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Abstract

The use of two non-linear black-box approaches, phase-space reconstruction (PSR) and artificial neural networks (ANN), for

forecasting river flow dynamics is studied and a comparison of their performances is made. This is done by attempting 1-day

and 7-day ahead forecasts of the daily river flow from the Nakhon Sawan station at the Chao Phraya River basin in Thailand.

The results indicate a reasonably good performance of both approaches for both 1-day and 7-day ahead forecasts. However, the

performance of the PSR approach is found to be consistently better than that of ANN. One reason for this could be that in the

PSR approach the flow series in the phase-space is represented step by step in local neighborhoods, rather than a global

approximation as is done in ANN. Another reason could be the use of the multi-layer perceptron (MLP) in ANN, since MLPs

may not be most appropriate for forecasting at longer lead times. The selection of training set for the ANN may also contribute

to such results. A comparison of the optimal number of variables for capturing the flow dynamics, as identified by the two

approaches, indicates a large discrepancy in the case of 7-day ahead forecasts (1 and 7 variables, respectively), though for 1-day

ahead forecasts it is found to be consistent (3 variables). A possible explanation for this could be the influence of noise in the

data, an observation also made from the 1-day ahead forecast results using the PSR approach. The present results lead to

observation on: (1) the use of other neural networks for runoff forecasting, particularly at longer lead times; (2) the influence of

training set used in the ANN; and (3) the effect of noise on forecast accuracy, particularly in the PSR approach. q 2002 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Accurate forecasting of river flow dynamics is

necessary for, among others: (1) optimal design of

water storage and drainage networks; and (2) manage-

ment of extreme events, such as floods and droughts.

However, the problem is non-trivial, because: (1) the

various physical mechanisms governing the river flow

dynamics act on a wide range of temporal and spatial

scales; and (2) almost all mechanisms involved in the

river flow process present some degree of non-

linearity.

During the past few decades, a great deal of

research has been devoted to the modeling and

forecasting of river flow dynamics. Such efforts

have led to the formulation of a wide variety of

approaches and the development of a large number of
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models. The existing models for river flow forecasting

may broadly be grouped under two main categories:

(1) physically-based models; and (2) black-box

models. The physically-based models are specifically

designed to mathematically simulate or approximate

(in some physically realistic manner) the general

internal sub-processes and physical mechanisms that

govern the river flow process, whereas the black-box

models are designed to identify the connection

between the inputs and the outputs, without going

into the analysis of the internal structure of the

physical process.

While the physically-based models are very useful

to our understanding of the physical mechanisms

involved in the river flow (or any other hydrological)

process, unfortunately, they also possess great appli-

cation difficulties, essentially for the following

reasons: (1) they require a large number of parameters

for modeling the complexity of river flow dynamics;

and (2) extension of a particular model to even

slightly different situations is very difficult. The black-

box models, on the other hand, though may not

necessarily lead to a better understanding of the river

flow process (in a physically realistic manner), have

an advantage in that they are easier to apply for even

different conditions since the modeling and forecast-

ing procedure is usually analogous. Furthermore, the

analysis of the characteristic parameters of the black-

box models can furnish useful information on the

dynamics of the phenomenon.

In the absence of accurate information about the

physical mechanisms underlying or the ‘exact’

equations involved in the dynamics of river flow

at a particular location, the use of a black-box

model seems to have an edge over the use of a

physically-based model, since the former is capable

of representing arbitrarily the complex non-linear

river flow process, by relating the inputs and the

outputs of the underlying system. In view of this,

the present study investigates the use of two non-

linear black-box approaches: (1) the phase-space

reconstruction (PSR) approach; and (2) the artificial

neural networks (ANN) approach, for forecasting

the river flow dynamics, and also compares their

performances. Even though both the approaches

employ a non-linear function to model the input–

output relationship, they are different in the way

they subdivide the function domain (or phase-

space) to perform the forecast. The PSR approach

is a local approximation approach, where the

domain is subdivided into many sub-domains or

subsets, each of which identifies some approxi-

mations valid only in that subset. In this way, the

system dynamics is represented step by step locally

in the phase-space. The ANN approach, on the

other hand, is a global approximation approach, in

the sense that it uses all the values that were

generated in the past as input for the forecast.

The use of these two approaches for studying the

river flow (or any other hydrological) process is not

new. Applications of these approaches to the river

flow dynamics (either using the river flow series alone

or using both rainfall and river flow series, i.e.

rainfall-runoff modeling), in spite of their state of

infancy and inherent limitations, have been on the rise

since early last decade. Having said that, the ANN

approach has been more popular, and the studies that

have employed this approach (e.g. Karunanithi et al.,

1994; Hsu et al., 1995; Minns and Hall, 1996;

Fernando and Jayawardena, 1998; Jayawardena and

Fernando, 1998; See and Openshaw, 1999; Zealand

et al., 1999) have certainly outnumbered the ones that

have employed the PSR approach (e.g. Jayawardena

and Lai, 1994; Porporato and Ridolfi, 1997; Jayawar-

dena and Gurung, 2000; Sivakumar et al., 2000,

2001). The outcomes of such studies are encouraging,

as the two approaches have been found to be very

useful in providing important information regarding

the non-linear (dynamical) characteristics of the river

flow and its predictability. The use and the validity of

the PSR and other related concepts in hydrology are

discussed in detail by Sivakumar (2000), whereas a

review of the applications of the ANN approach in

hydrology is made by Govindaraju (2000).

An important observation that can be made from

the studies conducted thus far on the applications of

the PSR approach and the ANN approach for river

flow forecasting is that each of these studies has been

limited either to the application of the PSR approach

alone or to the application of the ANN approach

alone. Also, to the authors’ knowledge, none of the

river flow data sets used in the above studies has been

studied by both the PSR and ANN approaches.

Consequently, a comparison of the performances of

the two approaches for forecasting river flow

dynamics at a particular location could not be made,
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which, in turn, eliminated the possibility of choosing

the appropriate (or better) approach for the river flow

dynamics under investigation. This forms the basis for

the present study. The study employs the above two

approaches for forecasting the same river flow

dynamics. The river flow dynamics chosen for the

analysis is the daily river flow observed at the Nakhon

Sawan gaging station in the Chao Phraya River basin

in Thailand. The forecasting is made using only a

scalar time series, i.e. the river flow series itself. The

performance of the two approaches is investigated by

forecasting the river flow series for two different lead

times, i.e. 1 day and 7 days.

