. (13) yields parameters

p and associated standard deviations, given by the

square roots of the diagonal entries of Cp0 (the

post-processing parameter covariance matrix).

Compared to pguess, this p will usually improve

the goodness of fitting but is not necessarily an

acceptable set of parameters because, among a

few plausible causes, the p could be located at a

local minimum of misfit instead of a global

minimum in the space of multivariate parameters.

The standard deviations of the model parameters

and the model resolution can be manipulated by

adjusting the standard deviations of data and

parameters through Cd and Cp, which are practi-

cally unknown but assumed for modeling, and

hence do not provide unequivocal assurance on

the parameter determination. Thus, a three-staged

inverse modeling is launched as a precautionary

measure. The above description constitutes the

first stage to produce p (1).

In the second stage, p (1) is used as a new pguess to

generate p (2) while the parameter with the greatest

resolution (the greatest diagonal entry in Rp) is held

stationary. This stage tests whether p stays stationary

when p (1) is slightly perturbed.

In the third stage, p (2) serves in return as p guess

to yield p (3). According to our testing for

synthetic and field data, the misfits associated

with p (3) are usually better than that with p (1) but

the differences are insignificant as gauged by the

standard error of data. Occasionally, cases of

instability occur, as diagnosed by rapid increase or

decline in one or more of the parameter values as

the modeling progresses from p guess through p (1)

and p (2) to p (3). So, the three-stage inversion

modeling can detect a wrong determination of p

with an acceptable rms but still cannot assure a

correct answer.

To procure an acceptable p, we re-run the genetic

algorithm and inverse modeling a few times to test the

sensitivity of p to various pguess as generated by

different seeding random numbers. The variations in

those p are indicative of parameter uncertainty. The

variances in Cp0 are also indicative of uncertainty but

their sizes can be manipulated with the unknown

Fig. 1. Relative locations of monitoring wells, ordered alphabetically at increasing distances from the pumping well.
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standard deviations of data and parameters them-

selves. In addition to misfit itself and misfit

distribution, the model thickness as a parameter acts

as a measure of uncertainty.

5. Test and discussion

Our methodology was tested with synthetic and

observed drawdown data at five monitoring wells in a

water-table aquifer.

5.1. Data

The test aquifer consists of Pleistocene unconso-

lidated fluvial deposits in the southwestern Mojave

Desert in California (Cox and Hillhouse, 2000). It is

underlain by a well-defined aquitard of lacustrine

clay, dipping about 1% northwest. Boring records

indicate that the aquifer consists of interfingering

zones of sand, silt, and clay with high degrees of

lateral variation. Correlation of lithologic units

between boreholes is generally poor. High-resolution

seismic profiles are not available. At the study site, the

ground is fairly flat (slope ,1%) and the aquifer

thickness is about 21 m (Sibbett, 1999).

Fig. 1 shows the relative positions of the pumping

and observation wells. The five observation wells are

sequenced from A to E in the order of increasing

distances from the pumping well. All observation

wells were rotary-drilled with hollow-stem auger and

cased with 4-inch slotted PVC pipes (10.16 cm in

outer diameter); and the pumping well was drilled

using air-rotary and cased with 5-inch slotted PVC

pipe (12.7 cm). Their screen intervals at depths below

the pre-pumping water table are listed in Table 1. A

screen-top at zero depth implies that the physical

screen at the well of concern was installed astride the

pre-pumping water table.

At a constant pumping rate of 8.14 £ 1024 m3 s21,

the drawdowns were measured with pressure transdu-

cers and recorded at sampling intervals from less than

one second at early pumping time to one minute at late

time for 60 h. In order to reduce computation time for

modeling, a subset of data was extracted from the

original records. Each decade of time in seconds in the

data file for modeling contains about 4–6 data points

at log-equidistant time intervals. Those are the

observed data in this paper.

