
Stochastic optimization for global minimization and geostatistical

calibration

Minchul Jang*, Jonggeun Choe

School of Civil, Urban and Geosystems Engineering, Seoul National University, San 56-1 Shinlim-Dong, Kwanak-Gu, Seoul 151-742,

South Korea

Received 5 September 2001; revised 7 May 2002; accepted 14 May 2002

Abstract

This study proposes a stochastic optimization technique that uses a gradient-based method as the primary optimization

method, as well as a geostatistical conditional simulation to perturb and calibrate parameters at every local minimum. If the

optimization process is trapped at a local minimum due to the limitations of the gradient-based method, it generates equi-

probable parameter fields using a geostatistical conditional simulation. Among the generated fields, the optimization process

selects one that enables the objective function to be reduced below the value of that at the local minimum, and then reactivates

the gradient-based optimization. In generating equi-probable parameter fields, a constrained number of points (noted as

releasing points) are randomly selected, and spatially correlated values are generated at the releasing points, conditioned to

optimum parameters at the local minimum.

By applying the stochastic optimization to synthetic permeability fields, it is observed that an inversed permeability field

reproduces not only global distribution but also local spatial variability of the reference fields. In addition, the pressure

distributions of the inversed and the reference field were much alike. To investigate dynamic properties of the inversed field and

the reference field, streamline simulation was performed on both fields. Streamlines of the inversed field showed similar

trajectories to those of the reference field, and time of flight (TOF) distribution of the inversed field was analogous to that of the

reference field.

The stochastic optimization technique proposed in this paper enables an inverse process to converge to a global minimum

while preserving geostatistical properties such as mean, standard deviation, and variogram of an original field. Therefore, the

stochastic optimization will be efficient in predicting future performance of a field from constrained number of permeability and

pressure observation data. q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

To predict reliable future performances of a

reservoir or an aquifer, it is indispensable to generate

an accurate simulation model honoring all available

data such as core data, pressure data, seismic data, and

so on. Integration of additional data reduces the

uncertainty while enhancing the accuracy of the

model (Wen et al., 1998). Among various reservoir

parameters, permeability is one of the most important

that governs reservoir or aquifer performance

(McLaughlin and Townly, 1996).
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Geostatistical techniques provide efficient ways for

identifying parameters of an unknown field. By using

conditional simulations such as sequential Gaussian

simulation (SGS) and sequential indicator simulation

(SIS), multiple equi-probable distributions of

unknown parameters from constrained sample data

can be obtained (Deutsch, 1997). They can be good

estimates of the field, but it is often required to select

an optimal one reflecting not only spatial but also

dynamic information of the field.

Optimization techniques make it possible for a

model to honor the given static and dynamic

information. Optimization techniques can be largely

categorized into gradient-based and non-gradient

methods. Although gradient-based methods are math-

ematically straightforward and computationally effi-

cient compared to the non-gradient methods, the local

minimum problem has been one of the fatal draw-

backs of the gradient-based methods (Sun, 1994).

Therefore, we propose a new optimization technique

aided by geostatistical methods to overcome the local

minimum problem in gradient-based optimization

techniques.

Several works have been attempted to couple

geostatistical methods with inverse techniques.

RamaRao et al. (1995) proposed the pilot point

method that generates an ensemble of permeability

fields conditioned to both permeability and pressure

measurements. In their work, they generated a

selected number of conditionally simulated transmis-

sivity fields and calibrated each of the fields to match

the pressure observations. The calibration phase

involves adding pilot points to the transmissivity

dataset for producing a revised conditional

simulation.

Gomez-Hernandez et al. (1997) proposed the

sequential self-calibration (SSC) method. A transmis-

sivity field is generated conditional to the given

permeability data, and the field is then modified until

the pressure data are also honored. They employed the

concept of master locations at which perturbations of

transmissivity are determined to enhance the misfit

between observed and calculated pressures. Then, the

perturbations are propagated to the rest of the domain

by Kriging (Wen et al., 1996; Wen et al., 1998).

Zimmerman et al. (1998) presented the comparison

of geostatistically based inverse methods including

the pilot points method and the SSC method for

modeling groundwater flow. The comparisons of the

method outcomes were based on the prediction of

travel times and travel paths taken by conservative

solutes migrating in an aquifer. The research showed

the effectiveness and applicability of geostatistical

approaches for inverse problems.

