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SUMMARY

The full 3-D viscoelastic wave equations have been reformulated,using the velocity–
stress formulation for a curved grid, to include a set of memory variables for each
particle velocity component. The earlier standard formulation includes a set of memory
variables for each stress component. In 3-D this reduces the number of memory variables
by three for each extra relaxation parameter above 1. This reformulation requires
transforming the usual first order differential equation for velocity–stress modelling to a
second order differential equation which again requires storage of two consecutive time
step values of the particle velocities. No memory saving therefore is achieved using just
one relaxation mechanism. However, the memory saved by the new formulation increases
with increasing number of included relaxation mechanisms, and is around 30 per cent
for 5–7 relaxation mechanisms, which is often required for accurate Q modelling.
Incidentally, for media of heterogeneous Q, the new formulation is two to three times
slower in simulations than the old formulation, so the new formulation should be used
in memory critical applications and/or for heterogeneous media with layers/blocks of
homogeneous Q, for which also CPU will be saved.

Key words: finite difference methods, Rayleigh waves, seismic wave propagation,
topography, viscoelasticity, wave equation.

1 INTRODUCT ION

Full viscoelastic wave modelling, i.e. where physical attenuation

and wave dispersion is included in the modelling, is important

for applications as diverse as CTBT monitoring, fundamental

earth structure mapping and exploration. Because of the

relatively shorter wavelength/high frequency content in field

exploration, viscoelasticity is more important here than for

applications in earthquake modelling and teleseismic explosions

(Hestholm & Ruud 2000; Hestholm 1999). However, accurate

viscoelastic wave modelling was computationally unviable for

a long time, until Carcione et al. (1988a, 1988b) and Carcione

(1993) transformed the time convolution involved in its con-

stitutive relation to a set of first order differential equations

which could be solved computationally by numerical methods.

Robertsson et al. (1994) extended this procedure from the

displacement–stress formulation to the velocity–stress formu-

lation, and Blanch et al. (1995) employed this formulation

to develop procedures for modelling a desired Q. Full 3-D

viscoelastic wave equations for a curved grid were then given

in Hestholm (1999) in order to conform the velocity–stress

formulation to free surface topography boundary conditions.

A successful method of solving the full viscoelastic

wave equation with memory saving was developed by Xu &

McMechan (1995, 1998). They reformulated the viscoelastic

wave equations in the displacement–stress formulation to yield

a set of memory variables for each displacement component

as opposed to a set for each stress component in previous

formulations. This exact procedure is applied in the present

work to yield a set of memory variables for each velocity com-

ponent in the velocity–stress formulation for a curved grid, to

conform to implementation of our exact boundary conditions for

free surface topography.

In the following, the standard form of the velocity–stress

viscoelastic wave equations in a curved grid is given, contain-

ing an arbitrary number of relaxation mechanisms. I show

their reformulation to include fewer memory variables, i.e. one

set per velocity component. Then numerical aspects of the

resulting new wave equations are treated in a separate section.

A numerical example using the formulation is given next, where

it is applied to a large domain of real surface topography in

South–Western Norway. I give comparisons between the old

and new formulations with respect to results, total memory

requirement, and computational cost.

2 3 –D V I SCOELAST IC WAVE
EQUATIONS AND THEIR
REFORMULAT ION

In the following, r is the density, p is the relaxation modulus

for P waves, p=l+2m where l and m are the Lamé parameters

and m is the relaxation modulus for S waves. te
P and te

S are the
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strain relaxation times for P and S waves respectively, and ts is

the stress relaxation time. The same ts can be used both for P

and S waves (Blanch et al. 1995). fx, fy and fz are the com-

ponents of the body forces, u, o and w are the particle velocity

components and sxx, syy, szz, sxy, sxz and syz are the stress

components. rxx, ryy, rzz, rxy, rxz and ryz are the components of

the memory variables. z0(j, k) is the function for an arbitrary

free surface topography given in a rectangular, computational

(j, k, g)–grid of spatial coordinates, bounded by j=0, j=jmax,

k=0, k=kmax, g=0 and g=gmax. For curved grid equations I

define the following parameters, depending on the topography

function and its spatial derivatives (Hestholm 1999),

Aðm, i, gÞ ¼ � g=z0ðm, iÞ½ � Lz0ðm, iÞ=Lm½ � , (1)

Bðm, i, gÞ ¼ � g=z0ðm, iÞ½ � Lz0ðm, iÞ=Li½ � , (2)

Cðm, iÞ ¼ gmax=z0ðm, iÞ : (3)