The organization of this paper is as follows.

Section 2 starts with a brief introduction about the

concept of PSR followed by a description of the local

approximation forecasting approach. In Section 3, the

fundamentals of the ANN and the forecasting

approach therein are presented. Section 4, starting

with the details of the Chao Phraya River basin study

area and the data used, presents the analysis of the

data using the two forecasting approaches and the

results obtained. A comparison of the results obtained

using the two approaches is also presented in

Section 4. Important conclusions drawn from the

present study as well as the potential areas for further

research are presented in Section 5.

2. Phase-space reconstruction forecasting

approach

The concept of phase-space is a useful tool for

characterizing dynamical systems, such as the river

flow system. According to this concept, a dynamical

system can be described by a phase-space diagram,

which is essentially a coordinate system, whose

coordinates are all the variables that enter the

mathematical formulation of the system (i.e. the

variables necessary to completely describe the state of

the system at any moment). The trajectories of the

phase-space diagram describe the evolution of the

system from some initial state (assumed to be known)

and hence represent the history of the system. A point

in the phase-space represents the state of the system at

a given time. Phase-space is a powerful concept

because with a model and a set of appropriate

variables, dynamics can represent a real-world system

as the geometry of a single moving point.

A common problem encountered while dealing

with real systems, such as the river flow system, is the

absence of information about all the variables

involved in the underlying system. Under such

circumstances, one way to represent the dynamics of

the system is through the PSR, i.e. reconstruction (or

embedding) of a single-dimensional (or variable) time

series in a multi-dimensional phase-space. The

physics behind such a reconstruction is that a non-

linear system is characterized by self-interaction, so

that a time series of a single variable can carry the

information about the dynamics of the entire multi-

variable system.

Among a variety of methods available for recon-

structing the phase-space, the method of delays (e.g.

Takens, 1981) is the most popular one. The method is

based on the concept that, using its past history and an

appropriate delay time, a scalar (or single-variable)

time series Xi, where i ¼ 1; 2;…;N; can be recon-

structed in a multi-dimensional phase-space to

represent the underlying dynamics, according to

Yj ¼ ðXj;Xjþt;Xjþ2t;…;Xjþðm21ÞtÞ ð1Þ

where j ¼ 1; 2;…;N 2 ðm 2 1Þt; m is the dimension

of the vector Yj, called as embedding dimension; and t

is a delay time (Packard et al., 1980; Takens, 1981). A

(correct) PSR in a dimension m allows one to interpret

the underlying dynamics in the form of an m-

dimensional map fT, that is

YjþT ¼ fT ðYjÞ ð2Þ

where Yj and YjþT are vectors of dimension m,

describing the state of the system at times j (current

state) and j þ T (future state), respectively (In real

situations, however, the optimal embedding dimen-

sion for reconstruction is not known a priori. In such

cases, a trial and error procedure has to be adopted,

i.e. by increasing the embedding dimension and

selecting the one that gives the best (forecast) results).

The problem now is to find an appropriate expression

for fT (e.g. FT).

There are several approaches for determining

FT, the most widely used one being the local

approximation method proposed by Farmer and

Sidorowich (1987). According to this method, the

fT domain is subdivided into many subsets
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(neighborhoods), each of which identifies some

approximations FT, valid only in that subset and,

hence, in this way, the system dynamics is

represented step by step locally in the phase-

space. The identification of the sets in which to

subdivide the domain is done by fixing a metric k k
and, given the starting point Yj from which the

forecast is initiated, identifying neighbors Y
p
j ; p ¼

1; 2;…; k; with j p , j, nearest to Yj, which

constitute the set corresponding to Yj. The local

functions can then be built, which take each point

in the neighborhood to the next neighborhood: Y
p
j

to Y
p
jþ1: The local map FT, which does this, is

determined by a least squares fit minimizing

Xk

p¼1

Y
p
jþ1 2 FT Y

p
j

��� ���2
ð3Þ

In this study, the local maps are learned in the

form of local polynomials (e.g. Abarbanel, 1996),

and the forecasts are made forward from a new

point Z0 using these local maps. For the new point

Z0, the nearest neighbor in the learning or training

set is found, which is denoted as Yq. Then the

evolution of Z0 is found, which is denoted as Z1

and is given by

Z1 ¼ FqðZ0Þ ð4Þ

The nearest neighbor to Z1 is then found, and the

procedure is repeated to forecast the subsequent values.

The forecasting algorithm is implemented herein using

the cspW software (Randle Inc., 1996).

3. Artificial neural networks forecasting approach

An ANN is a massively parallel-distributed

information-processing system that has certain per-

formance characteristics resembling biological neural

networks of the human brain, where knowledge is

acquired through a learning process and finding

optimum weights for the different connections

between the individual nerve cells (Haykin, 1994).

The advantage of the ANN is that with no a priori

knowledge of the actual physical process and, hence,

the ‘exact’ relationship between sets of input and

output data, if acknowledged to exist, the network can

be ‘trained’ to ‘learn’ such a relationship. The ability

to ‘train’ and ‘learn’ the output from a given input

makes ANN capable of describing large scale

arbitrarily complex non-linear problems.

A neural network is characterized by its architecture

that represents the pattern of connection between nodes,

its method of determining the connection weights, and

the activation function (Fausett, 1994). A typical ANN

consists of a number of nodes that are organized

according to a particular arrangement. One way of

characterizing ANNs is by the number of layers, as

single-layer, bi-layer, and multi-layer. Another way of

characterizing ANNs is based on the direction of

information flow and processing, as feed-forward

(where the information flows through the nodes from

the input to the output side) and recurrent (where the

information flows through the nodes in both directions).

Among these combinations, the multi-layer feed-

forward networks, also known as multi-layer percep-

trons (MLPs), trained with a back-propagation learning

algorithm have been found to provide the best

performance with regard to input–output function

approximation, such as forecasting. As the present

study uses an MLP trained with a back-propagation

algorithm for the purpose of river flow forecasting, the

architecture of such a network is described here.

