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SUMMARY

A method is presented to turn into reality the idea of the reflection and transmission
operators in the space–frequency domain for infinitely spread irregular interface in
terms of the indirect boundary element method (abbreviated to I-BEM), and to apply
them to the wavefield in irregularly stratified media. This method is a hybrid between the
strategy of the reflection and transmission matrices method (abbreviated to R/T-MM)
developed in seismology and that of I-BEM developing in the engineering community.
The I-BEM is one of the ways to disassemble the wavefield into up and down going
waves in layers sandwiched between irregular interfaces. Green’s function matrices
of I-BEM play the role of the wave function of R/T-MM, and the imaginary forces
distributed along both faces of interfaces that of the coefficients vectors. The usage of
the reference solution, that is the wavefield in the corresponding horizontally stratified
media, gives us a good approximation to handle infinitely spread interfaces.

This method of calculation can stack the effect of reflection and transmission at
irregular interfaces on the wavefield as the wave goes by. Therefore, for example, the
waves coming directly from the seismic source can be extracted from latter phases. The
test case for a 2-D homogeneous basin shows the incident wave and reflected waves that
bounce up and down in the basin. It is expected that the formulation shown here can
make consideration of the wavefield in complex velocity structures and the search for
appropriate and efficient approximations easier.

Key words: boundary element method, irregular interface, reference solution, reflection
and transmission, synthetic seismograms, wave propagation.

1 INTRODUCT ION

The calculation of the seismic response of irregularly stratified

media may be required, if we have to estimate seismic ground

motion in an area with complicated geological setting such as,

for instance, an alluvial basin. During the 1990s, a substantial

development took place in numerical methods for this purpose.

Domain methods such as finite element and finite difference

methods have reached a point where they can be applied to real

problems, whereas boundary methods as the boundary element

and boundary integral equation methods are still in the research

stage. Unfortunately, the capacity of computer available today is

not enough to calculate the real size problems using boundary

methods. The boundary methods, however, have not yet lost

their appeal, and are still attracting researchers, because of

the possibility for substantial improvement in cost performance

and accuracy, not only by advances in computer technology,

but also by the wisdom and effort of the researchers involved.

The topic introduced here is not intended for immediate practical

application, but is an attempt to find a path for the future

development of boundary methods at the border region between

seismology and earthquake engineering.

Some theoretical remarks for the wavefield in horizontally

stratified media in the wavenumber–frequency domain are

given in the following. It is an efficient strategy to disassemble

the wavefield in each layer into up and down going waves and

to stack the effect of reflection and transmission as waves

propagate, in a similar manner to that proposed by Kennett

(1983), who treats the reflection and transmission coefficients

matrices in the frequency–wavenumber domain. Takenaka &

Fujiwara (1994) have applied a similar idea to an irregular

structure in terms of the boundary element method in the direct

formulation. Cheng (1990, 1995, 1996) developed the approach

called the method of global generalized reflection and trans-

mission matrices in the frequency–wavenumber domain for

wave propagation in irregularly stratified media. There, the
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disassembling of the wavefield into up and down going plane

waves is also employed. It is expected that formulation of

reflection and transmission is possible in terms of I-BEM in the

space-frequency domain, because up and down going waves are

givn independently by the boundary integral of the product of

Green’s function matrix and the vectors of the imaginary forces

distributed along the interfaces (Sánchez-Sesma & Campillo

1991). Note that this Green’s function corresponds to the wave

function in the theory of reflection and transmission matrices

method (abbreviated to R/T-MM) for horizontally stratified

media, and that the distributed force vector corresponds to the

wave vector (Kennett 1983). This implies that the reflection and

transmission operators may be defined by the relation between

these distributed force vectors.

This paper is aimed at showing the procedure to define

these reflection and transmission operators for an irregular

interface in the space–frequency domain, and to show a good

approximation to estimate the reflected and transmitted waves

with examples of application. Calculation of a complete seismo-

gram including surface waves, however, is not included in the

scope of this paper. The benefit given by these operators is

the separation of component waves, e.g., those corresponding

to each reflection in reverberation.

2 APPL ICAT ION OF I - BEM IN THE
SPACE–FREQUENCY DOMAIN TO
HANDLE REFLECT ION AND
TRANSMISS ION OPERATORS

Consider the irregularly stratified media as shown in Fig. 1(a).

For the stack of L layers, the free surface is named (0)-th

interface and the deeper interface has the bigger number. The

shallowest layer is named (1)-st layer and the deeper layer has the

bigger number. The underlying half space, i.e. the deepest layer

is named (L+1)-th layer. In fact (l+1)-th layer is sandwiched

between (l)-th and (l+1)-th interfaces.

Hereafter, the symbols Gl
lk,la(x; j) and Hl

lk,la(x; j) are used

for the displacement and traction Green’s function tensors for

the full space in (l)-th layer, respectively, the source of which

is located at j on (lk)-th interface and the receiver of which is

located at x on (lk)-th interface. The distributed force vectors

considered along the upper and lower faces of the (l)-th inter-

face are denoted by the symbols ��lðmÞ and �lðmÞ, respectively.

2.1 Up and down going waves in terms of the I-BEM

The displacement and traction wavefield in (l+1)-th layer

between (l)- and (l+1)-interfaces are given as follows in terms

of I-BEM (Fig. 1a),

ulþ1
l ðxÞ ¼

ð
Slþ1

Glþ1
l,lþ1ðx; mÞ ��lþ1ðmÞdmþ

ð
Sl

Glþ1
l,l ðx; mÞ�lðmÞdm ,

tlþ1
l ðxÞ ¼

ð
Slþ1

Hlþ1
l,lþ1ðx; mÞ ��lþ1ðmÞdmþ

ð
Sl

Hlþ1
l,l ðx; mÞ�lðmÞdm ,

8>>><
>>>:

(1)

Note that these boundary integrals have to be performed all

along the infinitely spread interfaces.

Suppose that these boundary integrals can be discretized,

e.g. as described in Sánchez-Sesma & Campillo (1991) for

in-plane problems or by Yokoi & Sánchez-Sesma (1998) for 3-D

problems. The symbol n m, denotes the product with Green’s

function tensor for the full space and integration along the

infinitely long boundaries in discrete form, eq. (1) is written as

follows.

ulþ1
l

tlþ1
l

2
4

3
5 ¼

Glþ1
l,lþ1

Hlþ1
l,lþ1

* +
�̂

lþ1 þ
Glþ1

l,l

Hlþ1
l,l

* +
�̂

l
(2)

The symbols �̂
lðmÞ and �̂

lðmÞ indicate the force vectors, i.e.

the series of the distributed force vectors ��lðmÞ and �lðmÞ that

correspond to discretized segments of (l)-th interface spread

away to infinity. Therefore, these are column vectors with an

infinite number of elements. Note that the first term of the right

side of eq. (2) corresponds to the contribution from the lower

interface that is composed mostly of up going waves. The

second term corresponds to the contribution from the upper

interface that is composed mostly of down going waves.

It might be better to use the term ‘contribution of the

upper /lower interface’ in order to maintain the accuracy of

the description. The upper interface of a layer can emit up

going wave, the lower down going wave if their shape is abrupt

enough. This situation is possible because I-BEM does not

put any limitation on the shape of interfaces. In this paper,

however, the term ‘up/down going wave’, is used instead, for

simplicity of expression and for the emphasis of the similarity

of the theory for irregular interfaces to that for a flat interface.

As shown here, the I-BEM is originally based on the

separation of up and down going waves. These are the sets

of contribution from distributed forces, that are described by

Green’s functions for the full space.

