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SUMMARY

The acquisition of isothermal remanent magnetization (IRM) curves through the
application of stepwise-increasing uniaxial fields to a rock-magnetic sample provides
an important non-destructive tool for the investigation of coercivity spectra (Dunlop
& Özdemir 1997). We show that, through the use of an automated procedure based
on the expectation–maximization algorithm (Dempster et al. 1977), both saturated and
non-saturated IRM acquisition curves can be effectively modelled into their individual
coercivity contributions.
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INTRODUCT ION

Robertson & France (1994) showed that the individual mag-

netic mineral phases contributing to a bulk IRM curve each

have a cumulative log-normal acquisition path that can be

described using three parameters, namely

(1) B1/2: the applied field at which the mineral phase acquires

half of its saturation IRM (SIRM), providing a measure of the

mean coercivity of that population,

(2) Mri: the magnitude of the phase distribution, pro-

viding an indication of the component SIRM and therefore its

contribution to the bulk IRM curve, and

(3) DP: the dispersion parameter, expressing the coercivity

distribution of a mineral phase and corresponding to one

standard deviation of the log-normal function.

Therefore, at any given field, B, the IRM intensity of an

individual magnetic mineral component can be approximated

using the function

IRMðBÞ ¼ Mri

DPð2nÞ1=2
ð?
�?

exp
ðlogB� logB1=2Þ2

2DP2

" #
d logB :

(1)

Fitting is normally performed on the first derivative of the IRM

acquisition curve with respect to the log10 field (McIntosh et al.

1996; France et al. 1999). Presenting the acquisition data in

such a manner allows the investigator to readily fit a number of

normal probability density functions (p.d.f.s) to the curve, with

each function corresponding to a single mineral phase. Recently,

the process of fitting IRM acquisition models in a consistent,

unbiased manner has been addressed by Stockhausen (1998)

andKruiver et al. (2001). Both of the resulting techniques, how-

ever, still require the investigator to work interactively towards

the final model fit using the minimization of pre-defined statistics

(e.g. the magnitude of the residuals between the measured

and modelled curves). Here we present an automated fitting

method based on the expectation–maximization (EM) algorithm

(Dempster et al. 1977; Jones & McLachlan 1990), which only

requires the user to define whether the sample has reached

saturation during the acquisition procedure, and the number of

individual mineral phases to be modelled in the final solution.

METHOD

The work of Robertson & France (1994) demonstrated that,

providing no magnetic interactions occur within a sample, the

first derivatives of IRM acquisition curves could be represented

by the combination of a number of separate log-normal prob-

ability density functions. An IRM curve should therefore be

considered as a finite mixture distribution; that is, an acquisition

curve represents a bulk distribution that is composed of a finite

number of log-normal populations. Under this assumption, a

mixture of g separate IRM populations can be represented at

a field of intensity B by the frequency function

f ðBÞ ¼
Xg
i¼1

MriðiÞkðB; B1=2ðiÞ; DPðiÞÞ , (2)

where k corresponds to a log-normal p.d.f. on the field axis,

with mean coercivity B1/2(i), standard deviation DP(i) and non-

negative mixing proportion Mri(i). Measured IRM gradient

values are therefore a discrete realization of the continuous

bulk frequency function and as such should be considered as an

incomplete data set. The bulk frequency function, f (B, h), can
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be used to describe the IRM gradient curve, where the para-

meters in the matrix h represent the form of the mixture distri-

bution (i.e the B1/2,DP andMri of each of the IRM components).

However, for the bulk frequency function of a measured sample

the parameters of h are all unknowns.

The likelihood, L, provides an indication of how likely a

set of observed data points would have been, had they been

selected at random from the bulk frequency function described

by h. The process of maximum likelihood estimation (MLE)

involves the determination of values for the h matrix that

will maximize the probability that the sample data came from

the calculated bulk frequency function. In order to perform

this maximization procedure and determine the h parameters

associated with IRM bulk distributions we used the value of

log-likelihood and the expectation–maximization (EM) algorithm

of Dempster et al. (1977).