A grid which is curved by vertical undulations in the two hori-

zontal directions and has straight lines in the vertical direction

(Hestholm 1999) is introduced. The extent of curvature is pro-

portional to the distance from the bottom level of the grid, which

is completely plane. The surface level of the grid coincides with

the surface topography of the model. Then the velocity–stress

formulation of the equations of motion, Hooke’s law (the con-

stitutive equations) and the equations for the memory variables

together are the equations governing wave propagation in a

linear isotropic viscoelastic medium. Hestholm (1999) gives them

in a rectangular (j, k, g)–grid, however in the following they are

extended to an arbitrary number of L relaxation mechanisms

(standard linear solids, SLSs) for more accurate modelling of a

desired Q–behaviour,

o
Lu
Lt

¼ Lpxx
Lm

þ Aðm, i, gÞ Lpxx
Lg

þ Lpxy
Li

þ Bðm, i, gÞ Lpxy
Lg

þ Cðm, iÞ Lpxz
Lg

þ fx , (4)

o
Lo
Lt

¼ Lpxy
Lm

þ Aðm, i, gÞ Lpxy
Lg

þ Lpyy
Li

þ Bðm, i, gÞ Lpyy
Lg

þ Cðm, iÞ Lpyz
Lg

þ fy , (5)

o
Lw
Lt

¼ Lpxz
Lm

þ Aðm, i, gÞ Lpxz
Lg

þ Lpyz
Li

þ Bðm, i, gÞ Lpyz
Lg

þ Cðm, iÞ Lpzz
Lg

þ fz , (6)

Lpxx
Lt

¼n 1 �
XL
‘¼1

1 � qPe‘
qp‘

� �" #�
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Lo
Li

þ Bðm, i, gÞ Lo
Lg

þ Cðm, iÞ Lw
Lg

�
�2k 1 �

XL
‘¼1

1 � qSe‘
qp‘

� �" #

|
Lo
Li

þ Bðm, i, gÞ Lo
Lg

þ Cðm, iÞ Lw
Lg

� �
þ
XL
‘¼1

rxx‘ , (7)

Lpyy
Lt

¼n 1 �
XL
‘¼1

1 � qPe‘
qp‘

� �" #�
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Lo
Li

þ Bðm, i, gÞ Lo
Lg

þ Cðm, iÞ Lw
Lg

�
�2k 1 �

XL
‘¼1

1 � qSe‘
qp‘

� �" #

|
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Cðm, iÞ Lw
Lg

� �
þ
XL
‘¼1

ryy‘ , (8)

Lpzz
Lt

¼n 1 �
XL
‘¼1

1 � qPe‘
qp‘

� �" #�
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Lo
Li

þ Bðm, i, gÞ Lo
Lg

þ Cðm, iÞ Lw
Lg

�
�2k 1 �

XL
‘¼1

1 � qSe‘
qp‘

� �" #

|
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Lo
Li

þ Bðm, i, gÞ Lo
Lg

� �
þ
XL
‘¼1

rzz‘ ,

(9)

Lpxy
Lt

¼k 1 �
XL
‘¼1

1 � qSe‘
qp‘

� �" #

|
Lu
Li

þ Bðm, i, gÞ Lu
Lg

þ Lo
Lm

þ Aðm, i, gÞ Lo
Lg

� �
þ
XL
‘¼1

rxy‘ ,

(10)

Lpxz
Lt

¼k 1 �
XL
‘¼1

1 � qSe‘
qp‘

� �" #

| Cðm, iÞ Lu
Lg

þ Lw
Lm

þ Aðm, i, gÞ Lw
Lg

� �
þ
XL
‘¼1

rxz‘ , (11)

Lpyz
Lt

¼k 1 �
XL
‘¼1

1 � qSe‘
qp‘

� �" #

| Cðm, iÞ Lo
Lg

þ Lw
Li

þ Bðm, i, gÞ Lw
Lg

� �
þ
XL
‘¼1

ryz‘ , (12)

Lrxx‘
Lt

¼� 1

qp‘

(
rxx‘ þ n

qPe‘
qp‘

� 1

� �"
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Lo
Li

þ Bðm, i, gÞ Lo
Lg

þ Cðm, iÞ Lw
Lg

#
� 2k

qSe‘
qp‘

� 1

� �

|
Lo
Li

þ Bðm, i, gÞ Lo
Lg

þ Cðm, iÞ Lw
Lg

� �)
, (13)

Lryy‘
Lt

¼� 1

qp‘

(
ryy‘ þ n

qPe‘
qp‘

� 1

� �"
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Lo
Li

þ Bðm, i, gÞ Lo
Lg

þ Cðm, iÞ Lw
Lg

#
� 2k

qSe‘
qp‘

� 1

� �

|
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Cðm, iÞ Lw
Lg

� �)
, (14)
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Lrzz‘
Lt

¼� 1

qp‘

(
rzz‘ þ n

qPe‘
qp‘

� 1

� �"
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Lo
Li

þ Bðm, i, gÞ Lo
Lg

þ Cðm, iÞ Lw
Lg

#
� 2k

qSe‘
qp‘

� 1

� �

|
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Lo
Li

þ Bðm, i, gÞ Lo
Lg

� �)
, (15)

Lrxy‘
Lt

¼� 1

qp‘

(
rxy‘ þ k

qSe‘
qp‘

� 1

� �

|
Lu
Li

þ Bðm, i, gÞ Lu
Lg

þ Lo
Lm

þ Aðm, i, gÞ Lo
Lg

� �)
, (16)

Lrxz‘
Lt

¼� 1

qp‘

(
rxz‘ þ k

qSe‘
qp‘

� 1

� �

| Cðm, iÞ Lu
Lg

þ Lw
Lm

þ Aðm, i, gÞ Lw
Lg

� �)
, (17)

Lryz‘
Lt

¼� 1

qp‘

(
ryz‘ þ k

qSe‘
qp‘

� 1

� �

| Cðm, iÞ Lo
Lg

þ Lw
Li

þ Bðm, i, gÞ Lw
Lg

� �)
: (18)

Equations (4)–(18) are the momentum conservation equations,

Hooke’s law and the memory variable equations conformed to a

medium bounded above by any free surface topography, given in

the rectangular (j, k, g)–grid.