The data are assumed to have a standard error of

0.01 m, which represents inseparable errors due to

measurement, atmospheric pressure changes, as well

as deviation of a real, heterogeneous aquifer from an

ideal aquifer of infinite lateral extent, uniform

thickness and homogeneous properties. Variations of

the assumed error by a factor of two or three does not

adversely affect the parameter estimates but it does

change the values of chi squares, chi-square prob-

ability, post-processing covariance matrix, and par-

ameter resolutions (Lee, 1999, p. 346). Those

standard-error-dependent values were computed but

are not tabulated here. Any drawdown less than the

standard error is excluded from modeling. This 0.01-

m cutoff is set low enough to retain a sufficient

number of data points for modeling. A computed

drawdown less than 0.01 m is also excluded because

Table 1

Distances to the pumping well and screen intervals in depths below

the pre-pumping water table

Well Distance (m) Top (m) Bottom (m)

Pump 5.0 11.0

A 10.7 0.0 7.9

B 17.1 6.1 7.6

C 20.4 3.1 4.6

D 44.2 0.0 1.6

E 48.8 1.5 4.6

Table 2

Wide and narrow ranges of parameters used in genetic algorithm to yield pguess

T (m2s21) S b (m) Kz=Kr S=Sy

Wide Low 1.00 £ 1026 1.00 £ 1027 18 0.01 1.00 £ 1027

High 1.00 £ 1021 1.00 £ 1022 30 2.00 1

Narrow Low 1.67 £ 1024 3.33 £ 1024 18 0.10 3.33 £ 1023

High 1.50 £ 1023 3.00 £ 1023 22 0.90 3.00 £ 1022
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the Stehfest’s inverse Laplace transform may yield

erratic results at early time (Tseng and Lee, 1999).

Any set of model parameters that produces an rms

around 0.01 m is deemed acceptable from the view-

point of rms alone.

The ranges of parameters for searching pguess with

the genetic algorithm are listed in Table 2. There are

two sets of ranges: wide and narrow. The wide ranges

for T, S, and S/Sy cover several orders of magnitude.

The vertical-to-horizontal conductivity ratio is

allowed to range by a factor of 100. The range for

the aquifer thickness is set between 18 and 30 m that

bracket the reported thickness of 21 m. For the narrow

ranges, the aquifer thickness is bracketed between 18

and 22 m and other parameters scan over a factor of 9

from the low to the high limits. Depending on the

seeding of the random number generator, desirable

results can be obtained from both the wide and narrow

ranges, of which the latter are marked with an asterisk

in Table 4. Once the pguess is determined by the

genetic algorithm, the range limits are relaxed from

the three-staged inverse modeling.

Based on geological information, the test aquifer

is presumed to be a Neuman’s type of unconfined

aquifer, which can be represented with different

levels of uncertainty by hundreds or more sets of

model parameter values. As used here, each set is a

model. Numerous models can be generated from

the drawdown data at one well or any combination

of wells. Models based on one-well data are herein

categorized as one-well models; and a two-well

model means that the set of model parameter values

is obtained from drawdown data at two observation

wells. In the listing of model identifications (file

names) in Tables 3 and 4 and labeling of figures,

the first numeral after the leading alphabetic

symbols signifies the number of observation wells

used to construct the model. Other symbols are for

filename usage only. An observation well used for

modeling is marked with a bold-faced rms (also,

marked with ampersand for multiple-well models)

in Tables 3 and 4 or with solid-model curves in

Figs. 2–10. Extrapolation rms is marked in light-

faced font and extrapolation curves are dashed.

Extrapolation or interpolation fitting serves as a

means to validate the model parameters for a

homogenous aquifer, which is the case for the

synthetic data. For the cases of real data, however,

misfit by extrapolation or interpolation may be

compounded by the aquifer heterogeneity. It is

noted that the absolute differences between com-

puted and observed (or synthetic) values are on the

average greater at locations with larger drawdowns.

Hence, rms cannot be compared from well to well;

Table 3

Modeling results for synthetic drawdown data

Model T S b Kz=Kr S=Sy rms A rms B rms C rms E

Input 6.53 1.21 23.2 0.059 2.66

SS1B2

Gen 5.18 1.00 21.5 0.083 1.84 0.009

Inv1 5.19 1.04 22.3 0.084 1.84 0.017 0.007 0.006 0.009

Inv3 5.23 1.08 23.2 0.087 1.84 0.021 0.007 0.006 0.010

Error 220% 211% 0% þ47% 269%

SS2B2

Gen 6.44 1.09 22.7 0.060 2.30 0.009 &

Inv1 6.22 1.15 22.3 0.061 2.30 0.005 0.006 & 0.005

Inv3 6.14 1.19 22.3 0.062 2.30 0.005 0.007 & 0.005

Error 26% 22% 24% 5% 214%

T transmissivity in 1024 m2 s21, S storativity in 1023, b aquifer thickness in m, Kz=Kr vertical-to-horizontal conductivity ratio, S/Sy

storativity-to-specific yield ratio in 1023. The input parameters for the synthetic data are the output of model L2B4 in Table 4. Model SS1B2 and