2.2 Reference solution

The boundary methods based on the Green’s functions for half

space and layered media given in the wavenumber domain can

be applied directly to infinitely spread interfaces and require

the integral over the wavenumber (b ( )dk, where k denotes the

wavenumber) (e.g. Campillo 1987; Kim & Papageorgiou 1993

and Hisada & Aki & Teng 1993). In contrast those based on the

Green’s functions for the full space given in the space domain

can handle only finite interfaces and does not need the integral

over the wavenumber. After Fujiwara & Takenaka (1993)

introduced the basic idea itself, the technique in I-BEM that

can handle infinitely spread interfaces is introduced by Yokoi &

(a) (b)
Figure 1. (a) Separation of up- and down going waves in irregularly

stratified media in terms of I-BEM. (b) The corresponding horizontally

stratified media for the reference solution. Note that the interfaces for

both media are spread infinitely long. This is why the symbols of the

distributed force vectors �̂
lz1

mð Þ, �̂l
mð Þ, �̂lz1

and �̂
l

are used.
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Takenaka (1995) for the 2-D free surface and by Yokoi &

Sánchez-Sesma (1998) for a 3-D surface. The reference solutions

for the flat free surface in these cases are calculated by I-BEM

in the wavenumber domain. Yokoi (1996) has applied this tech-

nique to irregularly stratified media with the reference solution

computed by the Thomson–Haskell matrix method (Thomson

1950; Haskell 1953).

Consider a horizontally stratified media where the material

properties of each layer are the same as those of the irregularly

layered media shown in Fig. 1(b). The wavefield in the hori-

zontally stratified media is called the reference solution and can

be obtained in the wavenumber domain by such methods as the

Thomson–Haskell matrix method, R/T-MM (Kennett 1983),

the method given by Luco & Apsel (1983) and so on.

Displacement and traction vectors of the down going wave-

field observed at (lk)-th interface in the (l)-th layer is denoted

ðull0 ðxÞ, tll0 ðxÞÞ and that of up going wave ð�ull0 ðxÞ, �tll0 ðxÞÞ for the

reference solution. These waves also have their corresponding

forces distributed along the horizontal plane interfaces. The

symbols �tlðmÞ and tlðmÞ are used for these force vectors along

upper and lower faces of (l)-th interface. The wavefield in

(l+1)-th layer is described by the following.

�ulþ1
l ðxÞ þ ulþ1

l ðxÞ ¼
ð
Slþ1

0

Glþ1
l,lþ1ðx; mÞ�t

lþ1ðmÞdm

þ
ð
Sl

0

Glþ1
l,l ðx; mÞtlðmÞdm ,

�tlþ1
l ðxÞ þ tlþ1

l ðxÞ ¼
ð
Slþ1

0

Hlþ1
l,lþ1ðx; mÞ�t

lþ1ðmÞdm

þ
ð
Sl

0

Hlþ1
l,l ðx; mÞtlðmÞdm :

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(3)

The symbol Sl
0 denotes (l)-th flat interface that is infinitely

spread. Note that these boundary integrals also have to be

performed all along the infinitely spread interfaces. The first

terms in the both sides correspond to up going wave and the

second ones to down going wave, independent of each other.

Eq. (3) suggests the following physical insight. The up going

wave can be given by summing up Gl+1
l,l+1(x; j), Hl+1

l,l+1(x; j), i.e.

the contribution of the point sources distributed along the

upper face of the lower interface, with the weight coefficient
�tlþ1ðmÞ. A similar consideration is given for the down going wave

with the second term of the right side. In other words I-BEM

is based on the decomposition of the wavefield into two sets

of contributions of point sources, one is up going and another

is down going waves. R/T-MM (Kennett 1983) is also based

on the separation of up and down going waves, but these are

decomposed into plane waves in the frequency–wavenumber

domain, that is, wave functions with coefficients called wave

vectors. Obviously, Green’s functions in I-BEM correspond to

the wave functions in R/T-MM and the distributed forces to the

wave vectors. Hereafter, it is shown that it is possible to make

use of the distributed forces in I-BEM in a similar way as the

wave vectors in R/T-MM, in spite of the difference in the ways

the wavefield is decomposed.

Separate the interface Sl in eq. (1) into the finite part around

the irregularity, Si
l, which can be handled in numerical calcu-

lation directly, and the infinitely spread part, Se
l (Fig. 2a).

Separate the infinitely spread flat interface So
l in eq. (3) into the

finite part, Sf
l, and the rest, Se

l , spread infinitely (Fig. 2b). It is

assumed that the infinite part of the interface Sl in eq. (1) is the

same as Se
l in eq. (3), because localized irregularity is usually

considered. Then, the following approximation is employed, as

shown clearly, e.g. by Yokoi & Sánchez-Sesma (1998),

��lþ1ðmÞ&�tlþ1ðmÞ, m [Slþ1
e , �lðmÞ&tlðmÞ, m [Sl

e (4)

This approximation and eq. (3) give the following.ð
Sl
e

Glþ1
l,l ðx; mÞ�lðmÞdm

&
ð
Sl
e

Glþ1
l,l ðx; mÞtlðmÞdm

¼ ulþ1
l ðxÞ �

ð
Sl
f

Glþ1
l,l ðx; mÞtlðmÞdm ,

ð
Slþ1
e

Glþ1
l,lþ1ðx; mÞ ��lþ1ðmÞdm

&
ð
Slþ1
e

Glþ1
l,lþ1ðx; mÞ�t

lþ1ðmÞdm

¼ �ulþ1
l ðxÞ �

ð
Slþ1
f

Glþ1
l,lþ1ðx; mÞ�t

lþ1ðmÞdm ,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
ð
Sl
e

Hlþ1
l,l ðx; mÞ�lðmÞdm

&
ð
Sl
e

Hlþ1
l,l ðx; mÞtlðmÞdm

¼ tlþ1
l ðxÞ �

ð
Sl
f

Hlþ1
l,l ðx; mÞtlðmÞdm ,

ð
Slþ1
e

Hlþ1
l,lþ1ðx; mÞ ��lþ1ðmÞdm

&
ð
Slþ1
e

Hlþ1
l,lþ1ðx; mÞ�t

lþ1ðmÞdm

¼ �tlþ1
l ðxÞ �

ð
Slþ1
f

Glþ1
l,lþ1ðx; mÞ�t

lþ1ðmÞdm :

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(5)

These allow handling eq. (1) in numerical calculation, because

the integrals along the infinitely spread parts of the interfaces

Se
l and Se

l+1 can be approximated by the known vectors and

(a) (b)
Figure 2. Division of interfaces for the wavefield in irregularly

stratified media (a) and in the horizontally stratified ones for the

reference solution (b). The contribution of the far part of interface Se
l

for irregularly stratified media is estimated approximately by using the

reference solution. The interfaces handled in the boundary integral

equation Sl
i and Sl

f are finite. This is why the symbols �
lz1

mð Þ, �l
mð Þ,

�
lz1

and �l are used for the distributed force vectors.
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the integrals over the finite parts, Sf
l and Sf

l+1. Following the

notation used in eq. (2) gives the discrete form of eq. (5) as

follows.

Glþ1
l,l

Hlþ1
l,l

* +
�̂

l

e&
Glþ1

l,l

Hlþ1
l,l

* +
�̂

l

e ¼
ulþ1
l

tlþ1
l

2
4

3
5� Glþ1

l,l

Hlþ1
l,l

2
4

3
5�l ,

Glþ1
l,lþ1

Hlþ1
l,lþ1

* +
�̂

lþ1

e &
Glþ1

l,lþ1

Hlþ1
l,lþ1

* +
�̂

lþ1

e ¼
�ulþ1
l

�tlþ1
l

2
4

3
5� Glþ1

l,lþ1

Hlþ1
l,lþ1

2
4

3
5�lþ1

,

8>>>>>>>><
>>>>>>>>:

(6)

where the symbols �̂
l

e and �̂
lþ1

e denote the infinitely long

vectors composed of the forces �lðmÞ and �lþ1ðmÞ distributed

along the lower face of Se
l and the upper face of Se

l+1,

respectively, that correspond to the wavefield in the irregularly

stratified media, whereas the symbols �̂
l

e and �̂
lþ1

e denote those

of the reference solution that are composed of łlðmÞ and
�łlþ1ðmÞ distributed along the lower face of Se

l and the upper

face of Se
l+1, respectively. The symbols �

l
and �l are used for

the force vectors, i.e. the finite series of the distributed force

vectors �tlðmÞ and tlðmÞ that correspond to discretized segments

of (l)-th flat interface Sf
l . Note that all terms in the right side

of eq. (6) are of the reference solution, known and composed of

the vectors and matrix of finite size. This is an approximation

to estimate the contribution from the infinitely spread part of

the interfaces Se
l and Se

l+1 by the calculation with vectors and

matrices of finite size.