I differentiate the momentum conservation equations (4)–(6)

with respect to time and substitute for the time differentiated

stresses from the stress–strain relations (7)–(12) with L relaxation

mechanisms for each stress. Then we obtain

o
L2u

Lt2
¼ L

Lm
þ Aðm, i, gÞ L

Lg

� �(
n 1 �

XL
‘¼1

1 � qPe‘
qp‘

� �" #

|

 
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Lo
Li

þ Bðm, i, gÞ Lo
Lg

þ Cðm, iÞ Lw
Lg

!

� 2k 1 �
XL
‘¼1

1 � qSe‘
qp‘

� �" #

|

 
Lo
Li

þ Bðm, i, gÞ Lo
Lg

þ Cðm, iÞ Lw
Lg

!
þ
XL
‘¼1

rxx‘

)

þ L
Li

þ Bðm, i, gÞ L
Lg

� �(
k 1 �

XL
‘¼1

1 � qSe‘
qp‘

� �" #

|

 
Lu
Li

þ Bðm, i, gÞ Lu
Lg

þ Lo
Lm

þ Aðm, i, gÞ Lo
Lg

!
þ
XL
‘¼1

rxy‘

)

þ Cðm, iÞ L
Lg

(
k 1 �

XL
‘¼1

1 � qSe‘
qp‘

� �" #

|

 
Cðm, iÞ Lu

Lg
þ Lw

Lm
þ Aðm, i, gÞ Lw

Lg

!
þ
XL
‘¼1

rxz‘

)
þ _fx , (19)

o
L2o

Lt2
¼ L

Lm
þ Aðm, i, gÞ L

Lg

� �(
k 1 �

XL
‘¼1

1 � qSe‘
qp‘

� �" #

|

 
Lu
Li

þ Bðm, i, gÞ Lu
Lg

þ Lo
Lm

þAðm, i, gÞ Lo
Lg

!
þ
XL
‘¼1

rxy‘

)

þ L
Li

þ Bðm, i, gÞ L
Lg

� �(
n 1 �

XL
‘¼1

1 � qPe‘
qp‘

� �" #

|

 
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Lo
Li

þ Bðm, i, gÞ Lo
Lg

þ Cðm, iÞ Lw
Lg

!
� 2k 1 �

XL
‘¼1

1 � qSe‘
qp‘

� �" #

|

 
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Cðm, iÞ Lw
Lg

!
þ
XL
‘¼1

ryy‘

)

þ Cðm, iÞ L
Lg

(
k 1 �

XL
‘¼1

1 � qSe‘
qp‘

� �" #

|

 
Cðm, iÞ Lo

Lg
þ Lw

Li
þ Bðm, i, gÞ Lw

Lg

!

þ
XL
‘¼1

ryz‘

)
þ _fy , (20)

o
L2w

Lt2
¼ L

Lm
þ Aðm, i, gÞ L

Lg

� �(
k 1 �

XL
‘¼1

1 � qSe‘
qp‘

� �" #

|

 
Cðm, iÞ Lu

Lg
þ Lw

Lm
þ Aðm, i, gÞ Lw

Lg

!
þ
XL
‘¼1

rxz‘

)

þ L
Li

þ Bðm, i, gÞ L
Lg

� �(
k 1 �

XL
‘¼1

1 � qSe‘
qp‘

� �" #

|

 
Cðm, iÞ Lo

Lg
þ Lw

Li
þ Bðm, i, gÞ Lw

Lg

!
þ
XL
‘¼1

ryz‘

)

þ Cðm, iÞ L
Lg

(
n 1 �

XL
‘¼1

1 � qPe‘
qp‘

� �" #

|

 
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Lo
Li

þ Bðm, i, gÞ Lo
Lg

þ Cðm, iÞ Lw
Lg

!
� 2k 1 �

XL
‘¼1

1 � qSe‘
qp‘

� �" #

|

 
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Lo
Li

þ Bðm, i, gÞ Lo
Lg

!

þ
XL
‘¼1

rzz‘

)
þ _fz , (21)

where ḟx, ḟy and ḟz denote the time differentiated volume

forces. The composite memory variable wave equations then
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become

o
L2u

Lt2
¼ L

Lm
þ Aðm, i, gÞ L

Lg

� �(
n 1 �

XL
‘¼1

1 � qPe‘
qp‘

� �" #
#1

� 2k 1 �
XL
‘¼1

1 � qSe‘
qp‘

� �" #
#2

)

þ L
Li

þ Bðm, i, gÞ L
Lg

� �(
k 1 �

XL
‘¼1

1 � qSe‘
qp‘

� �" #
#4

)

þ Cðm, iÞ L
Lg

(
k 1 �

XL
‘¼1

1 � qSe‘
qp‘

� �" #
#5

)