SS2B2 represent one- and two-well models, respectively. Model Gen is the output of genetic algorithm while Inv1 and Inv3 are respectively the

output of stage-1 and 3 inverse modeling. Bold-faced rms indicates the well has been used in modeling; and an & means the marked well has

also been used in modeling. Errors are percent deviation of Inv3 from the respective parameters used to generate synthetic data. Italicized model

names indicate that the fitting is also presented graphically.
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at the same well, however, the rms can be

compared for different models.

5.2. Modeling with synthetic data

A set of drawdown data at five observation wells

was calculated with the aquifer parameter values

listed in the ‘input’ row of Table 3. These parameters

were obtained from one example of modeling the field

data, as described later. Random errors up to ^0.01 m

were imposed on the calculated drawdown to form the

synthesized data. The modeling presented here is a

recast because the method had been tested with other

synthetic data before its being applied to field data. In

comparison with modeling the real data, this recast for

an idealized aquifer not only tests the methodology

but also provides a glimpse of heterogeneity in a real

aquifer. Note that well E is farther away from the

pumping well than well D is but, like the observed

data trend, it has experienced greater drawdown

because of different screening depths and intervals.

5.2.1. Models based on one observation well

Initiated with a seed of random number, the output

Table 4

Modeling results for field data

Model T S b Kz=Kr S=Sy rms A rms B rms C rms E

L1A1p 3.58 1.02 19.9 0.173 1.61 £ 1023 0.007 0.037 0.029 0.018

L1A2 5.15 1.31 23.1 0.103 2.46 £ 1023 0.006 0.024 0.015 0.006

L1B1p 7.68 0.895 20.7 0.048 5.23 £ 1023 0.041 0.008 0.013 0.006

L1B2 2.59 0.483 19.9 0.249 7.89 £ 1024 0.055 0.005 0.020 0.018

L1B3 5.28 0.742 19.8 0.086 1.86 £ 1022 0.025 0.007 0.013 0.008

L1C1p 7.41 1.06 23.8 0.054 4.21 £ 1023 0.019 0.022 0.007 0.008

L1C2e 6.10 1.04 23.6 0.070 3.01 £ 1025 0.017 0.030 0.007 0.006

L1C3e 6.43 1.06 23.5 0.017 1.18 £ 1025 0.017 0.030 0.007 0.007

L1E1 p 10.3 0.541 20.5 0.039 2.60 £ 1023 0.087 0.047 0.035 0.002

L1E1e 9.23 0.160 21.8 0.050 1.60 £ 1021 0.224 0.217 0.106 0.007

L1E3e 13.7 1.02 25.9 0.028 8.28 £ 1025 0.087 0.032 0.034 0.005

G1m 4.78 0.818 21.0 0.087 3.19 £ 1023

L2A1 4.71 0.946 21.1 0.104 1.69 £ 1023 0.016 & 0.015 0.013

L2B1 6.23 1.23 23.3 0.065 1.24 £ 1023 0.009 0.033 & 0.008

L2B4 6.53 1.21 23.2 0.059 2.66 £ 1023 0.008 0.034 & 0.007

L2E4p 7.10 0.854 19.8 0.032 4.97 £ 1023 0.032 0.011 & 0.060

L2E7 5.04 0.827 22.8 0.104 2.17 £ 1023 0.022 0.009 & 0.010

G2m 5.85 0.999 21.9 0.067 2.27 £ 1023

L3A1e 5.98 1.18 25.5 0.090 3.79 £ 1025 0.015 & & 0.012

L3B1 5.04 0.930 20.4 0.087 4.77 £ 1024 0.014 & 0.012 &

L3C1e 6.99 0.942 21.6 0.055 7.93 £ 1026 0.035 0.011 & &

L3D1 7.49 1.38 26.7 0.059 3.63 £ 1023 0.008 0.032 & &

G3m 6.14 1.13 23.3 0.072 1.32 £ 1023

GGm 5.94 0.962 22.1 0.074 2.12 £ 1023

L4A1p 6.40 1.15 25.7 0.087 4.47 £ 1023 0.011 & & &

L4A2p 6.08 1.09 24.4 0.088 3.99 £ 1023 0.011 & & &

L4A3 4.85 0.885 19.6 0.086 3.13 £ 1024 0.014 & & &

L4A4 5.85 1.01 22.7 0.082 2.61 £ 1023 0.011 & & &

G4m 5.76 1.03 23.1 0.086 1.95 £ 1023

Units and symbols are footnoted at Table 3 except for S/Sy. Model Gnm designates geometric means for n-well models and GGm designates

geometric means of Gnm for n ¼ 1; 2; 3: Results for italicized model names are plotted in Figs. 4–10. Models marked with symbol p are run