An MLP can have many layers. A typical MLP

with one hidden layer is shown in Fig. 1. The first

layer connects with the input variables and is called

the input layer. The last layer connects to the output

variables and is called the output layer. The layer in-

between the input and output layers is called the hidden

layer (there may be more than one hidden layer in an

MLP). The processing elements in each layer are called

nodes or units. Each of the nodes is connected to the

nodes of neighboring layers. The parameters associated

with each of these connections are called weights.

The architecture of a typical node (in the hidden or

output layer) is also shown in Fig. 1. Each node j

receives incoming signals from every node i in the

previous layer. Associated with each incoming signal

(xi) is a weight (wji). The effective incoming signal (sj) to

node j is the weighted sum of all the incoming signals

sj ¼
Xn

i¼0

wjixi ð5Þ

The effective incoming signal, sj, is passed through a
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non-linear activation function (sometimes called a

transfer function or threshold function) to produce the

outgoing signal (yj) of the node. The most commonly

used function in an MLP trained with back-propagation

algorithm is the sigmoid function. The characteristics of

the sigmoid function are that it is bounded above and

below, it is monotonically increasing, and it is

continuous and differentiable everywhere (Hecht-Niel-

sen, 1990). The sigmoid function most often used for

ANNs is the logistic function:

f ðsjÞ ¼
1

1 þ exp2sj
ð6Þ

in which sj can vary on the range ^1, but yj is bounded

between 0 and 1.

4. Analysis, results and discussion

4.1. Study area and data

In the present study, daily river flow series observed

in the Chao Phraya River basin in Thailand is analyzed

to study the use of the PSR and the ANN approaches

for forecasting river flow dynamics. The Chao Phraya

River basin, situated between 13.58–15.678N and

Fig. 1. Typical three-layer feedforward artificial neural network.
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100.10–101.008E, is one of the most intensively

monitored basins in Asia under the auspices of the

global energy and water cycle experiment (GEWEX)

and the GEWEX Asian monsoon experiment

(GAME). Recent years have seen a large number of

studies on the hydrology of this basin, notable among

them are the studies by Oki et al. (1995), Wijesekera

et al. (1995), and Raghunath et al. (2000).

Throughout the Chao Phraya River basin, flow is

measured at a number of locations. In the present

study, flow data observed at the Nakhon Sawan

gaging station (Global River Flow Data Center station

#2964100) is studied. This station is situated at

15.678N and 100.128E. The area of the basin at this

station is 110,569 km2 and, therefore, can be con-

sidered as a macro scale basin. For this station, daily

river flow measurements are available from April

1978. The data set obtained, from the Global River

Flow Data Center, Germany, for the present investi-

gation contains the river flow data collected during the

period from April 1978 to March 1994 (17 years),

consisting of a total of 5844 data points. The time

series plot of this river flow series is shown in Fig. 2.

As can be seen in the figure, the river flow series

exhibits significant variations, though an annual cycle

seems to be evident. The analysis of this data series

using the PSR approach and the ANN approach and

the results obtained are presented below.

As both the PSR and the ANN approaches are

black-box models, depending primarily on good

training and learning of the data to establish

relationships between the input and the output, it is

imperative to select such a good training set from the

available data series; this is particularly more

important as far as the latter approach is concerned.

The best way to achieve this goal seems to be to

include all (or most of) the extreme events, such as

very high and very low values (both qualitatively and

quantitatively), in the training set. The inclusion of

biased samples in the training set is also not

recommended, as this will lead to a longer training

time but not better results (and also may result in

overtraining). A preliminary investigation of the river

flow series (through a qualitative visual inspection of

Fig. 2 as well as using quantitative basic statistical

parameters) indicates that the most significant events

(i.e. very high values and significant variations in the

series) fall within the first quarter of the series. The

latter part of the series (in particular the last one-third)

seems to contain a lot of biased samples (i.e. with a

large number of low flow values). The authors are not

certain about the reasons for the significant change of

trend (i.e. a decline) in the river flow values over time

(i.e. very high flows and significant variations during

the first few years and then somewhat consistently

very low flows and less variations in the following

years), but there may be two possible reasons for the

above: (1) an increase in abstractions in the upstream

locations for irrigation and other purposes; and (2) a

change in basin regulations.

In view of the above observations, it is decided to

use only the first 2550 data points for analysis in this

study. Out of these 2550 points, the first 2150 points,

which represent about 84% of the series, are selected

as training set, whereas the remaining 400 points,

accounting for about 16% of the series, are used for

Fig. 2. Variation of daily river flow series at Chao Phraya River basin (day 1 corresponds to April 1, 1978).
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testing the forecasting performance of the PSR and

ANN approaches. Also, in the case of ANN, the

training set of 2150 points is further divided into two

parts; training set and validation set. The first 1750

points are selected as the training set and the next 400

points are taken as the validation set. The choice of the

length of the validation set is based on the

recommendation to use about 10–20% of the training

set (e.g. Kasabov, 1996). The performance of the PSR

and the ANN approaches for forecasting the river flow

series is tested by making forecasts for two different

lead times, i.e. 1 day and 7 days.

Having said that, the consideration of (only) the

first 1750 values of the river flow series for the

purpose of training may raise serious questions for (at

least) two reasons: (1) the 1750 values used for

training happen to contain the highest recorded flow

event and also exhibit significant variations; and (2)

the testing set used (i.e. the latter part of the series)

does not exhibit significant variations. The concern

implied in these reasons is that the testing set is less

variable and more predictable than the training set

and, therefore, there may be a bias in the analysis (to

show that the two approaches work well). Although,

one cannot dismiss such a concern, the following

points are also to be noted in order to understand why

such a selection is made: (1) it is necessary to have a

training set that could represent the overall structure

of the flow series to capture the input–output

relationship, which means that it is important to

include the extreme events (this is particularly the

case in the ANN approach); (2) since the objective is

forecasting, it is important to capture the changes in

the system with respect to time, which means that

events from the first few years, for instance, should

form the basis for the events that follow (this is

particularly the case in the PSR approach); and (3) it

may be necessary to have a reasonably long data set

for training in order to sufficiently capture the

dominant characteristics of the system under investi-

gation (this seems to be the case particularly in the

PSR approach, details of which are not reported

herein, but can be found in, for instance, Sivakumar

(2000)).