Geostatistically based methods such as SSC and

the pilot points method, consist of two main stages.

These are generation of multiple fields conditioned to

the given transmissivity data and the subsequent

calibration of the fields to honor head observations.

To condition the fields to head observations, gradient-

based optimization was used in both the SSC and the

pilot point method. This results in incomplete

conditioning due to the limitation of the gradient-

based optimization method, specifically the local

minimum problem. In addition, those methods are

highly sensitive to initial fields, and the optimized

fields are necessarily dependent on the initial fields

generated by multiple realization. This paper proposes

an optimization technique which can overcome the

local minimum problem, and which is less sensitive to

an initial field by starting from Kriging in the

replacement of multiple realizations for the initial

field.

In the meantime, all inverse processes perform

quite a number of forward simulations and accompany

sensitivity computation internally and iteratively, so

inverse modeling needs enormous computational

effort. Due to these facts, many studies have focused

on how to enhance efficiency in forward simulation

and sensitivity computation (Vasco et al., 1999; Wu

et al., 1999).

In recent decades, streamline simulation has been

widely used to predict oil recovery in reservoir

simulations. The quickness and effectiveness of

streamline simulation make it possible to simulate

reservoirs of multi-million cells and to develop fine-

scale models that integrate detailed three-dimensional

geologic and geophysical data (Datta-Gupta et al.,

1998; King and Datta-Gupta, 1998). Another advan-

tage of the streamline simulation is that the stability

constraint of the underlying gird can be effectively

relieved by solving one-dimensional equations along

streamlines (Batycky et al., 1997; Thiele et al., 1996).

Batycky et al. (1997) developed a three-dimensional

and multi-phase reservoir simulator. The model

eliminated the numerical dispersion error and was
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10–1000 times faster than existing conventional

reservoir simulators.

Sensitivity coefficients play an important role in

solving an inverse problem. At every iteration step in

a gradient-based optimization process, it is necessary

to compute the gradient of an objective function or

sensitivity coefficients newly. As a result, it makes the

whole inverse process time consuming. In the adjoint

state method, the flow problem and the adjoint

sensitivity problem have the same form, so the

calculation of the sensitivity coefficients is straight-

forward and very efficient (Sykes, 1985). If the

number of parameters to be identified is greater than

the number of the observation data, which is usually

the case, the adjoint state method is known to be more

advantageous than other methods such as the

influence coefficient method and the sensitivity

equation method (Dogru and Seinfeld, 1981). The

adjoint state method allows a stable and quick solution

to the time consuming inverse problems.

To observe the applicability of the proposed

method, a synthetic permeability field was generated

and used as the reference field to be identified. Most

previous studies validated their inverse models mainly

by showing the overall similarity between a synthetic

permeability field and an inversed permeability field.

For model performance, they presented an analogy of

production history, tracer breakthrough curve, and

producing water cut, etc. Although these properties

represent the overall characteristics of aquifer or

reservoir performance, they are not sufficient to

describe spatial characteristics of model performance.

We investigated model performances from the spatial

point of view, such as pressure distribution, streamline

trajectories, and time of flight (TOF) distributions of a

synthetic and an inversed field.

To enhance computational efficiency, streamline

simulation was implemented for fast and efficient

forward simulation. To achieve fast computation of

sensitivity, an adjoint state equation was derived for

Fig. 1. Overview of the stochastic optimization algorithm.
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the applied system, which have constant pressure

boundary conditions at injection and production

wells.

2. Stochastic optimization

Gradient-based optimization techniques are math-

ematically reasonable and fast in computation com-

pared to non-gradient optimization methods.

However, gradient-based methods are accompanied

by several drawbacks. Solution from a gradient-based

method is not always a global minimum but a local

minimum (Sun, 1994). Besides, an inversely com-

puted field is apt to be over smoothed. In other words,

local heterogeneity is hard to preserve although

overall heterogeneity of the field are captured from

the constrained number of observation data.