within narrow ranges of parameters (Table 2) for the genetic algorithm to yield pguess. Parameter values for model names ended with an e are

excluded from the computation of geometric means because of poor fitting at late time. Bold-faced rms indicates the well has been used in

modeling; and an & means the marked well has also been used in modeling.
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of the genetic algorithm has a rms of 0.009 m

(submodel headed by ‘Gen’, Table 3). The output of

submodel Gen is used as input pguess to the first-stage

inversion modeling, which yields submodel Inv1. The

rms for submodel Inv1 is 0.007 m (column rms B,

bold-faced font) while the rms for the extrapolations

range from 0.006 to 0.017 m (rms C, E, and A, light-

faced font). The name of submodel Inv1 is italicized

to indicate that the curve fitting is graphically

displayed. As shown in Fig. 2, the solid curve

signifies that the model is based on drawdown at well

B and the dashed curves represents extrapolation,

based on a well-B model, to other wells. By keeping

stationary one parameter of submodel Inv1 which is

associated with the largest parameter resolution as

defined in Eq. (14) and inputting the rest as pguess, a

second-stage inversion output is produced. Then, the

output of the second-stage inversion (unlisted)

generates the third-stage inversion, submodel Inv3.

The errors in the parameter estimations at Inv3 are

tabulated as percentage deviations from the input

values, which are used to construct the synthetic

drawdown. Those errors range from 269% for S/Sy

to þ47% for Kz=Kr; despite the results that the

model rms is on par with the imposed random error

for the synthetic drawdown.

As shown in Fig. 2, model misfits at well B (solid

curve) are symmetric in the sense that there are about

equal numbers of positive and negative misfits and

that the positives and negatives are more-or-less

evenly distributed around the model curve. Listed in

Table 3 (model SS1B2), the changes in parameter

values from stage-1 to 3 inverse modeling are

insignificant (a few percent). These attributes con-

stitute good fitting but the errors in parameter

estimates are unacceptably large.

Misfit distribution for the genetic output (not

shown) is typically biased or skewed in comparison

to the distributions for subsequent inversion.

Submodel Inv1 is chosen for the plotting, instead

of Inv3, because the extrapolation-misfit rms at

wells A and E are slightly but insignificantly better

although the model thickness for submodel Inv3

duplicates exactly the input thickness, 23.2 m (note

that the aquifer thickness for the synthetic data is

2.2 m greater than the real thickness). Excepting

this example, results of submodel Inv3 for other

modeling with the synthetic or observed data are

always taken as the final results.

Extrapolation fitting at nearby well C appears

satisfactory (Figs. 1 and 2) but exhibits systematically

biased distribution. Toward the pumping well,

extrapolation overestimates the drawdown (well A)

while outward from it, underestimation prevails

Fig. 2. Model curve (solid) based on synthetic drawdown at well B (crosses). Dashed curves represent extrapolations based on model parameter

values (Table 3, SS1B2 Inv1). Note good extrapolation fitting at well C but poor elsewhere.
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(wells D and E). At well D, the extrapolation curve

tracks the trend of synthetic data but because of the

graphical amplification at small numbers in a log–log

plot, the extrapolation misfits seem disproportionately

greater as compared to other wells.