With respect to the above concern, however,

unfortunately, the first few years of the river flow

series used in this study happen to consist of the

extreme events. Therefore, the selection of the data

sets for training and testing is only logical, for the

reasons also stated above. Having said that, it is also

important to note that the compromise thus made in

the selection of training and testing sets may also lead

to inaccurate results, since the ANNs are not good

extrapolators, and, therefore, one has to be careful in

interpreting the results. However, the problem of

extrapolation may be overcome to some extent by

selecting a proper normalization range for the output

variables, which is also done in the present study (see

Section 4.3.1 for details).

It is important to note that the forecasting

procedures in the PSR and the ANN approaches

adopted herein with respect to the number of variables

used as inputs are somewhat different. In the PSR

approach, forecasting is made using lagged variables

(or embedding dimensions) from 1 to 9. On the other

hand, in the ANN approach, the analysis is started

with 7 lagged variables (or input nodes), in order to

reduce the computational time, and for each lead time,

the optimal network structure is obtained by varying

the number of nodes in the hidden layer. However,

with the optimal network structure obtained in each

case, a sensitivity analysis is performed to assess the

importance of each input variable for forecasting.

The accuracy of forecasts is evaluated using a

variety of (absolute and relative) error indicators, as

follows: mean absolute error (MAE), mean square

error (MSE), root mean square error (RMSE),

maximum absolute error (MAXAE), minimum

absolute error (MINAE), correlation coefficient (r ),

coefficient of determination (R 2), coefficient of

Fig. 3. Phase-space plot of daily river flow series at Chao Phraya

River basin.
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efficiency (E ), and modified coefficient of efficiency

(E1). Among these, the mean absolute error, the root

mean square error, the correlation coefficient, and the

modified coefficient of efficiency are considered the

most important and, therefore, presented in all the

forecasting cases that follow. These four error

indicators are defined in Appendix A. The time series

plots and the scatter diagrams are also used to choose

the best forecasts among a large combination of

results achieved with the different number of input

variables (i.e. embedding dimensions in case of PSR

approach and input nodes in case of ANN approach).

4.2. Phase-space reconstruction forecasting results

Fig. 3 illustrates how the scalar river flow series is

reconstructed in a higher dimensional phase-space,

according to Eq. (1), to represent the underlying

dynamics. The figure presents the reconstruction of

the series in a two-dimensional phase-space ðm ¼ 2Þ;
i.e. the projection of the attractor on the plane

{Xi;Xiþ1}; i.e. with t ¼ 1: As can be seen, such a

reconstruction yields a well-defined attractor for the

river flow series, i.e. an attractor contained in a small

region within the phase-space. The presence of such a

well-defined attractor, even in just two dimensions, may

be an indication of the possibility of obtaining

reasonably good forecasts for the river flow series,

especially with the use of local approximation methods.

The PSR approach with a local approximation

forecasting method in the form of local polynomials,

explained in Section 2, is now employed to forecast

the river flow dynamics. For the data set mentioned

above, embedding dimensions from 1 to 9 are used for

the reconstruction purposes, and forecasts are made

for 1-day and 7-day lead times.

Fig. 4. PSR forecasting results for daily river flow series at Chao Phraya River basin: forecast accuracy versus embedding dimension for: (a) lead

time ¼ 1 day; and (b) lead time ¼ 7 days.
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Fig. 4(a) presents a summary of the PSR forecast-

ing results achieved for the river flow series when 1-

day ahead forecasts are made, whereas the results of

the 7-day ahead forecasts are summarized in Fig. 4(b).

As the figures indicate, overall, reasonably good

forecasts are achieved for the river flow series for both

1-day and 7-day lead times for all the embedding

dimensions used for the PSR. However, the figures

also reveal that the best forecasts for 1-day lead time

are achieved (consistently in terms of the evaluation

statistics) when the embedding dimension is three, i.e.

mopt ¼ 3 (with MAE ¼ 8:379; RMSE ¼ 12:058; r ¼

0:99924; E1 ¼ 0:95832) and for 7-day lead time are

achieved when the embedding dimension is one, i.e.

mopt ¼ 1 (with MAE ¼ 28:095; RMSE ¼ 37:532;
r ¼ 0:98392; E1 ¼ 0:86026). In regards to mopt, a

comparison, using time series plots and scatter

diagrams, of the observed values with the forecasted

ones (obtained for the nine embedding dimensions)

reveals that the best forecasts are indeed achieved

when the embedding dimensions are three and one for

1-day and 7-day ahead forecasts, respectively, thus

supporting the above observation.

Fig. 5(a) and (b) compare, using time series plots,

the forecasted river flow values with the observed

ones for 1-day and 7-day lead times, respectively (the

ANN forecasted values are also presented therein,

details of which will be presented later). The plots

shown correspond to the results achieved with m ¼ 3

and m ¼ 1; respectively, i.e. the best forecasts

achieved among the nine embedding dimensions

used for the PSR. As can be seen, the forecasted

values are, in general, in good agreement with the

observed ones. A closer look at the two (i.e. observed

and forecasted) time series (for both 1-day and 7-day

lead times) reveals that the local approximation method

with local polynomials not only very well captures the

major trends in the river flow series but also reasonably

Fig. 4 (continued )
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preserves the minor (noisy) fluctuations. As can be seen,

even extreme (i.e. very high) values are very well

forecasted. The good agreement between the observed

and forecasted series can also be revealed by plotting the

scatter diagrams, shown in Fig. 6(a) and (b) for the two

lead times, where the solid 1:1 (diagonal) line is plotted

for reference. The time series plots, the scatter diagrams,

the low MAE and RMSE values and the high r and E1

values clearly indicate the suitability of the PSR

forecasting approach with the local approximation

method for forecasting the river flow dynamics.

The ability of the local approximation procedure

in forecasting the river flow dynamics lies

essentially in representing the dynamics captured

in the phase-space step by step in local

neighborhoods.