þ
XL
‘¼1

m‘ þ Fx , (22)

o
L2o

Lt2
¼ L

Lm
þ Aðm, i, gÞ L

Lg

� �(
k 1 �

XL
‘¼1

1 � qSe‘
qp‘

� �" #
#4

)

þ L
Li

þ Bðm, i, gÞ L
Lg

� �(
n 1 �

XL
‘¼1

1 � qPe‘
qp‘

� �" #
#1

� 2k 1 �
XL
‘¼1

1 � qSe‘
qp‘

� �" #
#7

)

þ Cðm, iÞ L
Lg

(
k 1 �

XL
‘¼1

1 � qSe‘
qp‘

� �" #
#6

)
þ
XL
‘¼1

n‘ þ Fy ,

(23)

o
L2w

Lt2
¼ L

Lm
þ Aðm, i, gÞ L

Lg

� �(
k 1 �

XL
‘¼1

1 � qSe‘
qp‘

� �" #
#5

)

þ L
Li

þ Bðm, i, gÞ L
Lg

� �(
k 1 �

XL
‘¼1

1 � qSe‘
qp‘

� �" #
#6

)

þ Cðm, iÞ L
Lg

(
n 1 �

XL
‘¼1

1 � qPe‘
qp‘

� �" #
#1

� 2k 1 �
XL
‘¼1

1 � qSe‘
qp‘

� �" #
#3

)
þ
XL
‘¼1

o‘ þ Fz , (24)

with Fx=ḟx, Fy=ḟz and Fz=ḟz being the new volume forces and

#1ðm, i, g, tÞ ¼
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Lo
Li

þ Bðm, i, gÞ Lo
Lg

þ Cðm, iÞ Lw
Lg

, (25)

#2ðm, i, g, tÞ ¼
Lo
Li

þ Bðm, i, gÞ Lo
Lg

þ Cðm, iÞ Lw
Lg

, (26)

#3ðm, i, g, tÞ ¼
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Lo
Li

þ Bðm, i, gÞ Lo
Lg

, (27)

#4ðm, i, g, tÞ ¼
Lu
Li

þ Bðm, i, gÞ Lu
Lg

þ Lo
Lm

þ Aðm, i, gÞ Lo
Lg

, (28)

#5ðm, i, g, tÞ ¼ Cðm, iÞ Lu
Lg

þ Lw
Lm

þ Aðm, i, gÞ Lw
Lg

, (29)

#6ðm, i, g, tÞ ¼ Cðm, iÞ Lo
Lg

þ Lw
Li

þ Bðm, i, gÞ Lw
Lg

, (30)

#7ðm, i, g, tÞ ¼
Lu
Lm

þ Aðm, i, gÞ Lu
Lg

þ Cðm, iÞ Lw
Lg

: (31)

Each set of new memory variables ml, nl and ol is identified

with each particle velocity component, u, o and w respectively.

These new memory variables are given by

m‘ ¼m‘ðm, i, g, tÞ ¼
L
Lm

þ Aðm, i, gÞ L
Lg

� �
rxx‘

þ L
Li

þ Bðm, i, gÞ L
Lg

� �
rxy‘ þ Cðm, iÞ L

Lg
rxz‘ , (32)

n‘ ¼n‘ðm, i, g, tÞ ¼
L
Lm

þ Aðm, i, gÞ L
Lg

� �
rxy‘

þ L
Li

þ Bðm, i, gÞ L
Lg

� �
ryy‘ þ Cðm, iÞ L

Lg
ryz‘ , (33)

o‘ ¼o‘ðm, i, g, tÞ ¼
L
Lm

þ Aðm, i, gÞ L
Lg

� �
rxz‘

þ L
Li

þ Bðm, i, gÞ L
Lg

� �
ryz‘ þ Cðm, iÞ L

Lg
rzz‘ : (34)

Differentiating the new memory variables ml, nl and ol with

respect to t and substituting from the corresponding expressions

for the old memory variables (13)–(18), gives the following first

order equations for the new memory variables,

Lm‘

Lt
¼� 1

qp‘

(
m‘ þ

L
Lm

þ Aðm, i, gÞ L
Lg

� �

|

"
n

qPe‘
qp‘

� 1

� �
#1 � 2k

qSe‘
qp‘

� 1

� �
#2

#

þ L
Li

þ Bðm, i, gÞ L
Lg

� �"
k

qSe‘
qp‘

� 1

� �
#4

#

þ Cðm, iÞ L
Lg

"
k

qSe‘
qp‘

� 1

� �
#5

#)
, (35)

Ln‘
Lt

¼� 1

qp‘

(
n‘ þ

L
Lm

þ Aðm, i, gÞ L
Lg

� �"
k

qSe‘
qp‘

� 1

� �
#4

#

þ L
Li

þ Bðm, i, gÞ L
Lg

� �"
n

qPe‘
qp‘

� 1

� �
#1 � 2k

qSe‘
qp‘

� 1

� �
#7

#

þ Cðm, iÞ L
Lg

"
k

qSe‘
qp‘

� 1

� �
#6

#)
, (36)

Lo‘
Lt

¼� 1

qp‘

(
o‘ þ

L
Lm

þ Aðm, i, gÞ L
Lg

� �"
k

qSe‘
qp‘

� 1

� �
#5

#

þ L
Li

þ Bðm, i, gÞ L
Lg

� �"
k

qSe‘
qp‘

� 1

� �
#6

#

þ Cðm, iÞ L
Lg

"
n

qPe‘
qp‘

� 1

� �
#1 � 2k

qSe‘
qp‘

� 1

� �
#3

#)
, (37)
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where the definitions (25)–(31) are used again. This set of

equations assumes spatially (and temporally) constant values

of all tsl, which is no practical restriction because spatial

variability of tPel and tSel can account for spatially varying Q. I

choose preselected, spatially constant values of 1/tsl=vl, i.e. one

specific frequency for each of the L mechanisms (Emmerich 1992;

Xu & McMechan 1995).