To overcome the problems above, a stochastic

approach was employed in an optimization process. In

addition, it is necessary to preserve spatial infor-

mation of a field. Instead of adding the mean and

standard deviation error terms to an objective

function, the preservation of spatial information is

accomplished by incorporating geostatistical methods

into the optimization process. An inversed per-

meability field preserves the geostatistical properties

such as mean, standard deviation, and covariance

through the incorporation of geostatistical methods.

The stochastic optimization is composed of three

modules, which are initial estimation by Kriging,

primary gradient-based optimization by conjugate

gradient method, and stochastic calibration. The

procedure of the stochastic optimization in this

study is summarized in Fig. 1, and description of the

scheme is provided below in detail.

2.1. Initial estimate of permeability field

As most optimization methods are very sensitive to

initial guess, it is effective to generate a field reflecting

information of sample data. In the pilot point method

and SSC, the inverse processes start with one

realization of a conditionally simulated permeability

field. It means that one probable field conditioned to

sample data is chosen for an initial guess to be

calibrated afterwards, and the methods require

multiple runs on multiple conditionally simulated

fields (RamaRao et al., 1995; Gomez-Hernandez et al.,

1997). Consequently, the calibrated fields are also

equi-probable selections of inversed fields and each

calibrated field is dependent on each initial field. In

addition, the inverse processes are computationally

intensive due to multiple runs.

On the other hand, the stochastic optimization

proposed in this study uses Kriging to generate an

initial permeability distribution instead of conditional

simulation such as SGS. Conditionally simulated

fields can be considered to be fields with probabilistic

randomness added to a Kriged field. Therefore, the

Kriged field can be an unbiased average of con-

ditionally simulated fields. An initial permeability

distribution is obtained by ordinary Kriging, given a

sample of permeability data. The characteristics of

minimum error variance and unbiasedness allows

Kriging to provide a good initial guess for a field

incorporating information of sample permeabilities.

The major trend of permeability distribution is

captured through the initial guess provided through

Kriging that minimizes the influence of initial guess

on an inverse process as contrast to the SSC and the

pilot point method.

2.2. Primary gradient-based optimization

The primary gradient-based optimization plays a

significant role in efficiently reducing misfits between

observation data and computed values, which con-

tinues to operate until the inverse process approaches

a local minimum. The gradient-based optimization

method can be expressed as,

knþ1 ¼ kn þ lndn ð1Þ

where dn is the displacement direction, and ln is the

step size along that direction (Fletcher, 1993). From

various gradient-based optimization schemes, the

conjugate gradient method was employed. The New-

ton type methods such as Gauss Newton and

Levenberg–Marquardt method, require construction

of a Hessian matrix. In addition, the Newton type

methods require solving a linear system involving the

Hessian matrix in each iteration step. Therefore, these

methods require huge storage requirements and

computational time. On the other hand, the conjugate

gradient method computes the displacement direction

faster without calculating the Hessian matrix. It
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searches for the minimum by following mutually

conjugate search directions (Yeh, 1986). It is

expressed mathematically as

d1 ¼ 2g0; dnþ1 ¼ 2gn þ
gT

n gn

gT
n21gn21

dn ð2Þ

where gn is the gradient vector at nth iteration step.

2.3. Stochastic calibration

If the gradient-based optimization process is

trapped at a local minimum and the inverse process

cannot proceed further, a stochastic simulation is

applied. From the field caught in the local minimum, a

number of releasing points are randomly selected.

While the other points being conditioned, values are

generated at the releasing points using SGS, honoring

spatial characteristics of the existing field. This

approach provides several equi-probable permeability

fields conditioned to the permeability distribution that

have been obtained by the inverse process up to that

point. After that, one field that can reduce the

objective function is selected from the equi-probable

fields and the primary gradient-based optimization

resumes its computation and proceeds to the next

iteration step. Fig. 2 is a schematic diagram of

stochastic calibration. The curve represents an

objective function. The objective function is reduced

by the gradient-based optimization from field A to

field B. With field B, the objective function is unable

to be reduced further by the gradient-based optimiz-

ation, meaning the process is trapped at a local

minimum. At this, field B is modified by the stochastic

calibration and a realization C is generated as a result.