4.3. Artificial neural networks forecasting results

4.3.1. Training and testing details

For the data set considered in the present study, the

input variables as well as the target variables are first

normalized linearly in the range of 0.1–0.9. This

range is selected because of the use of the logistic

function (which is bounded between 0.0 and 1.0) as

the activation function for the output layer, i.e. Eq.

(6). The normalization is done using the following

equation

Xnorm ¼ 0:1 þ 0:8ðX 2 XminÞ=ðXmax 2 XminÞ ð7Þ

where Xmin and Xmax are the minimum and maximum

values in the data set, respectively. The synaptic

weights of the networks are initialized with normally

Fig. 5. Time series comparison of observed and PSR and ANN forecasted daily river flow series at Chao Phraya River basin for: (a) lead

time ¼ 1 day; and (b) lead time ¼ 7 days.
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distributed random numbers in the range of 21 to 1.

The same initial weights are adopted for all the

simulations in one set of simulations in order to make

a direct comparison. The training is carried out in a

pattern mode and the order of presenting the training

samples to the network is also randomized from

iteration to iteration. A learning rate of 0.1 and a

momentum term of 0.3 are used for training, since

these values have been found to yield better

performance for this particular river flow series (see

Jayawardena et al. (2000), Jayawardena and Fernando

(2001) for details). Two stopping criteria, the cross

validation and the fixed number of iterations, are

adopted. The maximum number of iterations is set at

1000 and the training is continued for another 250

iterations after reaching a minimum in the validation

set. The error reduction curves for the training and the

testing sets are used to assess the convergence speed

of the networks.

4.3.2. Results of 1-day lead time forecasts

For the 1-day lead time forecasts, the input layer

consists of 7 nodes representing the daily river flow

values at times t, t 2 1,…,t 2 6 and the output layer

consists of a single node representing the river flow

value at t þ 1: The optimal number of hidden nodes is

chosen based on a trial and error procedure, by

varying the hidden nodes from 2 to 10 in steps of 2.

With respect to the effect of number of hidden nodes,

a significant increase in the learning speed is observed

only when the number of hidden nodes is increased

from 2 to 4, but not for further increase in nodes (i.e. 6,

8, and 10), as can be seen in Fig. 7. The mean square

error of the training set (shown in Fig. 7) as well as the

validation set (Figure not shown) is found to decrease

gradually during training as expected and all the

simulations are terminated after 1000 iterations.

However, the rate of change of mean square error is

found to be very small at the latter part of the training

irrespective of the number of nodes in the hidden

layer. The error measures for the training set and the

testing set for these simulations (presented in Fig. 8,

see below for details) demonstrate that over-fitting or

over-training would not be a problem for a network

with enough training samples, as suggested by Amari

et al. (1997).

Fig. 8(a) presents a summary of the ANN

forecasting results achieved for the river flow series

when 1-day ahead forecasts are made. As the results

indicate, overall, reasonably good forecasts are

achieved for both the training and the testing sets

for all the five different combinations of number of

hidden nodes (the variations between the best case and

the others are only marginal, i.e. less than 6%), even

though the best results are achieved for the network

with 4 hidden nodes.

A sensitivity analysis is now performed to evaluate

the importance of each input parameter in training the

network for making 1-day ahead forecasts. For this

purpose, the trained weights of the network with

structure 7-4-1 (input-hidden-output nodes) that

yielded the best results (as discussed above) are

Fig. 6. Scatter plot of observed and PSR forecasted daily river flow

series at Chao Phraya River basin for: (a) lead time ¼ 1 day; and (b)

lead time ¼ 7 days.
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used. The sensitivity analysis is carried out as follows.

First, each input parameter is increased by 10 percent

at a time. This gives 7 new input data series. These

input series are used to make the corresponding

forecasts using the trained network with original

inputs. The forecasts obtained with the increased

input variables are compared with the forecasts

obtained with the original inputs. The sensitivity

of the input variables is evaluated by computing

the sensitivity indicators, i.e. sensitivity level (SL)

and the absolute percentage variation of mean

square error (APMSE). The results indicate that

only the river flow value observed at t has a

significant impact on t þ 1 forecasts (with SL ¼

73:3; APMSE ¼ 156:6). For the remaining input

variables (i.e. river flow values observed at t 2 1

to t 2 6), the SL and APMSE are found to be

considerably less, with the maximum SL of 7.9

and the maximum APMSE of 10.4 observed for

the river flow value at t 2 6: These results seem to

suggest that the use of lagged value at time t

might be sufficient for making forecasts at time

t þ 1: Therefore, the next simulations are con-

ducted with only one input variable, which is the

river flow observed at time t.

For the one input case, the simulations are started

with 10 hidden nodes and then gradually increased up

to 60 hidden nodes. The simulation with 16 hidden

nodes has an identical number of synaptic weights

with the networks 7-4-1, which yielded the best results

with 7 input variables, as presented earlier. All these

simulations are terminated after 1000 iterations

similar to the termination in the case of 7 input

nodes. The error indicators for the training, validation

and testing sets are presented in Fig. 8(b). As can be

seen, in general, the accuracy of the forecasts

increases with an increase in the hidden layer nodes

up to 30, and then decreases with further increase in

the hidden nodes. The network with 30 hidden layer

nodes consistently results in the best forecasts. A

Fig. 7. Variation of mean square error of normalized training set during ANN training of the daily river flow series at Chao Phraya River basin

with different number of nodes in the hidden layer: lead time ¼ 1 day; input variables ¼ 7.
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relevant point to be noted here is that even this best

result with the single input variable is worse than the

worst result obtained with 7 input variables (Fig.

8(a)), clearly indicating that the use of only the river

flow at time t is not sufficient to make reliable

forecasts for 1-day ahead, in spite of the fact that it is

the only input variable that has a remarkable impact.

