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SUMMARY

The structure of the Earth is represented by a wide spectrum of small- and large-scale
structures. However, tomographic imaging techniques based on ray theory are often
applied inappropriately in models with a characteristic length of heterogeneity smaller
than the wavelength and width of the Fresnel zone. In other words, the conditions for
ray theory are not satisfied in such models. It is therefore necessary to apply the diffraction
theory of waves in tomographic reconstruction techniques in order to retrieve images of
the Earth with a more general theory for wave propagation than ray theory. Physically
speaking, scattering theory takes the finite-frequency effect of waves into account. We
performed a test of ray theory and scattering theory in an ultrasonic wave experiment
and in a numerical finite-difference experiment using random media with correlation
lengths smaller than the width of the Fresnel zone. We used a stochastic approach to
compute the mean squared value of time-shift variations calculated from ray theory and
diffraction theory. The theoretical results were compared with the experimental values
obtained in the laboratory experiment using rock samples with different length-scales of
heterogeneity and from numerical experiments on wave propagation in quasi-random
media. We observed that ray theory systematically overestimates the mean squared
value of time-shift variations, while the observed statistical values from the laboratory
experiments are well predicted by scattering theory. This means that tomographic imaging
techniques based on ray theory suffer from a loss of resolution when the reconstructing
models have a characteristic length of heterogeneity smaller than the width of the Fresnel
zone.

Key words: finite-difference experiment Fresnel zone, ray theory, Rytov approximation,
scattering theory, ultrasonic experiment.

1 TINTR rTODUCTIO rN hand, people working with seismology (van der Lee & Nolet
1997; Trampert & Woodhouse 1995; Bijwaard & Sparkman

In this study, we examine ray theory and scattering theory in a 1998; Curtis et al. 1998) or with exploration seismics (Parra
laboratory experiment using ultrasonic waves propagating in & Bangs 1992; Goudswaard et al. 1998; Hatchell 2000) focus
granite samples with small-scale heterogeneity. Ray theory is a more and more on small-scale structured media for which the
high-frequency theory which is valid if the characteristic length conditions for ray theory are generally not satisfied. For such
of inhomogeneity is larger than the wavelength and the width media with heterogeneity comparable or smaller in size than
of the Fresnel zone. Accordingly, it is only justified to use ray the width of the Fresnel zone, scattering theory of propagating
theory in modelling of sufficiently smooth media. On the other waves is important (Spetzler & Snieder 2001b).

In the past decade much attention has been paid to
*Now at: Dept. oApplied EarthSciences, TUDelftMijnbouwstraa scattering theory in the literature. Yomogida & Aki (1987),* Now at: Dept. of Applied Earth Sciences, TU Delft, Mijnbouwstraat Ymgd(12, (,Sn L a (9

120, NL-2628 RZ Delft, The Netherlands Yomogida (1992), Woodward (1992), Snieder & Lomax (1996)
tNow at: Ministry of Science and Technology, Govt. of India, New and Spetzler & Snieder (2001b) use the Rytov approximation
Mehrauli Road, New Delhi 110 016, India on the 2-D acoustic wave equation to introduce the effect of
t Now at: CTBTO Data Centre, International Centre P.O. Box 1200, finite-frequency in transmitted waves. Marquering et al. (1998),
A-1400 Vienna, Austria Tong et al. (1998), Marquering et al. (1999), Dahlen et al. (2000)
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166 J. Spetzler et al.

and Hung et al. (2000) utilise the cross-correlation function to and the Gaussian random medium with the auto-covariance
introduce the frequency-depending time-shift in 3-D body wave function for slowness perturbations given by
tomography. In many of these articles, it is shown that scatter- r 2
ing theory in 2- and 3-D media predicts that the maximum <(u(r')5u(r")> = (Eu) 2exp-(-) ) (2)
sensitivity to slowness perturbations is of geometrical ray path. a
Moreover a paradoxical result is found for the scattering of In the two auto-covariance functions in eqs (1) and (2), the
waves in 3-D; the sensitivity to slowness fluctuations is zero reference slowness is denoted by ou, the root mean squared
on the ray path. It is a counter-intuitive result compared to ray (rms) value of the relative slowness perturbation field is e, the
theory which predicts non-zero sensitivity to the slowness field correlation length (or roughly the length-scale of heterogeneity)
on the ray path. is written as a and r= r'-r"l is the distance between the two