Eqs (22)–(31) and (35)–(37) together constitute the new

wave equations using composite memory variables for wave

propagation in the interior of the medium. A set of memory

variables is now associated with each particle velocity com-

ponent instead of with each stress component as before. Exact

boundary conditions for an arbitrary free surface topography

are employed in this work and can be written as (Hestholm

1999; Hestholm & Ruud in preparation)

1

e2
1 þ p2
� �

Cðm, iÞ Lu
Lg

þ d

e2
1 þ p2
� �

Cðm, iÞ Lw
Lg

¼ 2d
Lu
Lm

þ p

e

Lo
Lm

þ d2 � 1
� � Lw

Lm
þ p

e

Lu
Li

þ dp

e

Lw
Li

, (38)

� fp

e2
1 þ p2
� �

Cðm, iÞ Lu
Lg

þ 1

e2
1 þ p2
� �

Cðm, iÞ Lo
Lg

þ p

e
1 þ p2
� �

Cðm, iÞ Lw
Lg

¼ �2dfp
Lu
Lm

þ d 1 � p2
� � Lo

Lm
þ 2fp

Lw
Lm

þ d 1 � p2
� � Lu

Li

þ 2
p

e

Lo
Li

þ p2 � 1
� � Lw

Li
, (39)

d

e2
1 þ p2
� �

Cðm, iÞ Lu
Lg

þ p

e3
1 þ p2
� �

Cðm, iÞ Lo
Lg

� 1

e2
1 þ p2
� �

Cðm, iÞ Lw
Lg

¼ f 1 þ p2

e2

� �
þ d2

� �
Lu
Lm

� dp

e
f� 1ð Þ Lo

Lm
þ d f� 1ð Þ Lw

Lm

� dp

e
f� 1ð Þ Lu

Li
þ 1

e2
fþ p2
� � Lo

Li
þ p

e
f� 1ð Þ Lw

Li
, (40)

using definition (3) and f= l/(l+ 2m), d= [hz0(j, k)/hj],

e=cos[arctan (d)], f=sin[arctan (d)], and p=[hz0(j, k)/hk]e.

3 NUMERICAL ASPECTS

For spatial differentiation high-order, cost-optimized finite-

difference (F-D) operators were used (Kindelan et al. 1990;

Holberg 1987). Staggered discretization stencils are used

(Levander 1988; Virieux 1986), enabling (and requiring) us to

define only the particle velocities and not the sums (25)–(31) at

the surface topography. The 3-D boundary conditions (38)–(40)

are discretized by second order, staggered F-D operators.

Higher-order F-D methods will not decrease the numerical

dispersion of Rg (fundamental mode Rayleigh) waves, only

closer spatial sampling will (Xu et al. 1999), so second–order

F-Ds may as well be used along the free surface topography.

A direct solution for the particle velocities from second order

F-D discretization of the system (38)–(40) is performed, and the

resulting system of equations is unconditionally stable (Hestholm

1999; Hestholm & Ruud 2001). Below the free surface, the F–D

order is gradually increased via 4 and 6 up to 8, which is the

order used in the interior of the medium (Kindelan et al. 1990).

To time propagate the particle velocities from the second

order differential equations (22)–(24) one may use an explicit

central difference method, involving an addition of order

Dt2 in each time step (Dt being the time step). For small Dt
though, this may lead to unfavourable rounding errors.

Therefore, I apply the summed form of the method instead

(Dahlquist & Bjørk 1974). With i the time step index, I define

z(i+1/2)=[u(i+1)xu(i)]/Dt, where u is the discretized version

of the full vector of particle velocities ũ(j, k, g, t)=(u, o, w).

z is the discretized version of a three component dummy

vector z̃(j, k, g, t) that has to be maintained over the entire

computational domain at each time step. f̃(i) I define to be the

ith time step of the discretized version of the three component

vector f consisting of the right hand side of eqs (22)–(24),

according to h2ũ/ht2=f̃. Then we have from the central

difference method

zðnþ 1=2Þ � zðn� 1=2Þ ¼ ½uðnþ 1Þ � 2uðnÞ þ uðn� 1Þ�=*t

¼ *t|fðnÞ (41)

with n being the current time step index. I apply the summed

form as follows

zð1=2Þ ¼ uð0Þ ¼ 0 ,

uðnÞ ¼ uðn� 1Þ þ *t|zðn� 1=2Þ , n§1 ,

zðnþ 1=2Þ ¼ zðn� 1=2Þ þ *t|fðnÞ, n§1 ,

(42)

to time propagate the particle velocities. The memory variable

equations (35)–(37) may become close to instability in time for

small tsl compared to Dt, therefore the unconditionally stable

Crank–Nicholson method was used to propagate the memory

variables in time (Robertsson et al. 1994; Hestholm 1999).