In view of the above, it is decided to assess the

effect of the use of 3 input variables in forecasting, i.e.

using river flow values at times t, t 2 1 and t 2 2 for

forecasting the value at time t þ 1: In this case, the

simulations are carried out with 5; 8; 10; 20; 40; and

60 hidden layer nodes. All these simulations are

terminated using the stopping criterion of maximum

number of iterations. A summary of the error

indicators is shown in Fig. 8(c). As can be seen, the

accuracy of the forecasts increases with the increase in

the number of hidden layer nodes up to 40 and then

decreases with further increase in the number of

hidden nodes. When the number of synaptic weights is

identical with that of the network with 7 inputs, the

results seem to be more or less the same. The results

are further improved by increasing the hidden layer

nodes and the best results are achieved with the

network structure 3-40-1. These best results are a

significant improvement over all the results achieved

using different network structures. A time series

comparison of these forecasted river flow values and

the observed values is presented in Fig. 5(a), whereas

Fig. 9 shows a scatter plot comparison of the same.

The number of iterations (i.e. 1000) used to carry

out the above simulations seems to be sufficient and

reliable as the rate of change of MSE of the

normalized training set is found to be very small at

Fig. 8. Variation of error indicators for ANN training, validation, and testing of daily river flow series at Chao Phraya River basin for different

number of nodes in the hidden layer: (a) lead time ¼ 1 day, input variables ¼ 7; (b) lead time ¼ 1 day, input variables ¼ 1; and (c) lead

time ¼ 1 day, input variables ¼ 3.
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the latter part of the training irrespective of the

number of input variables and the hidden layer nodes.

For instance, in the case of 7 inputs, the rate of change

in the normalized MSE per iteration is about

1.4 £ 1023 and 1.3 £ 1027 at the beginning of the

training and at the latter part of the training,

respectively. However, the learning curves indicate

a slow reduction in the error until the termination.

Therefore, in order to verify whether further improve-

ment in the results could be achieved by increasing the

number of iterations, two more simulations are

conducted with networks 7-4-1 and 3-40-1 by setting

the maximum number of iterations to 5000. The

results do not indicate any improvement in the

forecast accuracy with the increase in the number of

iterations; rather there seems to be a decrease in the

accuracy. The effective learning rate is found to be

significantly smaller at the latter part of the training

and both networks seem to converge to a minimum

after about 1000 iterations. All these results suggest

that 1000 iterations are reasonably sufficient to train

the network to establish the input–output relationship

of the river flow series studied and hence its

forecasting for 1-day ahead.

4.3.3. Results of 7-day lead time forecasts

For the 7-day lead time forecasts, the input

layer consists of 7 nodes representing the daily

river flow values at times t, t 2 1;…; t 2 6 and the

output layer consists of a single node representing

the river flow value at t þ 7: The number of nodes

in the hidden layer is started at 2 and then

gradually increased up to 10 to find the optimal

number. The learning speeds of the networks do

not seem to vary significantly with the increase in

the number of hidden nodes (figure not shown).

However, the use of only 2 hidden nodes does not

seem to be sufficient to capture the underlying

Fig. 8 (continued )
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behavior of the data set. Unlike with the 1-day

lead-time forecasts, the simulations in this case are

terminated using the cross validation criterion

except for the network 7-2-1. Fig. 10(a) presents

a summary of the ANN forecasting results

achieved for the river flow series when the

forecasts are made 7 days ahead. As can be

seen, the best results obtained with the network 7-

6-1 are slightly better than those obtained with the

other networks tested. The time series comparison

of the 7-day ahead forecasted river flow values

from such a network and the observed values is

presented in Fig. 5(b), whereas Fig. 10(b) shows a

scatter plot comparison of the same. As can be

seen, the forecasts are in reasonably good agree-

ment with the observed values; however, they are

not as good as, and sometimes much worse than,

the ones obtained using the PSR approach (see

below for further details).
Fig. 9. Scatter plot of observed and ANN forecasted daily river flow

series at Chao Phraya River basin for lead time ¼ 1 day.

Fig. 8 (continued )
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Fig. 10. (a) Variation of error indicators for ANN training, validation, and testing of daily river flow series at Chao Phraya River basin for

different number of nodes in the hidden layer: lead time ¼ 7 days, input variables ¼ 7; and (b) scatter plot of observed and ANN forecasted

daily river flow series at Chao Phraya River basin: lead time ¼ 7 days.
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A sensitivity analysis is now carried out to evaluate

the significance of each input parameter in making 7-

day ahead forecasts using 7 input variables. Similar to

the procedure adopted in the 1-day ahead forecast

case, the trained weights of the optimal network (7-6-

1) are used for this analysis. Each input variable is

increased by 10 percent at a time and the forecasts

obtained with the increased input are compared with

the original forecasts. The results, i.e. sensitivity

indicators (SL and APMSE), indicate that only the

river flow value observed at the previous day (i.e. t )

has a significant impact on the 7-day ahead (t þ 7)

forecasts (with SL ¼ 92; APMSE ¼ 75), similar to

the observation in the 1-day ahead forecast case.

However, unlike in the 1-day ahead forecasts, the

other input variables also seem to have a relatively

significant impact in making 7-day ahead forecasts.

The river flow value observed at time t 2 2 has the

second highest significance on the 7-day lead time

forecasts (with SL ¼ 35; APMSE ¼ 11), followed by

the ones observed at t 2 1; t 2 5 and t 2 6:
In an attempt to obtain the optimal network

structure for the 7-day ahead forecasts, simulations

are also carried out with river flow values observed at

times t, t 2 1; and t-2 as input parameters, and with

10; 12; 30; 40; 60; 100; and 150 hidden nodes. The

results indicate that none of these networks yields

satisfactory forecasts when compared to the best

results obtained with 7 input nodes and, therefore,

suggest that just 3-day lagged variables are not

sufficient for making 7-day ahead forecasts of the

daily river flow series under study.