5.2.2. Models based on two observation wells

The results of modeling the drawdowns at wells A

and C together are also listed in Table 3 (Model

SS2B2). Again, the parameter values resulted from

the sequence of genetic-inverse modeling are fairly

Fig. 3. Model curves (solid) based on synthetic drawdown at wells A (triangles) and C. Dashed curves represent extrapolations based on model

parameter values (Table 3, SS2B2 Inv3). Note the improvement in model and extrapolation misfits from the two-well model over the one-well

model (Fig. 2).

Fig. 4. Model curves (solid) based on observed drawdown at four wells. Dashed curve represents extrapolation to well D based on the model

parameter values (Table 4, L4A4). All drawdowns less than 0.01 m are excluded from modeling and plotting. Note the biased misfit distribution

at well E. At early time, overestimates of drawdown at well A (triangles) are compensated by underestimates at wells B and C.
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consistent. Misfits for submodel Inv3 are shown in

Fig. 3. The improvement in fitting by the two-well

model can readily be seen by comparing Figs. 2 and

3, especially for wells D and E. The extrapolation

fitting at well B (actually, an interpolation between

wells A and C) is visibly as good as the model fitting

in Fig. 2.

Errors in parameter estimates are greatly reduced

for the two-well model. The error in conductivity ratio

Kz=Kr is reduced from 47% for the single-well model

to 5% for the two-well model. For the transmissivity,

it improves from 220 to 26%. The aquifer thickness

is within 4% of the input value. However, the error in

the estimate of the ratio of storativity to specified yield

(S/Sy) at 214% for the two-well model is still

uncomfortably large.

5.2.3. Discussion

Large errors in the one-well model for the synthetic

data suggest that parameter determination based on

good curve fitting alone should still be viewed with

caution. Some parameters may not be resolvable

because the computed drawdowns are insensitive to

parameter variations within the confine of data-time

window. For example, the ratio S/Sy is poorly

determined as evidenced by the fact that the S/Sy

remains unchanged from submodels Gen to Inv3

(Table 3). Poor resolution in S/Sy is expected because

the data recording ended shortly after the leveled

(delayed) drawdown started to rise again. Its estimate

can be improved by extending the recording time. The

improvement in the estimate of Kz=Kr for the two-well

model also suggest that drawdown data collected from

different screen intervals at different distances from

the pumping well can help to better resolve parameter

estimates.

One dozen sets of parameters have been

obtained for the one- and two-well models. In

one case of one-well modeling, starting at an

initial model thickness (b guess) of 25.2 m as

outputted by the genetic algorithm, the inverse

modeling improves iteratively the rms from 0.044

to 0.023 m but the final model thickness is inflated

to 37.3 m. This set is unacceptable because of the

relatively large rms and excessive changes in

value through the three stages of inverse model-

ing. Apparently, in this case, the genetic algorithm

did not provide a close-to-true set of pguess.

In another case of one-well modeling, the final

model thickness is 30.3 m at a rms of 0.007 m as

started from an initial value b guess of 27.2 m. Such

a small rms is usually indicative of good model

fitting. However, poor extrapolation fittings at

other wells raise an alarm of potential pitfalls in

Fig. 5. Model curves (solid) based on observed drawdown at three wells. Dashed curves represent extrapolation to wells B and D based on model

parameter values (Table 4, L3D1). Note the biased distributions of model misfit at each well but the overall distributions are unbiased; for

example, at early time, overestimates of drawdown at well A (triangles) are compensated by underestimates at well C.
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inverse modeling. Should that well be a lone

monitoring well for field data and were there no

constraint on the aquifer thickness, the final p

could have been accepted as the aquifer

parameters.

These two examples for one-well modeling are

extreme but similar misleading results can and

will happen. It demonstrates the need to use the

like of genetic algorithm to generate and apply

more sets of pguess as a remedy for the short-

coming of relying on a single monitoring well.

The case shown in Fig. 2 demonstrates that some

aquifer parameters can be estimated to within 20%

from one single-well pumping test. Most can be

Fig. 6. Model curves (solid) based on observed drawdown at well A (triangles) and C. Dashed curves represent extrapolations based on model

parameter values (Table 4, L2B4), which are also used to generate synthetic data for Figs. 2 and 3. Note that the misfit distribution for the real

data is inferior to that for the synthetic data (Fig. 3), implying inhomogeneity in the real aquifer.