Realization C is identical with field B except at the

releasing points, where values are randomly generated

by SGS. If the inverse process is unable to find the

reduction of the objective function with realization C

as well, another realization D is generated in the same

way, being conditioned to field B. Stochastic cali-

bration is repeated as above until the objective

function can be reduced below that of field B with

the generated field. With the realization E, the inverse

process is able to find a direction along which the

objective function is reduced below that of field

B. Consequently, the inverse process escapes from the

local minimum and gradient-based optimization is

reactivated with field E.

During the inverse process, the inversed field is

repeatedly calibrated and spatial characteristics are

automatically incorporated by the stochastic cali-

bration. Consequently, the stochastic optimization

causes an inversed field to be calibrated by multiple

realizations of conditional simulation internally and

ultimately provides the most optimized field. When

computed error becomes less than the error tolerance

specified, the whole procedure is ended.

3. Adjoint state method for steady state flow with

constant pressure boundary condition

The adjoint state method was used to compute

displacement direction of parameters. By applying the

adjoint state method, the derivative of the objective

function with respect to a model parameter can be

computed only through two flow simulations. If other

methods such as the influence coefficient method and

the sensitivity equation method are used, number of

parameters þ 1 simulations are required to calculate

the gradient of the objective function (Yeh, 1986).

Therefore, the accuracy of sensitivity calculation and

computational speed can be considerably enhanced by

the adjoint state method.

Adjoint state formulation is derived for the system,

which has constant pressure injection and production

wells under steady the state flow condition. The flow

equation can be expressed as Eq. (3) and boundary

condition as Eq. (4)

7·ðT7pÞ ¼ 0 ð3Þ

plG0
¼ pinj; plG1

¼ pprd; ðT7pÞ·nlG ¼ 0 ð4Þ

Fig. 2. Conceptual diagram of the stochastic calibration at a local

minimum.
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where T is kA/m, p is the pressure, pinj and pprd are the

pressure at injection and production well, respect-

ively, G0 is the injection point, G1 is the production

point, and G is the boundary.

From the above flow equation, an adjoint equation

may be derived similarly as was done in several

related works (Sykes, 1985; Sun and Yeh, 1990; Sun,

1994).

7·ðT7cÞ þ
›f

›p
¼ 0 ð5Þ

clG0
¼ 0; clG1

¼ 0; ðT7cÞ·nlG ¼ 0 ð6Þ

where c is the adjoint state parameter and f is the

performance function.

Consequently, the error gradient can be calculated

from Eq. (7)

›E

›T
¼

ð
R
ð
›f

›T
2 7c·7pÞdR ð7Þ

where R is the spatial domain.

4. Streamline simulation

The main idea of streamline simulation is to

decouple a multi-dimensional problem of fluid motion

into multiple one-dimensional problems solved along

streamlines. Fluids move along the natural streamline

grid rather than between discrete gridblocks as in the

conventional methods.

As with other conventional transport models, flow

calculation is preceded in streamline simulation. The

flow domain is then decomposed into a number of

streamlines, and solute transport in each streamline is

interpreted as a one-dimensional problem. Solving the

one-dimensional transport problems analytically, we

get the solutions along streamlines. Then, the

solutions are remapped onto the original flow domain

and the final concentration distribution is acquired as a

function of location and time. This approach makes

the streamline simulation eliminate the numerical

dispersion error occurring in conventional finite

difference methods and enhance calculation efficiency

(Jang et al., 2002).

4.1. Coordinate transform along streamlines

The conventional Cartesian coordinate is con-

verted into the coordinate system along streamlines

through the concept of TOF (Crane and Blunt, 1999).

Mathematically, TOF is defined as

tðsÞ ¼
ðs

0

dz

vðzÞ
ð8Þ

where z is the coordinate along a streamline.

4.2. Remapping to the Cartesian coordinate

An average gridblock concentration is calculated

as the weighted average concentration in multiple

streamlines that pass through it (Crane and Blunt,

1999; Thiele et al., 1996). The weighting in this

calculation is determined according to the volume flux

of each streamline

Cb ¼

X
i

qiDtiCiðtÞ

X
i

qiDti

ð9Þ

where Cb is the concentration in the gridblock, Dti is

the residence time in the gridblock along ith stream-

line, and qi is the volume flux of ith streamline.