The approximation in eq. (6) can suppress the non-physical

waves, i.e. the artificial noises that appear with substantial ampli-

tude in case of simple truncation of interfaces. The efficiency

of suppression is discussed for inplane problems by Yokoi &

Takenaka (1995) and for 3-D ones by Yokoi & Sánchez-Sesma

(1998). The use of the reference solution allows using modelled

interfaces as short as a few tens per cent longer than the length

of irregularity considered as a good approximation.

Besides the problem of infinitely spread interface, eqs (1) and

(5) have the problem of singularity in the boundary integrals.

This difficulty, however, has been solved by Sánchez-Sesma &

Campillo (1991) for in-plane problems, and by Sánchez-Sesma

& Luzón (1995) for 3-D, using the analytical expressions of

Green’s functions of the full space.

The approximation in eq. (6) is used in the next Section in

order to turn the theoretical consideration of wave reflection

and transmission into practical numerical calculation.

2.3 Reflection and transmission operators for an
irregular interface

Pay attention to (l)-th irregular interface (l)-th and (l+1)-th

layers and the wavefield in these two layers in irregularly

stratified media in order to obtain the adequate definition of

reflection and transmission operators for irregular interface.

2.3.1 Upcoming incident wave to an interface

Consider an upcoming incident wave to the (l)-th interface

from beneath (Fig. 3a). The reflection and transmission at

(l)-th interface are taken into account, but the reflection at the

(lx1)-th interface of the transmitted wave is neglected here.

The reflection at (l+1)-th interface of the reflected wave is

also neglected. This means that we concentrate on the wave

phenomena occurring at the (l)-th interface.

The boundary conditions along the (l)-th interface are those

of continuity of both displacement and traction and they can

be formulated as follows. The wavefield in (l+1)-th layer is

the sum of the contribution from the distributed force along the

upper face of (l+1)-th interface ��lþ1ðmÞ and that of the distri-

buted force along the lower face of the (l)-th interface �lðmÞ.
Whereas the wavefield in the (l)-th layer is the contribution

from the distributed force along the upper face of the (l)-th

interface ��lðmÞ. Therefore, the following boundary integral

equations are obtained,ð
Slþ1

Glþ1
l,lþ1ðx; mÞ ��lþ1ðmÞdmþ

ð
Sl

Glþ1
l,l ðx; mÞ�lðmÞdm

¼
ð
Sl

Gl
l,lðx; mÞ ��lðmÞdm ,

ð
Slþ1

Hlþ1
l,lþ1ðx; mÞ ��lþ1ðmÞdmþ

ð
Sl

Hlþ1
l,l ðx; mÞ�lðmÞdm

¼
ð
Sl

Hl
l,lðx; mÞ ��lðmÞdm ,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

for x [Sl

(7)

The first term of the left side of eq. (7) corresponds to incident

wave, the second term to reflected wave and the right side to

transmitted wave. By using the expression for the operator of

boundary integral along the infinitely spread interfaces, eq. (7)

is discretized as follows,

Glþ1
l,lþ1

Hlþ1
l,lþ1

* +
�̂

lþ1 þ
Glþ1

l,l

Hlþ1
l,l

* +
�̂l ¼

Gl
l,l

Hl
l,l

* +
�̂

l
or

Gl
l,l �Glþ1

l,l

Hl
l,l �Hlþ1

i,l

* +
�̂

l

�̂l

* +
¼

Glþ1
l,lþ1

Hlþ1
l,lþ1

* +
�̂

lþ1

(8)

The two infinitely long force vectors �̂
l , �̂

l
are combined

together in the last abstract expression. The unknowns �̂
l , �̂

l

might be given explicitly, if there would be an inverse operator

to the operator of

Gl
l, l �Glþ1

l, l

Hl
l, l �Hlþ1

l, l

* +
:

Unfortunately, this does not exist. These vectors might be given

as the results of application of some operators to the force

vector �̂
lþ1

that represents the incident wave. These operators

may be able to play the role of the reflection and transmission

(a) (b)
Figure 3. Configuration for the reflection and transmission at (l)-th

interface for upcoming wave with consideration on the reference

solution. The incident wave comes from (l+1)-th interface. The

reflection at (l+1)-th interface for down going wave is neglected.
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operators. Therefore, the reflection and transmission operators

for the upcoming incident wave SRU
l,lþ1T and STU

l,lþ1T,

respectively, are defined by the relation of infinitely long

force vectors �̂
l , �̂

l
and �̂

lþ1
.

�̂
l ¼ SRU

l,lþ1T�̂
lþ1

, �̂
l ¼ STU

l,lþ1T�̂
lþ1

: (9)

The subscript l and l+1 of the operators denote the reflection

and transmission between (l)-th and (l+1)-th layers. It might

be easy to handle the reflected and transmitted waves directly,

if eq. (8) could be solved directly by numerical calculation.

Unfortunately, this is not possible, because eq. (8) is composed

of vectors and matrices of infinite size. This difficulty, how-

ever, can be resolved by the approximation in eq. (6) using

the reference solution that has been explained in the previous

Section.

Note that our purpose is neither to calculate the values of �̂
l

and �̂
l
, nor to formulate SRU

l,lþ1T and STU
l,lþ1T explicitly, but to

handle the reflected and transmitted wavefields. Therefore, a

way to calculate displacement and traction of the reflected wave

Glþ1
l,l

Hlþ1
l,l

* +
�̂

l

and those of the transmitted wave

Gl
l,l

Hl
l,l

* +
�̂

l
:

is required.

As it is not possible to handle infinitely spread interfaces in

numerical calculation, the interface Sl is divided into Si
l, which

can be discretized and handled in computation, and the rest of

the interface Sl
e (Fig. 3a). Then, eq. (8) is changed as follows.

Glþ1
l,lþ1

Hlþ1
l,lþ1

2
4

3
5�lþ1 þ

Glþ1
l,lþ1

Hlþ1
l,lþ1

* +
�̂

lþ1

e

8<
:

9=
;

þ
Glþ1

l,l

Hlþ1
l,l

2
4

3
5�l þ

Glþ1
l,l

Hlþ1
l,l

* +
�̂

l

e

8<
:

9=
;

¼
Gl

l,l

Hl
l,l

2
4

3
5�l þ

Gl
l,l

Hl
l,l

* +
�̂

l

e

8<
:

9=
; : (10)

The symbols �
l

and �l are used for the force vectors, i.e. the

finite series of the distributed force vectors ��lðmÞ and �lðmÞ that

correspond to discretized segments of (l)-th limited irregular

interface Si
l. The first terms of each { } are the contributions

from Si
l, whereas the second ones those from the infinitely

spread outer part Se
l .

Moving all known variables into the right side, the following

simultaneous linear equations are obtained.