THE EM ALGORITHM

Using a two-step procedure (expectation and maximization),

the EM algorithm iteratively determines the MLE of the h
matrix that describes the bulk distribution of a given incomplete

data set. Before EM iteration can begin, it is necessary to

provide an initial estimation of the h parameters. Expectation

(E-step) is performed first, and involves the determination of

the complete data log-likelihood constrained by the observed

(incomplete) data and the previously made estimation of h.
MLE (the M-step) is then performed for the estimated com-

plete data log-likelihood (obtained during the E-step). From

this maximization procedure, new estimates of h are deter-

mined. The E- and M-steps are repeated, with the new h-values
produced during each M-step being utilized in the complete

data likelihood determination in the subsequent E-step. By the

stepwise improvement of the h vector the log-likelihood of

the observed data is increased until a predefined convergence

criterion is reached. We have not included a formal derivation

of the EM algorithm, because the essential information on the

algorithm and its application to finite mixture models can be

found in Dempster et al. (1977); Jones & McLachlan (1990);

McLachlan & Krishnan (1997) and McLachlan & Peel (2000).

APPL ICAT ION OF THE EM ALGORITHM
TO IRM MIXTURE MODELS

To test the applicability of the EM algorithm to the problem of

IRM ‘unmixing’ we wrote a Fortran90 program utilizing the

MLE routine of Jones &McLachlan (1990). It also implements

the method of Kruiver et al. (2001) to determine the optimum

number of IRM components to include in a bulk distribution.

For a typical IRM acquisition curve consisting of 30–40 data

points, the irmunmix program, which can be downloaded

from http://www.geo.uu.nl/yforth/Software/soft.html, required

less than 5 s to reach convergence.

In order to model the individual log-normal populations

that contribute to an IRM bulk distribution it is necessary to

provide the algorithm with the following information.

(1) The number of components believed to be contributing

to the bulk curve.

(2) An initial estimate for the values in the h matrix.

(3) Whether or not the sample reached saturation during the

IRM acquisition procedure.

In trial runs of the EM algorithm on modelled data we found

that the characteristics of the resolved solutions were extremely

consistent, irrespective of the starting parameters assigned to h
(the required number of iterations to reach convergence, how-

ever, increased when the algorithm was provided with initial

h estimates differing greatly from their real values). Because of

the ability of the algorithm to handle poor estimates of h, we
suggest that fitting models should be initialized with systematic

values assigned to h, representing equal component contributions

(i.e. Mri(i)=1 /g), equal dispersions, and mean coercivities evenly

distributed across the log10 field axis.

Determining the number of components contributing to an

IRM bulk distribution is not trivial, because the goodness of fit

of a finite mixture model will always improve as the number of

components in the mixture is increased. To assess the number

of individual components that should be included in a model

we adopted the technique of Kruiver et al. (2001), which is

based on a comparison of the residuals (calculated between the

measured and modelled curves) for fits involving different

numbers of components. The technique compares the variances

and means of the residual arrays for two competing models. If

the inclusion of an additional component does not significantly

reduce the variance and mean of the residual array (assessed

using an F-test and Student’s t-test, respectively) then the more

complex (higher-component) model is unlikely on a statistical

basis.

Saturation of a sample during IRMacquisition is an important

consideration in the modelling of the measured curves because

a non-saturated sample represents a truncated distribution. In

the application of the EM algorithm to saturated and non-

saturated samples we follow the method of Jones &McLachlan

(1990). In the case of non-saturated samples the maximum

likelihood estimates can be obtained for the truncated distri-

bution using the EM algorithm without modification to the

IRM data set. In the case of saturated curves (data are not

truncated), Jones & McLachlan (1990) demonstrated that the

EM algorithm requires the addition of an extra class (applied

field interval in the case of IRM analysis), corresponding to

(Br,?), where Br is the maximum field applied to the sample. A

further class, (x?, B0), was also included in the procedure in

order to conform to the method of Jones & McLachlan (1990).

In practice, the inclusion the above class is useful because the

acquisition curve should not be truncated in the low-coercivity

portion of the curve, as the IRM components cannot pass into

negative field values. In the following, we present the analysis

of saturated and non-saturated IRM acquisition curves derived

from both modelled data and natural samples.

MODELLED DATA ( SATURATED )

We constructed an overlapping three-component IRM

acquisition curve from the individual contributions described

in Table 1. The input data was processed a total of four times,

with the number of fitted components, g, increasing each time

from one in the first run to four in the final run (Fig. 1).

In each case the characteristics of the starting distributions

given in h were selected systematically under the criteria of

equal contributions (i.e. Mri(i)=1 /g), equal dispersions, and

mean coercivities evenly distributed across the log10 field axis

(Table 1). When the input value of g was left unspecified,

our implementation of the Kruiver et al. (2001) technique to
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Table 1. Component parameters used in the construction of the modelled one-, two-, three- and four-component IRM acquisition curves

(A, B, C and D, respectively). The fitting procedure was initialized with systematically chosen starting components and in each case took less than 1 s

to reach convergence. Range represents B1/2tDP.