Since the memory variable equations are first order ordinary

differential equations, the usually implicit Crank–Nicholson

scheme becomes explicit, and only marginally more expensive

than conventional explicit schemes.

Instead of the six stress components sxx, syy, szz, sxy, sxz and

syz in the old formulation we have, in the new formulation,

the seven sums of eqs (25)–(31) for which we have to maintain

full arrays over the complete computational domain. Both the

stresses and the sums have to be kept at one time step only.

The extra array included by the seventh sum is outweighed

by the gain achieved by the spatially homogeneous tsl. The

introduction of the second order eqs (22)–(24) requires us to

store two consecutive time steps of the particle velocities and

hence three full arrays extra compared to before (the vector

z in our case). For one relaxation parameter (L=1) this will

be outweighed by the gain of three fewer memory variables

required. As a result there will be the same memory require-

ment when using only one relaxation parameter. However, for

each relaxation mechanism more than 1, there will be a gain of

three fewer memory variables needed.

For the displacement–stress formulation (Xu & McMechan

1995) there was already an immediate memory saving when

using one relaxation mechanism. This standard formulation

used seven memory variables when including one relaxation

mechanism, and so the immediate gain was from these seven to

three memory variables by using the new formulation. Also, the
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displacement–stress formulation already in its standard form

included second order differential equations with respect to

time. Therefore the new formulation did not involve three extra

full-size variables (the vector z in our case). Hence the total

memory saving for the displacement–stress formulation would

be larger than for the velocity–stress formulation, also because

we would have a gain of four rather than three fewer memory

variables required per extra relaxation parameter included. It is

important, however, to emphasize that this is not because of

less total memory required by the new displacement–stress

formulation compared with the new velocity–stress formulation,

but rather because of the pre-eminence of the standard velocity–

stress formulation in already requiring less memory than the

standard displacement–stress formulation.

I used MPI- (Message Passing Interface) parallelized codes

by domain decomposition of the standard and new forms of

velocity–stress viscoelastic wave modelling on a curved grid.

Depending on the number of processors I found a memory

reduction between 12.5 and 32 per cent of the new formulation

for a model of 500r500r100 grid points. For this model, I

found the total memory saving to be about 12.6 per cent for

two relaxation parameters, 19.7 per cent for three, 24.2 per cent

for four, 27.5 per cent for five, 30 per cent for six and 31.5 per

cent for seven relaxation parameters.

Unfortunately, I cannot report similarly positive results for

CPU times. I found the new form of the velocity–stress wave

equations to be between two and three times slower than the old

form, on average. This is easy to explain, however. In contrast

with the new form of the displacement–stress formulation, the

new velocity–stress formulation does not contain the same

number of computations as before. In the two new sets of

equations, the momentum conservation equations (22)–(24),

and the memory variable equations (35)–(37), H1–H7 have to be

multiplied by different sets of coefficients before spatial partial

differentiation. This means that the partial differentiations have

to be done separately for each of these new sets of equations.

In addition, after the first and before the second differentiation

we have to redefine the variables to be differentiated by multi-

plying them by the new appropriate coefficients. All of this

should justify an approximate factor of 2.5 for the extra CPU

time compared to before. As in the case of memory require-

ment, this high factor of extra CPU time is not because the new

velocity–stress formulation requires more CPU than the new

displacement–stress formulation (they require about equal CPU),

but rather because the standard velocity–stress formulation

requires fewer computations than the standard displacement–

stress formulation. The new and standard displacement–stress

formulations require the same amount of computations. Because

of the added CPU time of the new velocity–stress formulation,

it should be used mainly for applications where the requirement

on CPU is less restrictive than on memory.

However, there are applications where the new formulation

could be used to advantage. These include cases of viscoelastic

homogeneous media or viscoelastic homogenous blocky media.

In each such block, the coefficients in front of H1–H7 (the

ones that depend only on the viscoelastic relaxation times)

may be moved outside of the differentiation operator preceding

them. Then the sums to be differentiated will be the same for

both the momentum conservation equations (22)–(24) and the

memory variable equations (35)–(37), and hence also no inter-

mediate redefinition of the sums have to be performed. This

leads to the same number of spatial partial differentiations and

internal medium computations as for the standard velocity–

stress formulation, and therefore the total CPU time will also

be slightly reduced as a result of the new formulation’s smaller

memory requirement. I found this to be the case in numerical

tests assuming viscoelastic homogeneity, for a grid of 500r
500r120 points over 20 parallel processors and using one to

five relaxation parameters. It is important to note that this

advantageous form of the new equations may be used also in

heterogenous media, as long as the medium consists of blocks

or domains each of which has a homogeneous viscoelastic

definition. Jumps of Q between blocks are then smoothed

implicitly. In these cases we may save both a significant amount of

memory and a slight amount of CPU by the new formulation.