Gl
l,l

Hl
l,l

�Glþ1
l,l

�Hlþ1
l,l

2
4

3
5 �

l

�l

2
4

3
5 ¼

Glþ1
l,lþ1

Hlþ1
l,lþ1

2
4

3
5�lþ1 þ

Glþ1
l,lþ1

Hlþ1
l,lþ1

* +
�̂

lþ1

e

þ
Glþ1

l,l

Hlþ1
l,l

* +
�̂

l

e �
Gl

l,l

Hl
l,l

* +
�̂

l

e : (11)

The easiest way to solve these equations is to neglect the

last three terms of the right member that correspond to the

infinitely spread part of interface. This, however, may cause a

substantial distortion of the calculated wavefield as mentioned

above. Following the approximation in eq. (6), these three

terms can be substituted with the known ones.
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A :

(12)

Note that all terms of the right member are known or given

and that all vectors and matrices are of finite size in eq. (12).

Therefore, numerical calculation can handle these simultaneous

linear equations.

By using the solution of eq. (12) �
l

and �l , the reflected and

transmitted wavefield can be numerically estimated as follows.

Glþ1
l,l

Hlþ1
l,l

* +
�̂

l ¼
Glþ1

l,l

Hlþ1
l,l
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SRU
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lþ1
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Glþ1
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2
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5�l ,

Gl
l,l

Hl
l,l

* +
�̂

l ¼
Gl

l,l

Hl
l,l

* +
STU

l,lþ1T�̂
lþ1

&
�ull

�tll

2
4

3
5�

Gl
l,l

Hl
l,l

2
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5�l þ

Gl
l,l

Hl
l,l

2
4

3
5�l

:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

(13)

The left members show displacement and traction vectors along

(l)-th interface due to the contribution of the force distri-

buted along the lower and upper faces of (l)-th interface �̂
l

and �̂
l
, that correspond to reflected and transmitted waves,

respectively. The middle ones show that the force distributed

along upper face of (l+1)-th interface �̂
lþ1

is the cause of these

displacement and traction vectors via reflection and transmission

at (l)-th interface. Only the displacement and traction vectors in

the left members are used in the next step of computation.

Therefore, it is neither necessary to obtain the values of �̂
l

and

�̂
l
, nor to formulate explicitly. Neither, explicit formulation

for the operators of reflection and transmission. The right

members show a practical way to estimate approximately these

displacement and traction vectors, based on eq. (6).

2.3.2 Down coming incident wave to an interface

It is obvious that this case can be considered by turning Fig. 3

(a) and (b) upside down and revising the notation used in the

previous Section.
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Define the reflection and transmission operators for the

down coming incident wave, STD
l,lþ1T, SR

D
l,lþ1T, respectively, by

the relation of infinitely long force vectors.

�̂
l ¼ SRD

l,lþ1T�̂
l�1

, �̂
l ¼ STD

l,lþ1T�̂
l�1

: (14)

The subscripts l and l+1 denote the reflection and transmission

between (l)-th and (l+1)-th layers.

A similar consideration with the reference solution gives the

simultaneous linear equations that we have to solve for this

case as follows.
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By using the solution of eq. (15), the reflected and transmitted

wavefield can be calculated as follows.
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Glþ1

l,l
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8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

(16)

�
l

and �l are parts of the solution of eq. (15). The left side of

both formulae show displacement and traction vectors along

(l)-th interface due to the contribution of the force distributed

along the upper and lower face of (l)-th interface �̂
l

and �̂
l
,

that correspond to reflected and transmitted waves, respectively.

The middle ones show that the force distributed along lower

face of (lx1)-th interface �̂
l�1

is the cause of these displace-

ment and traction vectors. The right ones show a practical way

to estimate approximately these displacement and traction

vectors, based on eq. (6).

The reflection and transmission operators for an interface in

the frequency–space domain for up- and down-coming incident

wave, SRU
l,lþ1T, STU

l,lþ1T, ST
D
l,lþ1T and SRD

l,lþ1T are defined in

terms of I-BEM. Reflection and transmission operators for a

layer are discussed in the next Section by making use of these

four operators for an interface.

2.4 Reflection and transmission operators for a layer
sandwiched between irregular interfaces

Pay attention to (l)-th layer in irregularly stratified media.

(l)-th layer is sandwiched between (lx1)-th and (l)-th interfaces.

Hereafter, the description for the method of using the reference

solution is omitted in the description and also in figures, except

for the case of the surface reflection, because eqs (13) and (16)

have shown the method sufficiently. Namely, simultaneous linear

eqs (12) and (15) have to be solved for reflection /transmission

at each interface, as the wave goes by.

2.4.1 Upcoming incident wave to a layer

Consider the reflection and transmission between (lx1)-th and

(l+1)-th layers due to up and down coming incident wave as

shown in Fig. 4. Define the reflection operator for the upcoming

incident wave and the reflected wave in (l+1)-th layer, and

transmission operator for the incident wave and the trans-

mitted wave in (lx1)-th layer (Fig. 5) by the relation of the

forces distributed along the infinitely spread irregular interfaces

as follows,

�̂
l ¼ SRU

l�1,lþ1T�̂
lþ1

, �̂
l�1 ¼ STU

l�1,lþ1T�̂
lþ1

: (17)

Figure 4. Configuration for the reflection and transmission for (l)-th

layer for upcoming incident wave. The incident wave comes up from

(l+1)-th interfaces. The reverberation in (l)-th layer corresponds to the

ascending polynomials of operators in eq. (19).

Figure 5. Configuration for the reflection and transmission for the

stacked layers between (l)-th and (L)-th layer for upcoming incident

wave. The incident wave comes up from (l+1)-th interface.
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Consider the process of wave propagation in the (l)-th layer.

The wave transmitted at the (l)-th interface penetrates into

(l)-th layer. A part of this wave is transmitted at the (lx1)-th

interface and penetrates into (lx1)-th layer. By using reflection

and transmission operators for an interface defined above, this

double transmission is described as follows.

STU
l�1,lTST

U
l,lþ1T�̂

lþ1
: (18.1)

The rest is reflected at the (lx1)-th interface, propagates

downward, reflected again at the (l)-th interface, propagates

upward and is transmitted at the (lx1)-th interface. This wave

propagation is described as follows.

STU
l�1,lTSR

D
l,lþ1TSR

U
l�1,lTST

U
l,lþ1T�̂

lþ1
: (18.2)

The wave that is reflected again in (l)-th layer is described as

follows.

STU
l�1,lTSR

D
l,lþ1TSR

U
l�1,lTSR

D
l,lþ1TSR

U
l�1,lTST

U
l,lþ1T�̂

lþ1
: (18.3)

The wave propagating upward in the (lx1)-th layer can be

evaluated by the sum of these waves. The wave transmitted into

the (l+1)-th layer can be evaluated in a similar way.

Consideration of the multiple reflection in (l)-th layer gives

the following relations.

�̂
l�1 ¼ STU

l�1,lTfSITþ SRD
l,lþ1TSR

U
l�1,lTþ ðSRD

l,lþ1TSR
U
l�1,lTÞ

2

þðSRD
l,lþ1TSR

U
l�1,lTÞ

3 þ � � �gSTU
l,lþ1T�̂

lþ1

¼ STU
l�1,lTðSIT� SRD

l,lþ1TSR
U
l�1,lTÞ

�1STU
l,lþ1T�̂

lþ1
,

�̂
l ¼ SRU

l,lþ1T�̂
lþ1 þ STD

l,lþ1TSR
U
l�1,lT

|fSITþ SRD
l,lþ1TSR

U
l�1,lTþ ðSRD

l,lþ1TSR
U
l�1,lTÞ

2

þðSRD
l,lþ1TSR

U
l�1,lTÞ

3 þ � � �gSTU
l,lþ1T�̂

lþ1

¼ fSRU
l,lþ1Tþ STD

l,lþ1TSR
U
l�1,lT

|ðSIT� SRD
l,lþ1TSR

U
l�1,lTÞ

�1STU
l,lþ1Tg�̂

lþ1
:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

(19)

A conventional expression is used for the ascending poly-

nomial series in the right side of both formulae just to make

the expressions shorter. The symbol nIm denotes the identity

operator. Actually, it is not possible to obtain an explicit

formulation of this inverse operator. In practice, calculation is

conducted by using the ascending polynomial series.