Comp. Constructed Components Starting Components Fitted Components

Mri B1/2

log mT

(mT)

DP

log mT

range

mT

Mri B1/2

log mT

(mT)

DP

log mT

range

mT

Mri B1/2

log mT

(mT)

DP

log mT

range

mT

A

1 0.25 0.90 (8)00 0.25 004–14 10 1.75 (32)0 0.10 045–56 10 1.82 (66)0 0.73 012–355

2 0.30 1.7 (50)00 0.40 020–125 N /P N /P N /P 00N /P N /P N /P N /P 00N /P

3 0.45 2.40 (251) 0.27 134–467 N /P N /P N /P 00N /P N /P N /P N /P 00N /P

B

1 0.25 0.90 (8)00 0.25 004–14 0.50 1.2 (16)00 0.10 013–20 0.39 1.08 (12)0 0.36 005–28

2 0.30 1.7 (50)00 0.40 020–125 0.50 2.4 (251)0 0.10 200–316 0.61 2.29 (195) 0.33 091–417

3 0.45 2.40 (251) 0.27 134–467 N /P N /P N /P 00N /P N /P N /P N /P 00N /P

C

1 0.25 0.90 (8)00 0.25 004–14 0.33 1.50 (32)0 0.10 025–39 0.25 0.91 (8)00 0.25 004–14

2 0.30 1.7 (50)00 0.40 020–125 0.33 2.00 (100) 0.10 079–125 0.34 1.77 (58)0 0.43 021–157

3 0.45 2.40 (251) 0.27 134–467 0.33 2.50 (316) 0.10 252–398 0.41 2.41 (257) 0.26 141–474

D

1 0.25 0.90 (8)00 0.25 004–14 0.25 0.7 (5)000 0.10 004–6 0.21 0.87 (7)00 0.24 004–13

2 0.30 1.7 (50)00 0.40 020–125 0.25 1.4 (25)00 0.10 020–32 0.21 1.42 (26)0 0.38 011–63

3 0.45 2.40 (251) 0.27 134–467 0.25 2.1 (126)0 0.10 100–158 0.28 2.14 (138) 0.35 062–309

4 N /P N /P N /P 00N /P 0.25 2.8 (631)0 0.10 501– 794 0.30 2.45 (282) 0.25 158– 501

Figure 1. (a) Modelled three-component IRM acquisition curve. The closed symbols show the bulk IRM distribution, and the solid line represents

the combined signals of the log-normal components (indicated by different degrees of shading). (b) (c) (d) and (e) Final fits produced by the EM

algorithm (shaded components and combined signal) compared with the input distribution (solid symbols) for the one-, two-, three- and four-

component fits, respectively. (f) Absolute residuals calculated between the input and EM-fitted distributions for the one- to four-component models.
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determine model complexity successfully determined that g

should be set equal to three.

In the case of the three-component fit, a squared correlation

coefficient of R2=0.9998 was determined for the linear

correlation of the final fit to the input model. The one- and

two-component absolute residual arrays are approximately

an order of magnitude greater than those of the three- and

four-component solutions. The bulk curves for the three-

and four-component models are effectively identical, demon-

strating that, although the fit of a finite mixture model will

always improve as the number of components is increased, it

is generally best to favour simplicity over complexity, for

example in this case a three-component model.

MODELLED DATA (NON -SATURATED )

To investigate the effects of non-saturation on the EM-fitted

models we used the same IRM acquisition curve as above but

only supplied the algorithm with data corresponding to 50, 60,

70, 80 and 90 per cent of total saturation remanence. A three-

component model was fitted for each truncated data set, and

the correlation coefficient between the final fit over the full field

range and the input model was calculated. Fig. 2 shows the

results of the fitting procedures. A good approximation of the

three-component model was produced when the algorithm was

supplied with data up to the 60 per cent saturation level. As

more data were provided (70, 80 and 90 per cent) the fitted

model gradually converged towards the solution for the full

data set shown in Fig. 1(d).

Comparison of the fitted models with the input curve, shown

in Table 2, demonstrates that, although the R2 value of the

60 per cent saturation fit is higher than that of the 70 per cent

model, the parameters of the individual components in the

70 per cent curve are closer to those of the input distribution. In

the models where few data points are provided for the high-

coercivity tail of the curve there is a tendency for the algorithm

to overestimate DP for the final component. The provision

Figure 2. (a) Modelled three-component distribution used in the investigation of the effects of non-saturation on the EM fitting procedure.