4 ACCURATE Q –MODELL ING NEAR
FJORD TOPOGRAPHY IN SOUTH–
WESTERN NORWAY

In this section I present an application of the new memory

saving version of velocity–stress viscoelastic wave modelling,

using a homogeneous medium of oP=6000 m/s, oS=3464 m/s,

and density=2000 kg/m3. The total domain is 100r100r
24 km3, gridded by 500r500r120 points, so the spatial grid

distance is 200 m. It is covered by an area of 100r100 km2

of digitized elevation data from fjord–topography in South–

Western Norway. Fig. (1) shows elevation (a) and gradients (b)

from this area. In the simulation an incident dipping plane

wave is approaching this topography from below. The plane

wave consists of a plane of Ricker wavelets, each with a central

frequency of 2.5 Hz, and it has the same dip of 3.6u with both

the negative x and the positive y–axes, i.e. with both the

westward and northward directions. It simulates a teleseismic

explosion approaching from the North–West. I applied values of

relaxation times from Table 5 of Blanch et al. (1995), according

to an accurate constant Q modelling of Q#20 by 5 relaxation

mechanisms. Two snapshots of this simulation are shown in

Fig. (2). The corresponding snapshots of the same simulation

using the standard velocity–stress formulation are shown in

Fig. (3).

In both simulations we confirm the strongest scattered waves

to be generated from the strongest varying topography and/or

steepest gradients. This can be confirmed by comparing the

snapshots with Fig. (1). Since the simulations are performed

for a homogeneous medium, all the wave scattering shown is

due to the surface topography. The results from using the new

formulation (Fig. 2) seem to contain a spectrum of far lower

frequencies than those from using the standard formulation

(Fig. 3). The reason is that the equations of the new formu-

lation (22)–(24) and (35)–(37) are time–differentiated compared

to the equations of the standard formulation (4)–(18). They

will therefore contain relatively more high–frequency energy

in their wave propagation than will the standard formulation

(because their amplitudes are multiplied by the factor iv in the

frequency domain). This relative high–frequency wave propa-

gation of the new formulation will then become significantly

more attenuated and dispersed with time than the correspond-

ing propagation of the old formulation, by the homogeneous

viscoelastic medium of the low Q of 20. When this attenuated

field hits the surface topography, it has far less scattering

efficiency than when using the standard formulation. This

is seen when comparing Fig. 2 with Fig. 3. Hence we have
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confirmed different attributes of the new and old formulations

in exhibiting different wave energy content of the same source

signal.

The left part of Fig. (4) is the west–east oriented topography

profile taken from the middle position (y=50 km) of the map

in Fig. (1), whereas the right part of Fig. (4) is the south–north

oriented topography profile taken from the middle position

(x=50 km) of the area. Seismograms for the profiles are shown

in Figs (5)–(8). In each topography profile 50 receivers are

covering the distance of 26–75 km and are interspaced by 1 km.

Fig. (5) shows the west–east profile from the simulation of

the new viscoelastic formulation (corresponding to Fig. 2), and

confirms the relative low-frequent appearance and attenuated

waves when comparing with Fig. (6). This is the corresponding
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Figure 1. (a) Topography of a 100r100 km fjord topography area used in 3–D viscoelastic simulations. Labels are in kilometres. Blue is sea and

fjords. (b) Gradients of the area.
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Figure 2. Snapshots of the vertical particle velocity component w at two times after a plane wave is released near the surface topography of Fig. (1).

The snapshots are taken along the surface topography and the new viscoelastic velocity–stress formulation for a curved grid is used. A constant Q#20

is accurately modelled using five relaxation mechanisms.

Composite memory variable viscoelasticity 159

# 2002 RAS, GJI 148, 153–162



-80

-60

-40

-20

0
0 20 40 60 80

-80

-60

-40

-20

0
0 20 40 60 80

1.7 sec 2.9 sec
Figure 3. Snapshots of the vertical particle velocity component w at two times after a plane wave is released near the surface topography of Fig. (1).

The snapshots are taken along the surface topography and the standard viscoelastic velocity–stress formulation for a curved grid is used. A constant

Q#20 is accurately modelled using five relaxation mechanisms.
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Figure 4. Vertically exaggerated (10 times) topographic west–east profile (left) and south–north profile (right) each at the middle of the domain

covered by the surface topography of Fig. (1). Horizontal axes are in kilometres and vertical axes are in 100m.
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Figure 5. Seismogram of the first horizontal particle velocity u for the

simulation of Fig. (2). The receivers are located along the surface of the

west–east oriented topographic profile of Fig. (4).
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Figure 6. Seismogram of the first horizontal particle velocity u for the

simulation of Fig. (3). The receivers are located along the surface of

the west–east oriented topographic profile of Fig. (4).
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west–east profile from the simulation of Fig. 3, i.e. using the

standard formulation. In both cases we see that the prominent

peaks at 52, 58 and 65 km of the left profile of Fig. (4)

(approximately receivers 27, 33 and 40), are giving rise to

prominently scattered waves.

The broad peak around 52 km from the right profile of

Fig. (4) is seen to cause the most scattering in the seismograms

covering this profile in Figs (7) (the new formulation) and (8)

(the old formulation). The previously confirmed feature of the

new formulation of a more attenuated and dispersed wavefield

is similarly confirmed in these seismograms.