Eq. (19) gives the following relation of the reflection and

transmission operators.

STU
l�1,lþ1T¼STU

l�1,lTðSIT� SRD
l,lþ1TSR

U
l�1,lTÞ

�1STU
l,lþ1T ,

SRU
l�1,lþ1T¼SRU

l,lþ1Tþ STD
l,lþ1TSR

U
l�1,lT

|ðSIT� SRD
l,lþ1TSR

U
l�1,lTÞ

�1STU
l,lþ1T :

(20)

8>>>>><
>>>>>:
2.4.2 Down coming incident wave to a layer

It is obvious that this case can be considered by turning Fig. 4

upside down and revising the notation used in the previous

Section.

The definition of the operators is given by the following.

�̂
l ¼ SRD

l�1,lþ1T�̂
l�1

, �̂
lþ1 ¼ STD

l�1,lþ1T�̂
l�1

: (21)

The following relation is given by a similar process to that

described by eqs (19) and (20).

SRD
l�1,lþ1T ¼ SRD

l�1,lTþ STU
l�1,lTSR

D
l,lþ1T

|ðSIT� SRU
l�1,lTSR

D
l,lþ1TÞ

�1STD
l�1,lT,

STD
l�1,lþ1T ¼ STD

l,lþ1TðSIT� SRU
l�1,lTSR

D
l,lþ1TÞ

�1STD
l�1,lT ,

8>>>><
>>>>:

(22)

Note that eqs (20) and (22) have similar structure as those of

Kennett (1983) for horizontally stratified media.

2.5 Reflection and transmission for stacked layers

Suppose that the reflection and transmission operators are

already defined for irregularly stratified media between (l)-th

and (L)-th interfaces, where L denotes the total number of

layers except the deepest half space. Therefore, the upper layer

of these media is (l)-th layer, and the lower one is the deepest

half space, i.e. (L+1)-th layer. Therefore, for upcoming incident

wave, the following operators are defined:

�̂
L ¼ SRU

l,Lþ1T�̂
Lþ1

, �̂
l ¼ STU

l,Lþ1T�̂
Lþ1

: (23)

and for down coming incident wave,

�̂
l ¼ SRD

l,Lþ1T�̂
l�1

, �̂
L ¼ STD

l,Lþ1T�̂
l�1

: (24)

The symbol �̂
Lþ1

just represents the real source located in the

deepest layer. The way to handle its contribution is discussed

below.

The reflection and transmission operators for (lx1)-th

interface are defined eqs (9) and (14), i.e.

�̂
l�1 ¼ SRU

l�1,lT�̂
l
,

�̂
l�1 ¼ STU

l�1,lT�̂
l
,

8><
>:

�̂
l�1 ¼ SRD

l�1,lT�̂
l�2

,

�̂
l�1 ¼ STD

l�1,lT�̂
l�2

:

8><
>: (25)

2.5.1 Upcoming incident wave to stacked layers

Consider the stratified media between (lx1)-th and (L)-th inter-

faces and the upcoming incident wave represented by �̂
Lþ1

(Fig. 5). Define the reflection and transmission operators for

the layers between (lx1)-th layer and (L+1)-th layer in the

following way.

�̂
L ¼ SRU

l�1,Lþ1T�̂
Lþ1

, �̂
l�1 ¼ STU

l�1,Lþ1T�̂
Lþ1

: (26)
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Consideration of the multiple reflections in (l)-th layer gives the

following relation.

�̂
l�1 ¼ STU

l�1,lTfSITþ SRD
l,Lþ1TSR

U
l�1,lTðSRD

l,Lþ1TSR
U
l�1,lTÞ

2

þðSRD
l,Lþ1TSR

U
l�1,lTÞ

3 þ � � �gSTU
l,Lþ1T�̂

Lþ1

¼ STU
l�1,lTðSIT� SRD

l,Lþ1TSR
U
l�1,lTÞ

�1STU
l,Lþ1T�̂

Lþ1
,

�̂
l ¼ SRU

l,Lþ1T�̂
Lþ1 þ STD

l,Lþ1TSR
U
l�1,lT

|fSITþ SRD
l,Lþ1TSR

U
l�1,lTþ ðSRD

l,Lþ1TSR
U
l�1,lTÞ

2

þðSRD
l,Lþ1TSR

U
l�1,lTÞ

3 þ � � �gSTU
l,Lþ1T�̂

Lþ1

¼ fSRU
l,Lþ1Tþ STD

l,Lþ1TSR
U
l�1,lT

|ðSIT� SRD
l,Lþ1TSR

U
l�1,lTÞ

�1STU
l,Lþ1Tg�̂

Lþ1
:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

(27)

This gives the following relation of reflection and transmission

operator.

SRU
l�1,Lþ1T ¼ SRU

l,Lþ1Tþ STD
l,Lþ1TSR

U
l�1,lT

|ðSIT� SRD
l,Lþ1TSR

U
l�1,lTÞ

�1STU
l,Lþ1T,

STU
l�1,Lþ1T ¼ STU

l�1,lTðSIT� SRD
l,Lþ1TSR

U
l�1,lTÞ

�1STU
l,Lþ1T :

8>>>><
>>>>:

(28)

2.5.2 Down coming incident wave to stacked layers

It is obvious that this case can be considered by turning Fig. 5

upside down and revising the notation used in the previous

section. The definition of operators is given by,

�̂
l�1 ¼ SRD

l�1,Lþ1T�̂
l�2

, �̂
L ¼ STD

l�1,Lþ1T�̂
l�2

: (29)

The following relation of reflection and transmission operators

for stacked layers is obtained by a similar process as that used

in eqs (27) and (28),

SRD
l�1,Lþ1T ¼ SRD

l�1,lTþ STU
l�1,lTSR

D
l,Lþ1T

|ðSIT� SRU
l�1,lTSR

D
l,Lþ1TÞ

�1STD
l�1,lT ,

STD
l�1,Lþ1T ¼ STD

l,Lþ1TðSIT� SRU
l�1,lTSR

D
l,Lþ1TÞ

�1STD
l�1,lT :

8>>>><
>>>>:

(30)

2.6 Reflection at the irregular free surface

Suppose that L layers are already stacked on the half space.

The next step is to install the free surface on them by

considering the wave reflected at the surface.

The traction free condition along the free surface is given by

the following boundary integral equation that means the sum

of the traction due to incident wave and that due to reflected

wave is equal to zero at the free surface (Fig. 6).ð
S1

H1
0,1 x; mð Þ ��1 mð Þdm

þ
ð
S0

H1
0,0 x; mð Þ�0 mð Þdm ¼ 0 for x [S0 : (31)

By using the integral operator, this is written as follows,

SH1
0,1T�̂

1 þ SH1
0,0T�̂

0 ¼ 0 for x [S0 : (32)

Define the reflection operator at the surface as

�̂
0 ¼ SRU

0,1T�̂
1
: (33)

The approximation using the reference solution, i.e., that given

by eq. (16), with l equal to zero, as written in Section 2.3.1,

gives the following simultaneous linear equations

H1
0,0�

0 ¼ �ð�t10 þH1
0,1�

1 �H1
0,1�

1Þ � ðt10 �H1
0,0�

0Þ : (34)

By using this solution, the wavefield reflected at the surface can

be numerically estimated as follows,

G1
0,0

H1
0,0

* +
�̂

0 ¼
G1

0,0

H1
0,0

* +
SRU

0,1T�̂
1

&
u1

0

t10

" #
�

G1
0,0

H1
0,0

2
4

3
5�0 þ

G1
0,0

H1
0,0

2
4

3
5�0 : (35)

The left side shows displacement and traction vectors in the

shallowest layer due to the contribution of the force distributed

along the lower face of the surface, i.e., the wave reflected at the

surface. The middle one shows that the force distributed along

the upper face of (1)-th interface is the cause of these displace-

ment and traction vectors. Only these vectors are used in the

next step of computation. The right side shows a practical way

to calculate them. The first and second terms correspond to the

contribution from Se
0, and the third that from Si

0.