Several authors have worked with laboratory experiments points r' and r". See Sato (1998) for a thorough description of
using ultrasonic waves. Lo et al. (1988) tested the Rytov and random media.
Born approximations in vertical seismic profiling (VSP), cross-
borehole and surface reflection tomography by using ultra-
sonic waves propagating in a water tank with gelatin cylinders eor
as scatterers. They found that diffraction tomography is better We follow the idea of Roth et al. (1993) to derive the MS-value
than ray tomography at reconstructing the model when the size of time-shift fluctuations based on first order ray perturbation
of scatterers is comparable to the wavelength. Schultz & Toks6z theory (also related to Fermat's principle). The derivation is valid
(1994) studied scattering from randomly grooved interfaces. for time-shifts obtained in experiments with 2- and 3-D wave
Scattering phenomena have been studied in order to under- propagation. According to first order ray perturbation theory
stand the attenuation of seismic waves and the generation of (Snieder & Sambridge 1992), the time-shift for deterministic
coda waves (Dubendorff & Menke 1986; Vinogradov et al. slowness perturbation media 6u(r) is given by
1989; Matsunami 1991; Schultz & Toks6z 1993, 1994) 

In this study, we combine the developments in scattering &t(L)= 6u(s)ds, (3)
theory with high-quality ultrasonic waveforms measured in a Jo
laboratory experiment using samples of Westerly and Oshima where L is the source-receiver distance. The expectation value
granite. The two granites have slowness perturbation fields is taken of the square of the time-shift in eq. (3), so we get the
that can be described using an exponential auto-covariance MS-value of time-shift fluctuations ((6t)2>(L) due to ray theory.
function, so we can use a stochastic approach to test ray theory
and scattering theory in the real laboratory experiment. We <t(L) = L L ) s)dsds
compute the ray theoretical and scattering theoretical mean J Jo
squared value of time-shift fluctuations for exponential random
media which are comparable with those obtained from the = 2 L - r)N(r)dr, (4)
observed ultrasonic waveforms. In that way, we show that Jo
scattering theory is more accurate than ray theory in predicting where the auto-covariance function N(r)= <6u(s')6u(s")> and
the observed mean squared value of time-shifts for Westerly and r = Is'- s'j. The step to reduce the double integration to a single
Oshima granite. In addition, we simulate the real laboratory integration in eq. (4) is explained in Roth (1997).
experiment with a 2-D, numerical finite-difference experi- For the case where the source-receiver distance is much
ment which supports the results found in the ultrasonic wave smaller than the correlation length, (i.e. L la« 1), the exponential
experiment. and Gaussian auto-covariance function in eqs (1) and (2) are

In Section 2, we show how ray theory and scattering set to (euo) 2 Hence, the MS-value of time-shift fluctuations is
theory can be adapted to deterministic and stochastic models. iven by
The laboratory experiment is explained in Section 3, while, in
Section 4 we describe how the independent determination of <t) 2>(L) 2 fL

.s) r1)>(-)%;2(e~io) $(L-r)drthe exponential auto-covariance function for Westerly and (L r)d
Oshima granite was carried out. The 2-D numerical experiment
is described in Section 5. In Section 6, we present the results = (guoL)2 , (5)
from the ultrasonic wave experiment and the numerical which is the same result as for a homogeneous slowness
experiment, and finally in Section 7 and 8 the discussion and perturbation field.perturbation field.
conclusions are given. Next consider the case that the source-receiver offset is

much larger than the correlation length, (i.e. L /a>> ). For the
exponential auto-covariance function in eq. (1), the MS-value

2 THEORY of time-shift fluctuations is given by

In this section, the mean squared (MS) value of time-shift <((6t)2 >(L) = 2(0uo)2aL. (6)
fluctuations using ray theory and single-scattering theory is

For Gaussian random media, the MS-value of time-shiftderived. We work with two kinds of stochastic media; the o aussi ndo e
exponential random medium which has the auto-covariance fluctuations is found to be
function for the slowness perturbation field given by <((t)'>(L) = V/nzo)aL. (7)

6u(r')6u(r")>= -EU O2 ex/ p_ (1)r See Roth et al. (1993) or Spetzler & Snieder (2001a) for an
<O(r )6au(r )> = (uo) exp- ' (1) pexplanation of how to derive eqs (6) and (7).
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Ray theory is valid when the correlation length of hetero- of the sensitivity kernel in eq. (13) is found to be
geneity is larger than the wavelength A and the width LF of the
Fresnel zone. In non-dimensional numbers, the conditions for u L cos(bv) si(bv) L'°+ '+
the regime of ray theory are written as K(x, y, z 2Avx(L -x) -b v b (14)