The grid boundary reflections of the simulation of the new

formulation (Fig. 2) are stronger and faster than for the standard

formulation (Fig. 3). The reason is that I have only used the

exponential damping procedure of Cerjan et al. (1985) in the

present implementation of the new formulation. The best pro-

cedure I found for viscoelastic absorbing boundaries (Hestholm

1999) depends on explicitly setting the stress relaxation time to

a high value y100 along the grid boundaries and changing

each relaxation time linearly or by a cosine taper from its value

at the boundary to its value in the interior. This procedure,

however, is not feasible by the spatially constant stress relaxation

times (one per modelled frequency) of the new memory saving

formulation. This outlined algorithm for viscoelastic boundary

absorption is however applied in the implementation of the

standard formulation, using a linear change of relaxation times

over 20 grid points and 10 grid points closest to the grid

boundaries having constant values corresponding to a low Q.

On top of this exponential damping (Cerjan et al. 1985) is

applied at the 20 grid points closest to the boundaries. These 20

grid points of the method of Cerjan et al. (1985) were the only

absorbing boundaries applied in the present implementation of

the new formulation.

The simulation of the standard formulation used 8.6 GB of

run time memory over 20 processors, whereas the simulation

of the new formulation used 6.25 GB over equally many

processors, representing a memory saving of 27.4 per cent. The

total run time for the new formulation was about 8.5 hours,

however, whereas for the standard formulation it was about

3 hr, i.e. viscoelastic homogeneity was not assumed. The Cray

(SGI) Origin 2000 parallel machine at the University of Bergen,

Dept. of Informatics, was used, which has a total capacity of

24 GB over 128 processors.

5 CONCLUS IONS

The full 3–D viscoelastic wave equations in the velocity–stress

formulation is reformulated to include one set of memory

variables per particle velocity instead of one set per stress.

Almost 30 per cent memory is saved in the new formulation

for accurate modelling of Q typically used in applications,

although it is 2–3 times slower than the old formulation for

fully heterogeneous media. The new formulation is therefore

recommended for memory critical applications and/or for

modelling of heterogeneous blocky media, where each block

has a homogeneous Q. For the latter type of media there is a

slight saving in CPU time together with the significant general

saving in memory. Hence the new formulation should be used

for such media. Results from applying the new formulation

in combination with our exact boundary conditions for free

surface topography are shown for a homogeneous medium of

constant Q=20 covered by a large area of fjord topography

from South–Western Norway. I compare the results with a

corresponding simulation using the old formulation. Areas of

the strongest topographic variations and steepest gradients are

clearly causing the strongest scattering in simulations, which

are parallelized to accommodate the large run time memory

even in the new memory saving version.

6 ACKNOWLEDGMENTS

I appreciated discussions with and support from Prof. George

McMechan (University of Texas at Dallas) and Prof. Eystein

0

1

2

3

4

T
im

e 
(s

)

0 5 10 15 20 25 30 35 40 45 50

U, Fjord topography, Homo. medium, S-N profile

Figure 7. Seismogram of the first horizontal particle velocity u for the

simulation of Fig. (2). The receivers are located along the surface of

the south–north oriented topographic profile of Fig. (4).

0

1

2

3

4

T
im

e 
(s

)

0 5 10 15 20 25 30 35 40 45 50

U, Fjord topography, Homo. medium, S-N profile

Figure 8. Seismogram of the first horizontal particle velocity u for the

simulation of Fig. (3). The receivers are located along the surface of

the south–north oriented topographic profile of Fig. (4).

Composite memory variable viscoelasticity 161

# 2002 RAS, GJI 148, 153–162



Husebye (University of Bergen, Norway). Discussions with

Dr. Bent Ruud (University of Bergen, Norway) are greatly

appreciated. I would like to thank two anonymous reviewers

for constructive reviews. This research was supported by

the Norwegian Research Council, the ERL/MIT Industry

Consortium, the Cold Regions Research and Engineering

Laboratory, US Army Corps of Engineers, under contract

DACA89-99-C-0002, the Norwegian Defense Research Estab-

lishment, under contract FFI-0070, and by the Norwegian

Supercomputer Committee through a grant of computing time.

REFERENCES

Blanch, J.O., Robertsson, J.O.A., Symes, W.W., 1995. Modeling of a

constant Q: methodology and algorithm for an efficient and optimally

inexpensive viscoelastic technique, Geophysics, 60, 176–184.

Carcione, J.M., 1993. Seismic modeling in viscoelastic media,

Geophysics, 58, 110–120.

Carcione, J.M., Kosloff, D., Kosloff, R., 1988. Wave propagation

simulation in a linear viscoacoustic medium, Geophys. J. R. astr.

Soc., 93, 393–407.

Carcione, J.M., Kosloff, D., Kosloff, R., 1988. Wave propagation

simulation in a linear viscoelastic medium, Geophys. J. R. astr. Soc.,

95, 597–611.

Cerjan, C., Kosloff, D., Kosloff, R., Reshef, M., 1985. A nonreflecting

boundary condition for discrete acoustic and elastic wave equations,

Geophysics, 50, 705–708.
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