(a)

(b)
Figure 6. Configuration for the reflection at the free surface (a) with

consideration on the reference solution (b). The incident wave comes up

from (1)-th interface.
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Consideration of the multiple reflections in the shallowest

layer in the similar way as eqs (18.1), (18.2), and (18.3) give the

following (Fig. 7),

�̂
1 ¼ STU

1,Lþ1T�̂
Lþ1 þ SRD

1,Lþ1TSR
U
0,1TST

U
1,Lþ1T�̂

Lþ1

þ SRD
1,Lþ1TSR

U
0,1TSR

D
1,Lþ1TSR

U
0,1TST

U
1,Lþ1T�̂

Lþ1 þ � � �

¼ ðSIT� SRD
1,Lþ1TSR

U
0,1TÞ

�1STU
1,Lþ1T�̂

Lþ1
: (36)

Eqs (33) and (36) give the following for displacement at the free

surface,

u1
0 ¼ SG1

0,0T�̂
0 þ SG1

0,1T�̂
1 ¼ ðSG1

0,0TSR
U
0,1Tþ SG1

0,1TÞ�̂
1

¼ ðSG1
0,0TSR

U
0,1Tþ SG1

0,1TÞðSIT� SRD
1,Lþ1TSR

U
0,1TÞ

�1

|STU
1,Lþ1T�̂

Lþ1
: (37)

The symbol �̂
Lþ1

represents the contribution of the real source

located at (L+1)-th layer.

2.7 Contribution of the real source in the deepest layer

In the consideration described above, the real source of the

upcoming wave in (L+1)-th layer is represented by �̂
Lþ1

that

implies the image of an additional interface in the deepest

half space. It is, however, easier to give the way to handle

the contribution from the real source rather than to give an

equivalent force distribution along (L+1)-th interface to any

type of the real source. Hereafter ½ �uLz1
INC ðxÞ, �tLz1

INC ðxÞ � denotes

the real source contribution to the wavefield in (L+1)-th layer.

Consider the upcoming incident wave to the (L)-th inter-

face from beneath (Fig. 8). The reflection and transmission

at the interface are taken into account, but the reflection at

the (L–1)-th interface of the transmitted wave is omitted here.

This configuration can be obtained by replacing l with L in the

description of Section 2.3.1.

The boundary condition along the (L)-th interface is given

by replacement of the first terms of the left member of eq. (7)

with �uLþ1
INC xð Þ and �tLþ1

INC xð Þ. Similar replacement of the terms

in eq. (8) with

�uLz1
INC

�tLz1
INC

2
4

3
5

gives the expression for the operators.

Then, the following simultaneous linear equations are obtained.

GL
L,L �GLþ1

L

HL
L,L �HLþ1

L

2
4

3
5 �

L

�L

2
4

3
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�tLþ1
INC

2
4

3
5þ uLþ1
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L

2
4

3
5� GLþ1

L

HLþ1
L

2
4

3
5�L

0
@

1
A

�
�uLL

�tLL

" #
�

GL
L,L

HL
L,L

2
4

3
5�L

0
@

1
A : (38)

The reflection and transmission operators for the upcoming

wave SRU
L,Lþ1T and STU

L,Lþ1T, respectively, are defined by the

relation of infinitely long force vectors.

�̂
L ¼ SRU

L,Lþ1T�̂
Lþ1

, �̂
L ¼ STU

L,Lþ1T�̂
Lþ1

: (39)

By using the solution of eq. (38), the reflected and transmitted

wavefield can be numerically estimated as follows,
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L,L

HLþ1
L,L

* +
�̂

L ¼
GLþ1

L,L

HLþ1
L,L

* +
SRU

L,Lþ1T�̂
Lþ1

&
uLþ1
L

tLþ1
L

" #
�

GLþ1
L,L

HLþ1
L,L

2
4

3
5�L þ

GLþ1
L,L

HLþ1
L,L

2
4

3
5�L ,

GL
L,L

HL
L,L

* +
�̂

L ¼
GL

L,L

HL
L,L

* +
STU

L,Lþ1T�̂
Lþ1

&
�uLL

�tLL

" #
�

GL
L,L

HL
L,L

2
4

3
5�L þ

GL
L,L

HL
L,L

2
4

3
5�L

:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(40)

Figure 7. Configuration for the combination of the reverberation in

the stacked layers between (2)-th and (L)-th layer and the reflection at

the free surface.

Figure 8. Configuration for the reflection and transmission at the

deepest interface for upcoming incident wave. �̂’Lz1
represents

the source of upcoming incident wave. Then, ½ �uLz1
INC ðxÞ, �tLz1

INC ðxÞ �
can be used in place of �̂’Lz1

as written in eq. (40).
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The physical meaning of eq. (40) is given by changing l in the

description just after eq. (13) to L.

Replacing l with L in the description in Section 2.3.2., the

discussion for the case of down-coming incident wave to

the deepest interface can be discussed, sufficiently.

2.8 Disassembled transmission operator and
displacement at the surface

In Section 2.5, the process of adding a layer above the stacked

layers is discussed. Here, the process of adding a layer below

the stacked layers is discussed.

Consider the stacked layers sandwiched by (1)-th and

(Lx1)-th interfaces, and (L)-th interface below them (Fig. 9).

Similar as shown in eqs (23) and (24), the following reflection

and transmission operators for these stacked layers are defined.

For upcoming incident wave,

�̂
L�1 ¼ SRU

1,LT�̂
L
, �̂

1 ¼ STU
1,LT�̂

L
: (41)

By considering the multiple reflections in (L)-th layer, the

following is obtained,

�̂
1 ¼ STU

1,LTfSITþ SRD
L,Lþ1TSR

U
1,LTþ ðSRD

L,Lþ1TSR
U
1,LTÞ

2

þ ðSRD
L,Lþ1TSR

U
1,LTÞ

3 þ � � �gSTU
L,Lþ1T�̂

Lþ1

¼ STU
1,LTðSIT� SRD

L,Lþ1TSR
U
1,LTÞ

�1STU
L,Lþ1T�̂

Lþ1
, (42)

This implies the following relation.

STU
1,Lþ1T ¼ STU

1,LTðSIT� SRD
L,Lþ1TSR

U
1,LTÞ

�1STU
L,Lþ1T : (43)

Therefore, eq. (37) becomes as follows.

u1
0 ¼ ðSG1

0,0TSR
U
0,1Tþ SG1

0,1TÞðSIT� SRD
1,Lþ1TSR

U
0,1TÞ

�1

|STU
1,Lþ1T�̂

Lþ1

¼ ðSG1
0,0TSR

U
0,1Tþ SG1

0,1TÞðSIT� SRD
1,Lþ1TSR

U
0,1TÞ

�1

|STU
1,LTðSIT� SRD

L,Lþ1TSR
U
1,LTÞ

�1ðSTU
L,Lþ1T�̂

Lþ1Þ : (44)

Note that application of the operators SRD
1,Lþ1T, STU

1,LT, SRU
1,LT

do not have a simple form if L is not equal to one, whereas

solving simultaneous linear eqs (34) and (38) can give the

simple way to handle SRU
0,1T, ST

U
L,Lþ1T, SRD

L,Lþ1T, respectively.

Therefore, eq (44) is not a convenient formulation for com-

putation of wavefield in total. The benefit of eq. (44) can

be found in extracting certain wave types as shown in the

following Section.

3 EXAMPLES

In order to calculate the wavefield observed at the surface, it is

necessary to solve simultaneous linear equations as shown

above. It is obvious that computation of complete the wavefield

is not always necessary. Namely, it is expected that extracted

principle parts of wavefield can work well in some practical

problems as a good approximation. The advantage given by

usage of reflection and transmission operators is that these

help us to find systematically good approximations and its

actual algorithm based on the wave propagation. Some simple

examples are shown below.