(b) (c) (d) and (e) Fitted solutions at different levels of saturation. The closed symbols represent the data points of the bulk distribution that were

provided to the algorithm, and the open symbols correspond to points that were removed from the input data in order to simulate non-saturation.

R2 values correspond to the linear correlation coefficient calculated between the full IRM distribution [solid symbols in (a)] and the modelled

distribution for the five non-saturated solutions.

Table 2. Comparison of the EM-derived component parameters for the non-saturated model curves with the known population characteristics of the

input distribution.

Model Comp1 B1/2

Log mT

Comp2 B1/2

Log mT

Comp3 B1/2

Log mT

Comp1 DP

Log mT

Comp2 DP

Log mT

Comp3 DP

Log mT

Input Curve 0.90 1.70 2.40 0.25 0.40 0.27

50 per cent Saturation 0.84 1.09 1.99 0.22 0.32 0.38

60 per cent Saturation 0.86 1.41 2.37 0.23 0.42 0.36

70 per cent Saturation 0.87 1.52 2.44 0.24 0.41 0.35

80 per cent Saturation 0.88 1.52 2.42 0.24 0.40 0.35

90 per cent Saturation 0.89 1.59 2.39 0.25 0.37 0.30

100 per cent Saturation 0.91 1.77 2.41 0.25 0.43 0.26
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of data beyond the maximum gradient point of the last com-

ponent improves the fit; however, even at 90 per cent saturation,

DP is overestimated in the final model. We therefore recom-

mend that, in the case of curves where the maximum gradient

point of the highest-coercivity phase has not been passed

during acquisition, an interactive fitting procedure, for example

Kruiver et al. (2001), should be utilized in preference to the EM

algorithm.

Although we have tested the fitting procedure on both

saturated and non-saturated modelled data, both of these

investigations assumed a noise-free environment. The quality

of any fit will degrade as the relative magnitude of any con-

taminating noise increases. Therefore, when dealing with real

samples, more caution is required in the interpretation of fits

obtained from noisy data sets.

MEASURED DATA ( SATURATED )

A small suite of 20 samples from the ODP609 core (Ruddiman

et al. 1989) was selected to provide examples of saturated IRM

acquisition curves. The samples were taken from a section of

the core spanning the climate transition from marine isotope

stage 55 (warm) to stage 54 (cold) at y1.6 Ma. In all cases the

samples reached saturation before application of the maximum

field of 1 T (Figs 3a and b). A number of the obtained IRM

gradient curves were extremely noisy at low field values, and it

was therefore necessary to smooth the data sets with a cubic

spline before they were fitted. Each curve was modelled with

two components, a decision made after the majority of the

preliminary models returned two-component fits based on the

criteria of Kruiver et al. (2001). Fig. 3(c) shows a fit for one of

Figure 3. (a) IRM acquisition plots for the 20 samples selected fromMarine Oxygen Isotope Stage (MIS) 55 to the transitional zone ofMIS54 in ODP

core 609. (b) IRM gradient plots for the investigated samples (the gradient curves are often fairly ‘noisy’ because the measurement error is visualized

better in this way of representation). (c) Two-component EM solution for a bulk IRM distribution: component 1 (2) light (dark) shading. (d) (e), and
(f) Comparison of the distribution parameters for the fitted components with the proxy climate index provided by the magnetic susceptibility record.
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the samples after smoothing, revealing that the coercivity

spectra for the two populations are quite similar (see Table 3

for the mean characteristics of the two populations).

This analysis enables us to compare the characteristics of

the IRM components with the climatic signal as provided by

magnetic susceptibility (the fidelity of magnetic susceptibility

as an accurate recorder of palaeoclimatic change was deter-

mined by its comparison with the lower-resolution carbonate

content record of Ruddiman et al. 1989). The linear regression

coefficients reveal that climate had little influence over the

mean coercivity or dispersion of the two magnetic-mineral

components (Figs 3d and e). The absolute magnetization of com-

ponent 1 shows no relationship with magnetic susceptibility (x).
The magnetization of component 2, however, demonstrates a

linear trend with respect to the x signal (Fig. 3f). This pattern

indicates that, in this portion of the ODP609 core, climate was

controlling the absolute concentration of component 2 (higher

concentrations in warmer conditions), but not its magnetic

properties, whilst component 1 remained unaffected by the

ambient climatic conditions. The mean B1/2 values of com-

ponents 1 and 2 are 27 and 56 mT, respectively, indicating that

both mineral populations consist of single-domain magnetite.