Fig. 7. Model curve (solid) based on drawdown at well A (triangles). Dashed curves represent extrapolation based on model parameter values

(Table 4, L1A2). Despite good model fitting at well A, extrapolation fits poorly.
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estimated to within 10% for a two-well test (Fig. 3).

However, the 10% goal may not be reachable for one or

two parameters if the record length is short or the well

locations and screen intervals are improperly

configured even in a homogenous aquifer. Optimal

well configurations are being investigated by us to

minimize the uncertainty of parameter determination.

5.3. Modeling with field data

Modeling results of field data are summarized in

Table 4. The plotted models (ones with italicized

names) do not necessarily represent the best in fitting;

some are plotted for the convenience of discussion.

An asterisked model name indicates the model

employed narrow ranges of parameter values to find

pguess with the genetic algorithm (Table 2). The

following presentation starts from models based on

the drawdown at four observation wells and ends at

models based on one observation well. Well D has

been excluded for modeling because its drawdown

readings are low and will contribute relatively little to

the misfit rms. Nevertheless, well D is used for testing

the extrapolated trend of the time-drawdown curves.

The rows headed by Gnm in Table 4 designate

geometric means of parameter values, where n is the

number of wells used in the modeling. Another row,

GGm, designates the geometric means of G1m, G2m,

and G3m. A model name affixed with a character e is

excluded from the computation of geometric means

because those models yield poor fitting at late time,

caused mainly by too high or too low a determined

value of S/Sy.

5.3.1. Models based on four observation wells

As shown in Fig. 4, well C at the mid-range

distance to the pumping well yields the best fitting

among the L4 series (Table 4). For time less than

5000 s, the model overestimates the drawdown at well

A but underestimates it at well B; whereas the reverse

trend of over- or under-estimations is true at later

time. The model underestimates the drawdowns at the

far distant well E. At the next distant well D, model

extrapolations follow the trend of the noisy time-

drawdown data but misfit distribution is biased.

Model L4A3 is associated with a slightly worse rms

(0.014 m instead of 0.011 m for the other L4-series

models) but yields an S/Sy ratio that is less than the

others by one order of magnitude. In addition, other

parameters for L4A3 are comparatively smaller except

for the Kz=Kr ratio. In comparison with the fitting in Fig.

3 for the synthetic data, the relatively poor fitting for the

field data (Fig. 4, L4A4) suggests that aquifer

inhomogeneity is a major cause of misfit. In case of

significant aquifer inhomogeneity, the Neuman’s water

table model is inadequate to describe the drawdown.

Fig. 8. Model curve (solid) based on drawdown at well B (crosses). Dashed curves represent extrapolation based on model parameter values

(Table 4, L1B3). Note poor extrapolation fittings.
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5.3.2. Models based on two or three observation wells

The L3 series models in Table 4 indicate that,

depending on which of the three wells are chosen, the

modeled S/Sy ratios can differ by three orders of

magnitude. Generally, a decrease in the S/Sy ratio will

lengthen the delay time in drawdown response in a

Neuman aquifer (Fig. 9). Model L3D1 (Fig. 5) provides

the best model fitting among the four tabulated three-

well models. Despite a three-order-of-magnitude,

uncertainty in S/Sy, which is likely a consequence of

inadequate record length as mentioned in the case of

modeling synthetic data, other parameters vary by less

Fig. 9. Model curve (solid) based on drawdown at well C; extrapolation based on model parameter values (Table 4, L1C3). Poor misfits at late

time are caused by a low S/Sy determination, as diagnosed with a flattened or delayed drawdown response. Triangles denote drawdown at well A.

Fig. 10. Model curve (solid) based on drawdown at well E, where drawdown has been poorly predicted by model parameter values derived from

other wells (Figs. 4–9). Extrapolation fitting based on model parameter values (Table 4, L1E3) is generally poor except at well D. Triangles

denote drawdown at well A.
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than 20% from their respective geometric means as

listed in the row of G3m.

Among the five listed two-well models, parameters

T, S, and b show less variations from model to model.