3.1 Separation of waves directly coming from the real
source

Neglecting reflections for both up and down going waves for

every interfaces, i.e.

SRU
l,lþ1T[S0T , SRD

l,lþ1T[S0T for l ¼ 1, . . . L , (45)

the waves transmitted just once at each interface is obtained.

This means the waves directly coming from the real source

located at (L+1)-th layer.

Eqs (20) and (22) become

STD
l�1,lþ1T&STD

l,lþ1TST
D
l�1,lT, STU

l�1,lþ1T&STU
l�1,lTST

U
l,lþ1T

(46)

Eq. (28) shows that the stack of transmission operators for each

interface can give the transmission operator for stacked layers.

STU
l�1,Lþ1T ¼ STU

l�1,lTfSIT� SRD
l,Lþ1TSR

U
l�1,lTg

�1STU
l,Lþ1T

&STU
l�1,lTST

U
l,Lþ1T

¼ %
L�1

l0¼l�1
STU

l0,l0þ1T
� �

ðSTU
L,Lþ1T�̂

Lþ1Þ (47)

Therefore, eq. (44) becomes as simple as follows (Fig. 10).

u1
0 ¼ ðSG1

0,0TSR
U
0,1Tþ SG1

0,1TÞðSIT� SRD
1,LTSR

U
0,1TÞ

�1

|STU
1,LTðSIT� SRD

L,Lþ1TSR
U
1,LTÞ

�1ðSTU
L,Lþ1T�̂

Lþ1Þ

&ðSG1
0,0TSR

U
0,1Tþ SG1

0,1TÞSTU
1,LTðSTU

L,Lþ1T�̂
Lþ1Þ

¼ ðSG1
0,0TSRŒ

U
0,1Tþ SG1

0,1TÞ %
L�1

l¼1
STU

l,lþ1T
� �

ðSTU
L,Lþ1T�̂

Lþ1Þ :

(48)

The meaning of eq. (48) in terms of wave propagation is shown

in Fig. 10. Putting SRŒ U0,1T[0 allows one to exclude the influence

of the surface from the solution.
Figure 9. Configuration for adding a layer below the stacked layers.

This corresponds to procedure to derive eq. (44).
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This example corresponds to the following case. The

contribution of surface waves into accelerograms obtained at

sites near to the seismic source on firm ground, e.g. on tertiary

deposit, is not as considerable as that of body waves in the

frequency bands related to normal houses and low buildings.

Moreover, it is said that the first big acceleration pulse is the

main cause of damage to houses and buildings at a site close to

a shallow seismic source. Eq. (48) can give an approximation

for these cases in that the coda of S wave and surface waves do

not matter.

3.2 Multiple reflections in a homogeneous basin

It may be necessary to obtain the solution to problems for

which a solution has already been published, in order to check

the validation of the method. This example is aimed to this

purpose.

Consider a homogeneous surface layer on a homogeneous

basement of different material property. Eq. (44) can be reduced

by using L=1, STU
1,1T ¼ SIT and SRU

1,1T ¼ S0T as follows.

u1
0 ¼ ðSG1

0,0TSR
U
0,1TþSG1

0,1TÞðSIT�SRD
1,2TSR

U
0,1TÞ

�1ðSTU
1,2T�̂

2Þ

¼ ðSG1
0,0TSR

U
0,1Tþ SG1

0,1TÞfSITþ SRD
1,2TSR

U
0,1T

þ ðSRD
1,2TSR

U
0,1TÞ

2 þ ðSRD
1,2TSR

U
0,1TÞ

3 þ � � �gðSTU
1,2T�̂

2
,

(49)

where ðSIT� SRD
1,2TSR

U
0,1TÞ

�1 denotes the reverberation in the

surface layer (Fig. 11). The problem solved by Dravinski &

Mossessian (1987) belongs to this type.

The operator for reverberation between the surface and the inter-

face due to the upcoming wave ½ReoU0,1�¼ðSIT�SRD
1,2TSR

U
0,1TÞ

�1

can be calculated as follows. Eq. (19) shows

½ReoU0,1� ¼ ðSIT� SRD
1,2TSR

U
0,1TÞ

�1

:SITþ SRD
1,2TSR

U
0,1T

þ SRD
1,2TSR

U
0,1TSR

D
1,2TSR

U
0,1Tþ � � � : (50)

This implies that ½ReoU0,1� can be obtained in the following

iterative way. Denote the result of the n-th iteration ½ReoU0,1�n.

Then,

½ReoU0,1�nþ1 ¼ SITþ SRD
1,2TSR

U
0,1T½ReoU0,1�n ,

½ReoU0,1�1 ¼ SITþ SRD
1,2TSR

U
0,1T :

(51)

In the actual calculation process, �̂
1¼STU

1,2T�̂
2

is first obtained

by eqs (38) and (40). This force vector is the input for the

iterative process shown by eq. (51). Denote the initial value

½�̂1�0. Then, the first iteration gives

½�̂1�1 ¼ ðSITþ SRD
1,2TSR

U
0,1TÞ½�̂

1�0

¼ ½�̂1�0 þ SRD
1,2TSR

U
0,1T½�̂

1�0 :

The higher order approximation is given as follows.

½�̂1�nþ1 ¼ ðSITþ SRD
1,2TSR

U
0,1TÞ½�̂

1�n

¼ ½�̂1�n þ SRD
1,2TSR

U
0,1T½�̂

1�n : (52)

Eqs (34) and (35) show the way to calculate SRU
0,1T½�̂

1�n. Eqs (15)

and (16) show that for SRD
1,2TSR

U
0,1T½�̂

1�n. It is necessary to

solve the simultaneous linear equations twice in each iterative

Figure 10. Schematic illustration for the wave directly coming from the

source in the deepest layer that corresponds to eq. (48). The reflected

waves at each interface are neglected.

Figure 11. Schematic illustration that corresponds to eq. (49) for the waves that bounce up and down in the surface layer.
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step. It is expected that a few times of reflection between the

surface and the seismic bedrock of basin can provide a good

approximation for accelerograms obtained at a site close to the

shallow seismic source. Then, eq. (52) can be a good approxi-

mation. The idea of stacking the waves that bounce up and

down in the surface layer has been used by Sánchez-Sesma et al.

(1988) in the origami method for dipping layers.

Examples of computation for the seismic response of semi-

cylindrical basin for plane wave incidence obtained by eq. (52)

are shown in Figs 12 and 13. The P and S wave velocities and

the density are 1.0 km s x1, 0.5 km s x1, 0.666 g cmx3 for the

surface layer and 2.0 km s x1, 1.0 km s x1, 1.0 g cmx3 for

the underlying half space, respectively. Yokoi (1996) has used the

same structure. The thickness of the surface layer under both

sides of the cylindrical basin, however, is set at zero for this

example. The reference solution obtained by the Thomson–

Haskell matrix method (Thomson 1950; Haskell 1953) consider-

ing only one interface or surface is used. The time dependency

of incident waves is the Ricker wavelet, the normalized charac-

teristic frequency of which is g=va/pb= 0.5, where a is the

half-width of a basin. Fig. 12 shows clearly the efficiency of

the reflection and transmission operators for the separation

of waves with consideration of the reference solution. The

responses for vertical P wave incidence are shown in Fig. 12(b)

and those of vertical SV wave incidence in Fig. 12(a). The

top panels show the waves directly reached to the surface,

the middle ones these summed up with the contribution of the

surface reflection, and the bottom ones these summed up with

the contribution of the waves once bounced up from the inter-

face. Fig. 13 shows the distribution of Fourier spectral ampli-

tude at the normalized frequency g=0.5, for vertical P wave

incidence (Fig. 13b) and for the vertical SV wave (Fig. 13a).