The apparent sensitivity of component 2 and insensitivity of

component 1 to climatic change raises a number of interesting

questions concerning the processes controlling the magnetic

mineral assemblage in the ODP609 core. Although a more

detailed rock-magnetic investigation is required to understand

the observed IRM variations fully, we tentatively suggest that

component 2 may correspond to a biogenic contribution.

Kruiver & Passier (2001) have suggested that magnetosomes in

Mediterranean sediments are characterized by magnetites with

increased coercivities, typically B1/2 is y65 mT, and reduced

dispersions, DP<0.3. These characteristics indicate that the

IRM component 2 in the ODP609 core may correspond to a

magnetosome population, the magnitude of which is at least

partially controlled by climatic conditions.

MEASURED DATA (NON -SATURATED )

In order to investigate the effectiveness of the fitting algorithm

on IRM data obtained from non-saturated natural samples

we determined the acquisition curve for a Czech palaeosol

sample (B-180), which was subsequently subjected to an acid

ammonium oxalate /ferrous iron [AAO-Fe(II)] extraction pro-

cedure (van Oorschot et al. 2001). The palaeosol was red to

brownish red (Munsell: 7.5 YR6 /6) in colour and was formed

in a subtropical (Mediterranean) climate. In such an environ-

ment one would expect the formation of both haematite and

goethite in a palaeosol, with a preference towards haematite

production in sufficiently warm and dry conditions (Cornell &

Schwertmann 1996). The extraction was expected to remove

fine-grained iron oxides, and after treatment a second IRM

acquisition curve was obtained from the sample. Fig. 4 shows

that the fitted IRM curve of the ‘pre-extraction’ sample is

dominated (y96 per cent contribution) by a magnetite com-

ponent with a B1/2 of 30.7 mT. In addition, there is a high-

coercivity haematite phase (goethite was rejected on the basis of

Figure 4. (a) IRM acquisition of Czech palaeosol sample B-180 ‘pre-’ and ‘post-’ AAO-Fe(II) treatment, and the ‘difference’ between the two curves.

(b) (c), and (d) EM fits for each data set, where the two mineral components (magnetite /haematite) are represented by different degrees of shading

(light /dark).

Table 3. Mean component parameters for the two magnetic-mineral

populations fitted to the ODP609 sample collection.

Component Mean

SIRM

10x2 Am2 kgx1

Mean B1/2

log mT

(mT)

Mean DP

log mT

Mean

Range

mT

1 1.11 1.43 0.34 12–590

(27)

2 1.96 1.75 0.25 32–100

(56)
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thermal IRM decay experiments) contributing less than 4 per

cent to the bulk curve (Table 4). The bulk IRM curve was thus

close to saturation and the EM algorithm returns reliable

output.

After extraction, the relative contribution of the magnetite

phase has decreased (y84 per cent) and its mean coercivity has

increased (53.2 mT). The low-coercivity component is still

sufficiently dominant for the EM algorithm to perform smoothly.

Indeed, the fit of the ‘difference’ curve—calculated by sub-

tracting the ‘post-extraction’ curve from the ‘pre-extraction’

one to provide a representation of the IRM acquisition of the

minerals dissolved during the AAO-Fe(II) treatment—shows

that only the magnetite phase of the sample was affected by the

treatment. The coercivity of the removed magnetite appears to

be lower than that of the original population. Attempts to fit

the ‘difference’ curve with a two-component model produced

an unstable second population that was inconsistent with the

mineral phases defined in the ‘pre-extraction’ curve, suggest-

ing that no haematite was present in the removed mineral

component.

CONCLUS IONS

(1) The use of the fitting procedure based on the EM

algorithm provides an effective method for determining the

contributions and characteristics of individual magnetic mineral

populations in both saturated and non-saturated bulk IRM

curves. If the maximum of the highest-coercivity component

in the gradient curve has not been passed, however, interactive

fitting (Kruiver et al. 2001) is preferred.

(2) It has been shown that the procedure is particularly

powerful when separating a number of mineral populations with

overlapping coercivity spectra.

(3) Implementation of the Kruiver (2001) criteria in the

modelling software provides a robust indication of the number

of mineral components that should be fitted to a bulk IRM

curve.
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Comp. ‘Pre-extraction’ ‘Post-extraction’ ‘Difference’

Mri B1/2
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(mT)

DP

log mT

range

mT

Mri B1/2

log mT

(mT)

DP

log mT

range

mT

Mri B1/2

log mT

(mT)

DP

log mT

range

mT
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