4.4. Comparison between PSR and ANN forecasting

results

4.4.1. Forecast accuracy

Table 1 presents, using a variety of absolute and

relative error indicators, a comparison of the per-

formance of the PSR approach and the ANN approach

in forecasting the daily river flow dynamics in the

Chao Phraya River basin at time scales of 1-day and 7

days ahead. As can be seen, in general, both the

approaches yield reasonably good forecasts for both

the 1-day and 7-day lead times, though the forecasts

are better for the 1-day ahead case. However, the

forecasts obtained using the PSR approach are

significantly better than those using the ANN

approach irrespective of the lead time. This can be

better seen through, for instance, a direct time series

comparison of these forecasted values with the

observed values, as shown in Fig. 5(a) and (b) for

the 1-day and 7-day lead times, respectively, and also

using scatter diagrams, as presented in Figs. 6(a) and 9

for the 1-day lead time and Figs. 6(b) and 10(b) for the

7-day lead time. As can be seen, from Fig. 5(a) and

(b), the PSR approach not only very well captures the

major trends in the river flow series but also preserves

very well the minor (noisy) fluctuations, as the

forecasted values are extremely closer to and almost

indistinguishable from the observed values, particu-

larly for the 1-day lead time. As seen in Figs. 5(a),(b)

and 6(a),(b), even extreme (i.e. very high) values are

very well forecasted using the PSR approach. On the

other hand, the ANN approach provides sometimes a

Table 1

Comparison of forecasting results between PSR and ANN approaches for the daily river flow series from Chao Phraya River basin

Error indicator Phase-space Neural networks

Lead time ¼ 1 Lead time ¼ 7 Lead time ¼ 1 Lead time ¼ 7

Mean absolute error (m3/s) 8.379 28.095 71.754 122.958

Mean square error (m3/s) 145.40 1408.68 6416.93 22298.80

Root mean square error (m3/s) 12.058 37.532 80.106 149.328

Maximum absolute error (m3/s) 67.136 113.120 174.607 485.563

Minimum absolute error (m3/s) 0.033 0.277 0.405 1.294

Correlation coefficient 0.9992 0.9893 0.9904 0.8556

Coefficient of determination 0.9985 0.9788 0.9809 0.7321

Coefficient of efficiency 0.9977 0.9777 0.8983 0.6466

Mod. coefficient of efficiency 0.9583 0.8603 0.6431 0.3834
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significant overestimation of the river flow values, as

obtained for both the 1-day and 7-day lead time cases

(Figs. 5(a),(b), 9, and 10(b)), and at other times a

significant underestimation of the flow values, as

obtained for the 7-day lead time case (Figs. 5(b) and

10(b)).

It would be interesting to know what makes the

PSR approach a better forecaster than the ANN

approach (at least) for the river flow series studied

herein. The importance of this question lies in the

facts that: (1) both the PSR approach and the ANN

approach are black-box (or data-driven) approaches,

based on training and learning to establish possible

connections between the inputs and the outputs; and

(2) the ANN approach has been shown to yield very

good forecasts for a large number of river flow series

studied (e.g. Karunanithi et al., 1994; Fernando and

Jayawardena, 1998). It is difficult at this stage to

provide strong reasons for the above question, but the

following could be some of the possible reasons for

such results.

First, the PSR approach captures the most

important features of the river flow dynamics, in a

better way than the ANN approach does, essentially

due to the local approximation method that represents

the dynamics captured in the phase-space step by step

in local neighborhoods. Such a local approximation

method is certainly capable of better capturing the

dynamics of the system when compared to a global

approximation method, as used in the ANN approach,

when the system under investigation exhibits low-

dimensional chaotic dynamical behavior. The fact that

the river flow series analyzed in the present study has

been identified to exhibit low-dimensional chaotic

behavior with a correlation dimension of about 2.90

(e.g. Jayawardena and Gurung, 2000) only supports

the above interpretation.

Second, ANNs perform generally very well for one

step ahead forecasts, but not for longer lead times.

This is particularly the case with MLPs trained with

back-propagation learning algorithm, as is the case in

the present study, since such networks may not be the

most appropriate networks for forecasts of two steps

ahead or more. The results achieved in the present

study only seem to support the above as: (1) the 1-day

ahead forecasts achieved for the Chao Phraya flow

series using the ANN approach are in good agreement

with the observed values and are highly comparable

with the forecasts achieved using the PSR approach;

and (2) the 7-day ahead forecasts using the ANN

approach are not in very good agreement with the

observed values (yielding significant overestimation

in general) and also are significantly different and less

accurate when compared to those using the PSR

approach.

In addition to the above, the selection of the

training set in the ANN approach may also contribute

to such results. In other words, for instance, very high

values in the training set may drive the forecasted

solution toward higher values, and very low values

may drive the forecasted solution toward lower

values. As far as the present study is concerned, the

selection of extreme events (i.e. very high values) in

the training set may have resulted in an overestima-

tion of the forecasted values, which is also supported

by the forecasts obtained for the 1-day ahead (Figs.

5(a) and 9) and 7-day ahead (Figs. 5(b) and 10(b)),

particularly for the latter. The clear time shifts

between the forecasted and the observed values for

the 1-day and 7-day ahead, shown in Fig. 5(a) and (b),

also seem to support the concern regarding the

selection of the training set and the use of MLPs, in

particular for the 7-day ahead forecasts.

In regards to the above problems with the use of

MLPs and the selection of training set, it is necessary:

(1) to study the possibility of improving the forecasts

(particularly at longer lead times) using other types of

networks; and (2) to study the influence of (the

selection of) training set on the forecast results.

Research in these directions are being carried out,

details of which will be reported elsewhere.

4.4.2. Optimal number of variables

Another important observation that can be made

from the PSR and the ANN forecast results is with

reference to the optimal number of variables (i.e. the

number of variables that yields the best forecasts), as

identified by the two approaches, for capturing the

dynamics of the river flow series. In regards to this,

there is a complete agreement between the PSR and

the ANN approaches as far as 1-day lead-time

forecasts are concerned, as both the approaches

identify the optimal number of variables as 3 (i.e.

embedding dimension equal to 3 in the PSR approach,

and number of inputs equal to 3 in the ANN

approach). Appropriately, this result is also consistent
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with the optimal number of variables identified based

on the correlation dimension of this river flow series,

that is the nearest integer above the correlation

dimension value (of about 2.90) obtained (e.g.

Jayawardena and Gurung, 2000). However, a signifi-

cant discrepancy is observed in the optimal number of

variables, as identified by the PSR and the ANN

approaches, when the forecasts are made for 7 days

ahead. In this case, the optimal number of variables

identified by the PSR approach is 1, whereas that

identified by the ANN approach is 7. It is not known

what causes such a discrepancy, but one possible

reason could be the effect of the noise (e.g.

measurement error) present in the river flow series

on the forecasts in the case of the PSR approach.