5. Model description

A synthetic permeability field was generated as a

reference field using SGS. For the reference field, flow

and transport simulations were conducted and infor-

mation at observation points was monitored. Fig. 3

illustrates the schematic diagram of the flow system.

Fluid is injected through the lowest left corner and

produced at the upper right corner of the rectangular

Fig. 3. Schematic diagram of flow system.
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Fig. 4. Permeability and pressure distributions for case 1. (a) The reference field, (b) results from a gradient-based optimization only, (c) results

from the stochastic optimization.
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grid system. No flow boundary conditions were

applied to all the boundaries of the system.

5.1. Assumptions

The following simplifications were used to focus

on the availability of the stochastic optimization.

Permeability distributions were generated following a

log-normal distribution and a exponential model was

employed for the variogram. Porosity was assumed to

be constant over the whole domain. Steady state flow

condition was assumed and all the measurement data

at the observation points were assumed to be free of

errors.

5.2. Objective function

At the observation points, permeability and

pressure data were obtained. Production rate was

provided at the production well, which was also

included in the sample point set. Accordingly, an

objective function is expressed as follows

E ¼ wp

XL

l¼1

ðpl 2 pobs
l Þ2 þ wk

XL

l¼1

ðkl 2 kobs
l Þ2

þ wQðQ 2 QobsÞ2 ð10Þ

where w is the weighting, l is the index of an

observation point, L is the number of the observation

points, p is the pressure, k is the permeability, and Q is

the production rate. The objective function incorpor-

ates different types of information. p and Q are

acquired from flow simulation and permeability

samples provide spatial information of a field.

6. Results

Three synthetic permeability fields were generated,

which have 20 £ 20 gridblocks. Twenty-two obser-

vation points were set to report permeability and

pressure measurements. The stochastic optimization

was applied on the three fields and the following

results were obtained over 500 iterations. To demon-

strate applicability of the stochastic optimization, its

results are compared with results by a sole gradient-

based optimization.

6.1. Permeability and pressure distributions

Permeability and pressure distributions for case 1

are presented in Fig. 4. Fig. 4(a) is permeability and

pressure distributions of the reference field, and Fig.

4(b) is solely a result of the gradient-based optimiz-

ation. The inversed permeability field in Fig. 4(b)

shows the overall trend of the permeability distri-

bution of the reference field but it fails to show the

spatial variability of the reference field. Although

pressure distribution from flow simulation on the

inversed field looks globally similar to that of the

reference field, dissimilarity exists locally.

Fig. 4(c) shows the results from the stochastic

optimization. It is observed that the major trend of the

inversed permeability field honors that of the

reference field. Moreover, variability at the local

scale is well reflected in the inversed field, which is

frequently over-smoothed by other inverse

approaches based on the gradient-based methods as

in Fig. 4(b). The pressure distribution of the inversed

field reproduces that of the reference field very

closely, and the matching with the pressure distri-

bution of the reference field is enhanced compared to

Fig. 4(b).

Fig. 5 presents comparison of the convergence

between the stochastic optimization and the sole

gradient-based method. Where the iteration number is

over 30, the optimization process by the sole gradient-

based method comes to be stuck in a local minimum

Fig. 5. Convergences of the objective function by the stochastic

optimization and the gradient-based optimization.
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and it is impossible to search for gradient directions

along which the error is reduced. On the other hand,

the error of the stochastic optimization continues to

decrease even after the local minimum stage. This

means that the stochastic optimization can overcome

the local minimum problem and converge to a global

minimum.

Variogram analyses of the permeability distri-

bution were performed on the reference field and the

inversed fields. The solid line in Fig. 6 represents a

variogram of the reference field generated with a

mathematical variogram model, and the rectangular

points show a variogram of the inversed field by the

stochastic optimization. It is observed that the

variogram of the inversed field honors the variogram

of the reference field. Both variogram curves of the

reference and the inversed field begin to converge to

sill value, where h is approximately 15, which is

originally the correlation length value assumed for the

mathematical variogram model. The inversed per-

meability field well reflects the spatial correlation of

the reference field.