However, the ratios of Kz=Kr or S/Sy can vary by a

factor of two from their respective geometric means

(row G2m). The model parameters for L2B4 (Fig. 6)

were used to generate the synthetic data used for Figs.

2 and 3. The fitting for the synthetic drawdown (Fig.

3) is definitely superior to the fitting for the real data.

5.3.3. Models based on one observation well

Four of the 11 one-well models listed in Table 4 are

depicted in Figs. 7–10. The representative model at

each well exhibits good fitting but extrapolation

fittings at other wells are generally poor.

The three models for well C (L1C series) exhibit

two-order-of-magnitude variations in the S/Sy ratio

despite the fact that all three have the same rms of

0.007 m and that the variations of transmissivity T,

storativity S, and thickness b are less than 10% from

their respective geometric means (not tabulated).

These contrasts in model-to-model parameter vari-

ations lead to the conclusion that the S/Sy ratio and

hence the specific yield Sy cannot be determined from

the drawdown data alone at well C. Model L1C3 in

Fig. 9 demonstrates the lengthy delay response in a

Neuman aquifer at low S/Sy ratio. The flattened

portion of the L1C3 model curve does not fit well with

the late-time data ($104 s); nor the model parameters

yield a time-drawdown trend that resembles the data

trend at well D, all because of an erroneously

determined low S/Sy ratio. In this L1C3 example,

the misfit distribution rather than rms is clearly

discriminatory against the model results. A better

misfit distribution can be achieved by narrowing the

range of S/Sy ratio to initiate pguess with the genetic

algorithm, as done in model L1C1 (illustration

omitted).

As seen from Figs. 4–9, all model and extrapol-

ation fittings are poor at the far-distant well

E. Nevertheless, a reasonably good fitting can be

obtained at well E itself but this set of model

parameters (model L1E1, Fig. 10) yields poor

extrapolation fittings at other wells except for well D.

5.3.4. Discussion

Based on rms, the 24 models listed in Table 4

reveal that the model transmissivity T varies from the

lowest to highest values by a factor of 2, storativity S

by 3, aquifer thickness b by 1.3, conductivity ratio

Kz=Kr by 10, and the storativity-to-specific yield ratio

S/Sy by an astonishing factor of 20,000. Some criteria

other than rms must therefore be invoked to reduce

their ranges of uncertainty. It is noted that all models

associated with high (.1022) or low (,1024) S/Sy

ratios do not fit well with the late-time data (Fig. 9).

Excluding those models (model names ended with an

e ), consistent results emerge as shown by the

geometric means for each parameter of the one-,

two-, three-, and four-well models (rows Gnm, for

n ¼ 1–4).

The geometric means of the respective parameters

in G1m, G2m, and G3m are listed at row GGm of

Table 4. The parameters in this GGm set are

remarkably close to the respective geometric means

for the four-well models (G4m), being less than 7%

from their respective arithmetic means. Because each

well is not used at equal frequency to obtain the

geometric means, except the L4 series of which each

is equally represented by four observation wells, the

various geometric mean values as obtained here do

not necessarily represent the properties of a hetero-

geneous aquifer. Nevertheless, these geometric means

can reasonably represent the aquifer and their

variations are the uncertainties inherited from a non-

ideal aquifer, data error, plus parameter resolution in

our methodology.

The wellbore skin effect, if significant, will vary

from well to well systematically. We do not see any

set of drawdown data or combination of data set that

yields consistently higher or lower parameter values.

The uncertainty cited above is not of systematic error.

Failure to see the effect, if any, stems from the fact

that the early-time or distant data have high noise-to-

signal ratios as typified by the drawdown at wells D

and E, and consequently the effect is overshadowed

by the noises. Also, the early time data that may

reflect the skin effect represents only a fraction of the

total data used for the modeling and any possible

effect could have been masked. If the skin effect is to

be included in the modeling, two or more parameters

(e.g. skin thickness, conductivity) will be needed for

every well, including the pumped well. Presumably,

adding more model parameters can improve the

fitting. However, without consideration of wellbore
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skin or storage effects, the model rms is already on par

with the data error. To improve misfit rms further by

including the skin effect cannot be justified unless

information independent of drawdown data is

available to constrain the modeling, the data quality

is improved, and the test aquifer is indeed ideal.