This can be compared directly with those of Dravinski &

Mossessian (1987). The solutions in Fig. 13 are the super-

position of five iterations for the reverberation operator. Three

iterations, however, are enough to reproduce the main part of

S wave as shown in Fig. 12. More detailed discussion may be

necessary, if we pay attention to the surface waves.

3.3 Multiple reflections in surface sediment that has
several strata

This example is aimed to show the way in which an appropriate

algorithm of computation can be derived by usage of reflection

and transmission operators.

In general, the shallower sediments in alluvial basin has the

lower S-wave velocity and density. Their impedance contrast is

clear at the interfaces between hard rock and sediment, Tertiary

and Quaternary or alluvial deposit. At these interfaces, the

(a) (b)
Figure 12. Examples of computation for the seismic response of semicylindrical homogeneous basin for vertical incidence of plane wave obtained by

eq. (52). The material properties are explained in the main text (Section 3.2). The time dependency of incident wave is the Ricker wavelet, the

normalized characteristic frequency of which is g=va /pb=0.5, where a is the half-width of a basin. The responses for vertical P wave incidence are

shown in the right panels and those of vertical SV wave incidence in the left panels. The top panels show the waves directly reached to the surface, the

middle ones these summed up with the contribution of the surface reflection, and the bottom ones these summed up with the contribution of the waves

once bounced up from the interface.
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waves can propagate from the deeper to the shallower layer

easily, i.e. the transmission is dominant in comparison with

the reflection for upcoming waves. In contrast, the waves that

come from the shallower layer are reflected strongly by the high

impedance contrast. In some special cases, the reflection for

the upgoing wave represented by the operator SRU
l,lþ1T may be

negligible for l=1 . . .L.

Using the approximation,

SRU
l,lþ1T&0 for l ¼ 2 . . .L : (53)

Eqs (28) and (30) can be changed as follows,

SRU
l�1,Lþ1T&0 ,

STU
l�1,Lþ1T&STU

l�1,lTST
U
l,Lþ1T ,

8<
:

SRD
l�1,Lþ1T&SRD

l�1,lTþ STU
l�1,lTSR

D
l,Lþ1TST

D
l�1,lT ,

STD
l�1,Lþ1T&STD

l,Lþ1TST
D
l�1,lT :

8<
:

(54)

The second one implies,

STU
1,LT&

YL
l¼2

STU
l�1,lT,ST

D
1,LT&

YL
l¼2

STD
l�1,lT (55.1)

SRD
1,Lþ1T&SRD

1,2Tþ STU
1,2TSR

D
2,Lþ1TST

D
1,2T

&SRD
1,2Tþ STU

1,2TðSRD
2,3Tþ STU

2,3TSR
D
3,Lþ1TST

D
2,3TÞ

|STD
1,2T& � � �

&SRD
1,2Tþ

XL
l¼2

Yl�1

k¼1

STU
k,kþ1T . SR

D
l,lþ1T .

Yl�1

k¼1

STD
k,kþ1T

( )
:

(55.2)

Eq. (55.2) means that the reflection for down going wave in the

first layer can be approximated by the stack of returning waves

only once reflected at each interface.

Eq. (44) can be written in the following,

u1
0&ðSG1

0,0TSR
U
0,1Tþ SG1

0,1TÞðSIT� SRD
1,Lþ1TSR

U
0,1TÞ

�1

|
YL
l¼2

STU
l�1,lT

 !
ðSTU

L,Lþ1T�̂
Lþ1Þ , (56.1)

where ½ReoU0,L� ¼ ðSIT� SRD
1,Lþ1TSR

U
0,1TÞ

�1 can be calculated

by the following,

½ReoU0,L�nþ1 ¼ SITþ SRD
1,Lþ1TSR

U
0,1T½ReoU0,L�n,

½ReoU0,L�1 ¼ SITþ SRD
1,Lþ1TSR

U
0,1T : (56.2)

Eqs (56.1) and (56.2) suggest the following algorithm.

(1) The displacement and traction vectors of the upcoming

wave directly arrived from the real source to the first layer is

calculated and kept in memory.

(2) The reflection at the surface is applied to obtain those of

the down going reflected wave.

(3) The stack of returning waves reflected once at each

interface for this down going wave is calculated and

(4) summed up with those of the wave kept in memory. For

this sum, the surface reflection is applied as well as (2), then the

procedure described above is repeated several times. Finally,

the operator, namely, the first parenthesis of the right member

of eq. (56.1) is applied and displacement at the surface is

obtained.

(a) (b)
Figure 13. Distribution of Fourier spectral amplitude at the normalized frequency g=0.5, for vertical P wave incidence in the right panels and for

vertical SV wave in the left panels. This can be compared directly with the results of Dravinski & Mossessian (1987). These are the superposition of five

iterations for the reverberation operator.
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In some special configurations, the algorithm mentioned

above can give a good approximation for accelerograms that

are composed mainly of body waves. More consideration,

however, may be necessary for the surface waves.

This, however, is just an example. It is possible to design

appropriate algorithms based on the approximation derived

by consideration on impedance contrast at each interface

and wave types requested, if the reflection and transmission

operators for irregular interface are handled in computation.

4 D I SCUSS ION AND CONCLUS IONS

First, the reflection and transmission operators for an irregular

interface are defined in the space–frequency domain in terms of

I-BEM and the practical way to estimate approximately the

reflected and transmitted wavefields, based on the approxi-

mation using the reference solution (eqs 6, 13 and 16). Second

the reflection and transmission operators for a layer sand-

wiched between irregular interfaces are defined by using the

operators for an irregular interface (eqs 20 and 22). Then, those

for stacked layers with free surfaces are defined (eqs 28 and 39),

and the wavefield at the surface due to real source in the deepest

layer is formulated (eq. 37). Finally, some numerical examples

for the separation of waves are shown.

As shown above, the formulation of reflection and trans-

mission for irregular interface introduced here makes easier

the search for an efficient approximation of wavefield with a

clear theoretical back ground of wave propagation. As pre-

viously mentioned, the expressions giving the relations among

reflection and transmission operators, i.e. eqs (20), (22), (28),

(30), and (44) giving the displacement at the surface show a

clear similarity with R/T-MM for horizontally stratified media

(Kennett 1983). It may be allowed to say that the method pre-

sented here is an extension of R/T-MM to irregularly stratified

media in terms of I-BEM, because R/T-MM is one of the

efficient ways to obtain the reference solution. Also, it can be

said that this is a hybrid method between R/T-MM and I-BEM

in the space–frequency domain. The reference solution in the

space–frequency domain can be calculated not only by R/T-MM

but also by other methods, e.g. Luco & Apsel (1983). It is easy

to imagine that the strategy used here may be useful in deriving

the solution in the space–time domain by a combination of

I-BEM in the time domain and the reference solution in the

space–time domain.

As shown above, the discussions in this paper are on the

reflection and transmission operators and on the calculation

algorithm mainly for body waves by using these operators. The

handling of surface waves is left for future studies. The method

presented here shares the same problems with the ray theory

including the generalized ray method and the same effect on

extracting body waves and on excluding the influence of the

free surface. This, however, has an advantage, against the ray

theories, in that the integral on the ray parameter is not

necessary and the amplitude of the body wave is kept without

any special treatment.

The computation process is composed of the products

of a Green’s function matrix to force vector, sums among

displacement–traction vectors and simultaneous linear equations.

Therefore, there is no operation among the Green’s function

matrices in a computation based on the method presented here.

This feature may make computation faster and required smaller

main memory, in comparison with the recursive treatment of

Green’s function matrices (Yokoi 1996). Moreover, it is expected

that this will allow us to apply the Fast Multipole Method

(e.g. Fujiwara 2000), which can accelerate the calculation of the

product of Green’s function matrix to vectors. Therefore, it is

expected that the calculation may be accelerated much more

than the present performance.
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