For the variogram of the inversed field by the sole

gradient-based method, which is represented as cross

points, it is observed that the standard deviation of the

inversed field is less than that of the reference field. It

again confirms that the inversed field only by a

gradient-based method, is likely to be over-smoothed,

and a mere gradient-based optimization is incomplete

for reproducing spatial variability of an original field.

Statistical parameters of the reference and inversed

field are summarized in Table 1. Although regulariz-

ation terms to match mean and standard deviation are

not included in the objective function, mean and

standard deviation of the inversed field are close to

those of the reference field. In addition, the coefficient

of variation in the inversed field is close to that in the

reference field. This shows that the spatial variability

of an unknown field can be reproduced by the

stochastic optimization. These are due to the mech-

anism of the stochastic optimization that repeatedly

generates spatially correlated values at releasing

points, every time the process falls into a local

minimum.

6.2. Prediction of future performance with the

inversed field

To compare dynamic properties of the reference

field and the inversed field, streamline simulation was

performed on the both fields. We can efficiently

investigate transport behavior of both fields by

streamline simulation and evaluate how well the

inversed field can predict future model performance.

Fig. 7 represents streamline trajectories and TOF

distributions of the reference field (Fig. 7(a)) and the

inversed fields (Fig. 7(b) and (c)). Since steady state

flow condition was assumed, streamlines themselves

represent paths along which particles move. It is

Table 1

Statistical summary for the reference field and the inversed field

Property Reference field Inversed field

Mean 10.78 13.12

Standard deviation 11.69 12.83

Coefficient of variation 1.084 0.978

Fig. 6. Variograms of the reference field and the inversed fields.
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observed that streamline trajectories of the stochastic

optimization are more similar to those of the reference

field than streamline trajectories by the sole gradient-

based method. In Fig. 7(b), streamlines from the

gradient-based method are distributed uniformly

compared to the reference field. On the other hand,

contrast in streamline population in Fig. 7(c) is more

conspicuous than in Fig. 7(b). Streamlines are more

closely spaced along fast paths as in the reference field

(in Fig. 7(a)). The trajectories of streamlines from the

Fig. 7. Streamline trajectories and TOF distributions. (a) Results of the reference field, (b) results by gradient-based method only, (c) results by

the stochastic optimization.
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reference field and the inversed field are considerably

analogous.

TOF denotes how long it takes for a particle to

arrive at a specified position. In Fig. 7(b), TOF

distribution by the gradient-based method is quite

different from that of the reference field. While the

contour lines of the reference field form pot-like shape

in Fig. 7(a), those of the gradient-based method looks

more like a right-angled triangle. This means that

transport is predicted to propagate rapidly along the

left and bottom boundaries, which does not coincide

with the reference case in Fig. 7(a). However, TOF

distribution predicted by the stochastic optimization

reproduces the contour shapes of the reference field as

shown in Fig. 7(c).

6.3. Applications to cases 2 and 3

The stochastic optimization was applied to another

two synthetic fields, case 2 and case 3, in the same

manner. The comparisons of permeability and press-

ure fields are presented in Figs. 8 and 9. In these cases,

the inversed fields also reproduce unknown per-

meability and pressure field analogously as expected.

7. Conclusions

Simulation results indicate that unknown par-

ameters in a field can be efficiently identified from a

constrained number of permeability and pressure

Fig. 8. Permeability distributions and pressure distributions for case 2. (a) The reference field, (b) the results from the stochastic optimization.
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measurement data by the stochastic optimization.

Being trapped at a local minimum, the stochastic

optimization generates a number of equi-probable

permeability distributions conditioned to the best

parameter values available by that iteration stage.

Through this approach, spatial characteristics of a

field are automatically incorporated without adding

regularization terms to an objective function. An

inversed field preserves statistical properties such as

mean and standard deviation of the original field, and

reproduces spatial variability. In addition, pressure

distribution and TOF distribution of the inversed field

match those from the reference field. It enables the

stochastic optimization to construct a reliable flow

and transport model to predict future performance.

The stochastic optimization is fast in computation by

using a gradient-based method as a primary optimiz-

ation scheme and an adjoint state method in compu-

tation of sensitivity. It also guarantees global

minimization by employing a geostatistical stochastic

approach.
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