A LF
-<<«1, and -LF << 1. (8) 2 
a a where b = ruoL(y2 + z2)/(x(L - x)), (see Appendix A). The

See Menke & Abbot (1990). sensitivity kernel due to the scattering of waves propagating in
2-D and 3-D media is shown in Fig. l(a) and (b), respectively.
We have used eq. (12) to compute the 2-D scattering sensitivity
kernel and eq. (14) to evaluate the scattering sensitivity kernel

2.2 Scattering Theory for wave propagation in three dimensions. The sensitivity kernels

The scattering theoretical time-shift 6t(L) is written as a volume are calculated for the half source-receiver offset for which
integration of the deterministic slowness perturbation field
bu(r) multiplied by the sensitivity kernel K(r) due to non-ray
geometrical effects (Spetzler & Snieder 2001b). Hence, (a) 2-D wave propagation

0.002
bt(L) = |v u(r)K(r)dV, (9)002

In 0.0015 
where the integration JV... dV is written as Jo J_ (... dxdz for oI

·. ,,.,, · ,,,,,,t;, ;,.L r3 cowave propagation in two dimensions and a s Jo J o J ... 0.001
dxdydz. for waves propagating in three dimensions. The 
MS-value of time-shift fluctuations ((Lt)2 )(L) using scattering .0.0005 
theory is obtained by taking the expectation value of the 
squared time-shift in eq. (9), thus 0 

0

<((&)2>(z' v JvU
(L) = J 1 <Ku(r')bu(r")>K(r')K(r")dV'dV". (10) 2 -0.0005 

The 2-D sensitivity kernel for a point source is given by -0.001 

v +Av sini ( ol_____________________ _. -0.001 [
VOK(+AxV si UL - ) + xj -0.05-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

K(x, z):= 0/ A~v)A/v dv
JKvo-Av Vvx(L- x) Distance from the geometrical ray (m)

(11) (b) 3-D wave propagation

(see Spetzler & Snieder 2001 b). The sensitivity kernel in eq. (11) o0.15
is integrated in the frequency-range vo-Av to o+ Av, where E 
the normalised power spectrum fvo+^ vA(v)dv=l. The central
frequency is denoted vo and the width of the frequency-band is § 0.1
2Av. For a constant power spectrum over the frequency-band \ 
(i.e. A(v)= 1/(2Av)), the scattering sensitivity kernel in eq. (11) \ 
can be evaluated analytically (see Appendix A), hence \ la

K(x, z) V='u/ ( - h\/(sin(bv) - cos(bv)) 0 o 
2Av x) b V2 o

en1g(C(r ) 2bv) 2 > -0.05 - | 1 (- 2bv) o ', .05
+ S/-iCi - - FS (12) -

where b = uoLz(x(L - x)) and the functions C and S are n -0.1 -...

the Fresnel cosine integral and sine integral, respectively. -0.05 -0.04 -0.03 -0.02-0.01 0 0.01 0.02 0.03 004 005

Abramowitz & Stegun (1970) give a description of the Fresnel Distance from the geometrical ray (m)
cosine and sine integrals. The sensitivity kernel for a point Figure 1. The cross section of the scattering sensitivity kernel. The
source using scattering theory for 3-D wave propagation is source-receiver distance L=0.08 m, the reference slowness uo=2.5 x
given by 10

- 4 sm - l , the central frequency v0 =500 kHz and the frequency-
/ 2 22\ band 2Av=400 kHz. The sensitivity kernels are plotted at the half

vo+Av sin (7nvoL xL x) offset for which the width of the central lobe is maximum. (a) The
K(x, y, z) = uoL f A(v)v d x(L- x)J d, (13) scattering theoretical sensitivity kernel for a point source due to waves

Jvo-Av x(L - x) propagating in 2-D. (b) The sensitivity kernel for a point source due to
3-D scattering theory. Notice that scattering theory in 3-D predicts a