6. Conclusions

Our method for the determination of aquifer

parameters involve using a genetic algorithm to find

a set of close-to-true parameters pguess, then inputting

the p guess to a three-staged quasi-linear inverse

algorithm for refinement toward the final answers. A

model is deemed acceptable if its misfit rms is near the

standard error of the drawdown data and the misfit

distribution is symmetric around the model time-

drawdown curve. The selection of a representative set

of parameters from many sets of acceptable models

are based on two criteria: (1) the model aquifer

thickness which is treated as an unknown parameter in

the genetic-inverse modeling must agree with the true

thickness to within a few percent if the truth is known,

and (2) extrapolations based on the model parameters

must fit drawdown data elsewhere if the aquifer is

homogeneous and uniform in thickness within the

zone of pumping influence.

The making of pguess is a random process subject to

the survival constraint of minimal rms through

selective combinations of parameter retention,

exchange, perturbation, and recombination. There-

fore, a pguess may not be necessarily close to the true

p true or the global minimum in rms in the parameter

space. Such situations can be detected by an rms that

is significantly greater than the standard error of data

or a misfit distribution that is asymmetric around the

model curve. Our three-staged inversion scheme (the

middle stage keeps stationary the parameter with the

highest model resolution) is another safe guard for

excluding undesirable models in the sense that if a

pguess is close to the p true, the final p in the iterative

inverse modeling should be close to that pguess. The

scheme is effective for a parameter that can

sensitively perturb the drawdown (e.g. thickness in

our test examples).

However, a computed g (the theoretical drawdown

Dh ) may not be sensitive to slight change in one or

more parameters for a given set of observed data. As

shown in Table 3, the S/Sy ratio remains stationary as

the modeling proceeds from submodels Gen to Inv3.

In such cases, the scheme of three-staged inversion is

not effective to resolve S/Sy. Misfit rms and distri-

bution are therefore indispensable criteria. Like many

other non-linear inversion schemes, it is prudent to

run the genetic-inverse algorithm a few times with

different random-number seedings in order to assure a

final p with the global minimum in rms.

Our method has been demonstrated with synthetic

and observed drawdown data for five partially

screened monitoring wells in a Neuman-type water-

table aquifer. In our testing, models with acceptable

goodness of fitting can always be obtained for one

single monitoring well. Some of those yield poor

extrapolation fitting and their model aquifer thick-

nesses do not match with the known thickness, or in

the case of synthetic data, model parameters deviate

significantly from the true values. Since the locations

and screen intervals of our monitoring wells are not

designed for an optimal determination of aquifer

parameters, many runs of the genetic-inverse model-

ing are needed to ensure a final p that yields

acceptable model- and extrapolation-fitting.

Comparing Fig. 2 for a one-well model, with

Fig. 3 for a two-well model, the inclusion of one

additional well certainly improves the model and

extrapolation fitting with the synthetic data. For

the real, observed data, however, the fitting

improvement is not as great (from Figs. 7 to 6).

For the two-well model (L2B4) in Fig. 6, the

model fitting at well A or C alone is biased,

especially at the early time. These biases comp-

lement each other and hence, in the senses of

least-squares curve fitting, the model misfits are

symmetric around zero if the misfits are lumped

together and plotted as a function time. So, model

L2B4 is considered to have made good fitting but

extrapolation fitting is biased at wells B and

E. Assuming the methodology has been validated

by synthetic data, such biases are indicative of

aquifer inhomogeneity. Similar misfit results

appear in Figs. 4 and 5, respectively, for the

four- and three-well models, re-affirming lateral

variations in aquifer properties.

Depending on the severity of aquifer inhomogen-

eity, one single set of parameter values may not be
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representative of the aquifer. In an attempt to obtain a

representative set for our test aquifer, we have used

the geometric means to summarize the parameter

values for various combinations of monitoring wells

(Row Gnm for n from 1 to 4, Table 4). Row GGm

(Table 4), which are geometric means of G1m, G2m,

and G3m, agree with row G4m to within 7% from

their arithmetic means. Any set of the geometric

means can be representative of the aquifer to within

10–15%. Each of the geometric mean for the model

aquifer thickness is definitely within 10% of the given

aquifer thickness, 21 m, as estimated from borehole

logs.
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