In regards to the above, the effect of noise

generally increases with the increase in the embed-

ding dimension used for the PSR (e.g. Sugihara and

May, 1990; Sivakumar, 2000). Therefore, the river

flow forecast accuracy achieved for higher embedding

dimensions might be significantly different and worse

than the actual forecast accuracy that could be

achieved if there were no noise. One possible way

to verify this is to reduce (or remove) the noise in the

river flow series and to make forecasts for the noise-

reduced series. Investigations in this direction are

underway, details of which are beyond the scope of

the present study. It is relevant, however, to note at

this point that the effect of noise on the river flow

forecasts using the PSR approach is also recognized

when 1-day ahead forecasts are made, as a decrease in

the forecast accuracy is observed with an increase in

the embedding dimension beyond 3 (Fig. 4(a)). On the

other hand, the ANN approach is less susceptible to

the presence of noise in the data series and, therefore,

it is believed that the forecast accuracy obtained for

the river flow is not affected much due to the presence

of noise. All these observations seem to imply that: (1)

the optimal number of variables for the 1-day ahead

forecasts is 3, as identified by both the PSR and the

ANN approaches; (2) the optimal number of variables

for the 7-day ahead forecasts is expected to be greater

than 3 and, therefore, could be closer to 7, as identified

by the ANN approach (and is not 1, as identified by

the PSR approach); and (3) the significantly worse

performance of the ANN approach for the 7-day

ahead forecasts (and to some extent the 1-day ahead

forecasts as well) may perhaps be due to the

inadequacy of the training procedure or the training

data set adopted to learn the input–output relationship

(rather than the insufficiency of the number of

variables used as inputs) and/or due to the inability

of the MLP (as discussed earlier).

5. Conclusions

An attempt was made in this study to investigate

the use of two non-linear black-box approaches: (1)

the PSR, a local approximation approach; and (2) the

ANN, a global approximation approach, for forecast-

ing river flow dynamics, and also to compare their

performances. For this purpose, the daily river flow

series observed at the Nakhon Sawan gaging station in

the Chao Phraya River basin in Thailand was

analyzed, and forecasts were made for 1-day and 7-

day lead times. The number of variables in the PSR

approach (i.e. embedding dimension in the PSR) was

varied between 1 and 9, whereas in the ANN approach

the number of variables (i.e. the number of input

nodes) used was 7. In the latter case, however, a

sensitivity analysis was also carried out (with 1 and 3

input nodes, respectively) to find the optimal number

of variables.

The results indicated that, in general, both the PSR

and the ANN approaches yielded reasonably good

forecasts for both the 1-day and the 7-day lead times,

even though the 1-day ahead forecasts were found to

be much better. However, a comparison between the

PSR forecasts and the ANN forecasts clearly indicated

a much better performance of the former. The

forecasted river flow values using the PSR approach

were found to be extremely closer to the observed

ones, with not only the major trends (including

extreme conditions) very well captured but also the

minor noisy fluctuations well preserved. In the case of

the ANN approach, the forecasts were sometimes

found to be a significant overestimation and/or

underestimation of the observed river flow values. It

is believed that the significantly better performance of

the PSR approach is due to the representation of the

river flow dynamics in the phase-space step by step in

local neighborhoods, as the river flow series exhibits

low-dimensional chaotic behavior (e.g. Jayawardena

and Gurung, 2000). On the other hand, the multi-layer

perceptrons (MLPs) with a back-propagation learning
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algorithm, used in the present study, may have

limitations, particularly when forecasts at longer

lead times are attempted. Another possible reason

could be the selection of the training set in the ANN

approach.

The results from the present study raise two

important questions. The first question is concerned

with the (much worse) performance of the ANN

approach when compared to the PSR approach, since

the ANN approach has been reported to yield near-

accurate forecasts for a number of river flow series.

The second question is concerned with the (discre-

pancy in the) optimal number of variables identified

by the PSR approach and the ANN approach for

capturing the important dynamical features of the

river flow dynamics while making 7-day ahead

forecasts. The noise (e.g. measurement error) present

in the river flow series seems to play an important role

in this regard, which is also partially supported by the

1-day lead time forecasts using the PSR approach with

respect to the (lower and higher) embedding dimen-

sions used in the PSR. In view of the above, the

immediate tasks are to: (1) use other, and possibly

better, types of ANNs than the MLP used herein for

river flow predictions, particularly at longer lead

times; (2) study the effect of the selection of training

set in the ANN approach; and (3) study the influence

of noise on forecast accuracy, particularly in the PSR

approach. Studies along these directions are underway

and the details will be reported in subsequent articles.
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Appendix A. Definitions of error indicators

Definitions:

Mean absolute error

MAE ¼
1

N

XN
i¼1

lðOi 2 PiÞl ðA1Þ

Root mean square error

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðOi 2 PiÞ
2

vuut ðA2Þ

Correlation coefficient

r ¼

XN
i¼1

ðOi 2 �OÞðPi 2 �PÞ

XN
i¼1

ðOi 2 �OÞ2

" #1=2 P
ðPi 2 �PÞ2


 �1=2

8>>>><
>>>>:

9>>>>=
>>>>;

ðA3Þ

Modified coefficient of efficiency

E1 ¼ 1 2

XN
i¼1

lOi 2 Pil

XN
i¼1

lOi 2 Ol
ðA4Þ

where N is the number of values in the evaluation set,

O and P are the observed and the forecasted values in

the evaluation set, respectively, and O is the mean of

the observed values in the evaluation set.

Notes:

In general, RMSE $ MAE, and the degree to

which RMSE exceeds MAE is an indicator of the

extent to which outliers (variance in the differences

between the observed and the forecasted values) exist

in the evaluation set.

The correlation coefficient (r ) ranges from 0 to 1

with higher values indicating better agreement

between the observed and the forecasted values,

whereas the modified coefficient of efficiency (E1)

ranges from 21 to 1, with the higher positive values

indicating better agreement.
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