(see Spetzler & Snieder 2001b, for an explanation of how to zero sensitivity to slowness perturbations on the geometrical ray while
derive the 3-D scattering theoretical sensitivity kernel in eq. 13). according to ray theory there is only non-zero sensitivity to slowness
Assuming a constant power spectrum, the analytical solution perturbations on the ray path.
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the central lobe has the maximum width. The source-receiver is related to the MS-value of phase fluctuations through
distance L = 8 cm, the central frequency vo = 500 kHz, the
half frequency-band Av=200 kHz and the reference slowness (b)2 = 
uo=2.5 x 10 - 4 sm - 1. For both scattering sensitivity kernels > 2

in Fig. 1, it is seen that the maximum sensitivity to slowness 2k2 
perturbations is off-path the geometrical ray and that the 
sensitivity kernels have sidelobes. However, the 2-D scattering
kernel is non-zero on the ray path and the 3-D scattering kernel = /(1uo0) 2aL, (18)
vanishes on the geometrical ray. This is a very counter-intuitive
result for wave propagation in three dimensions compared where co is the angular frequency, the wave number k = ou0 and
with ray theory which predicts non-zero sensitivity to slowness the propagation distance Z=L. The expression for the MS-
perturbations on the ray. This result is also found in Tong et al. value of time-shift fluctuations in eq. (18) is identical to the
(1998); Marquering et al. (1998); Dahlen et al. (2000); Hung ray theoretical expression in eq. (7). The scattering theoretical
et al. (2000) and Zhao et al. (2000) who work with scattering approach in the scattering theory section is based on the Rytov
theory in body wave tomography. approximation (Snieder & Lomax 1996). No assumptions

Consider the case that the source-receiver distance is smaller on the wavelength are made in order to derive the scattering
than the correlation length, (e.g. L/a<<l). This limit corre- theoretical time-shift expression in eq. (9) (see Spetzler &
sponds to a medium with a homogeneous slowness perturbation Snieder 2001b). The scattering formulation applied in this study
so the auto-covariance functions in eqs (1) and (2) can be set is therefore considered to be a more general solution to the
to (su 0)

2. The MS-value of time-shift fluctuations using 2-D or wave equation for which the finite-frequency of waves is taken
3-D scattering theory in eq. (10) is given by into account.

((t)2>(L) = (ruoL)2, (15)
3 SETUP OF THE 3-D LABORATORY

which is the same result obtained with ray theory in eq. (5). We EXPERIMENT
derive eq. (15) in Appendix B.

Consider instead that the correlation length goes towards In order to quantify and substantiate the theoretical aspects
Consider instead that the correlation length goes towardsn the previous sections, we made use of the experi-discussed in the previous sections, we made use of the experi-

zero. It is shown in Appendix C that the MS-value of time-shift mental results from Sivaji et al. (2001). We employed rockmental results from Sivaji et al. (2001). We employed rock
fluctuations either using 2- or 3-D scattering theory converges

samples with various scale length of heterogeneity. The dimen-to zero in the limit that the correlation length goes to zero, samples with various scale length of heterogeneity. The dimen-
tozhence ithliithttecreainlntgostzsions of the rock samples are 8 x 30 x 30 cm. Elastic waves are

produced using a piezo-electric transducer with the driving
li ,, (t L- . signal of a single-cycle sine-wave of 500 kHz frequency. See

lim <((t)->(L)--0. (16) Sivaji et al. (2001) or Nishizawa et al. (1997) for a sketch of the
laboratory experiment. We observe transmitted elastic waves

In this regime, waves propagate in an average medium which is by using a laser Doppler vibrometer. The details of the laser
the homogeneous reference medium. The same result can be Doppler vibrometer for measuring elastic waves are described
obtained with eq. (6) for exponential random media and eq. (7) in Nishizawa et al. (1997, 1998).
for Gaussian random media using ray theory. Sivaji et al. (2001) performed the waveform measurements

Spetzler & Snieder (2001b) determine in a numerical experi- on a steel block and on granitic rocks from the Westerly and
ment when the regime of scattering theory is significant. They Oshima granites. Photographs of the microstructures of the two
confirm that the regime of scattering theory is important when granitic rocks are shown in Fig. 2. Waveforms were obtained
the characteristic length a of heterogeneity is smaller than the over a small aperture grid array with a length of 10 mm
width LF of the Fresnel zone. Hence, and spacing of 1 mm. Sivaji et al. (2001) found that the scale

length of heterogeneity correlates positively with the variance

LF of arrival time or energy fluctuations of the P-wave. In their
> 1. (17) work, the arrival time of the P-wave is detected as a non-linear

change of the waveform.
Moreover, Spetzler & Snieder (2001b) define the width of the In this work, however, we use a different method because we
central lobe of the sensitivity kernels in Fig. 1 as the width of determine the traveltime fluctuation as the fluctuation of phase
the Fresnel zone. For a more detailed analysis of the properties in harmonic waves. We use a Butterworth filter to bandpass-
of the scattering theoretical sensitivity kernel, we refer to Spetzler filter the waveforms so that unwanted noise is removed. The
& Snieder (2001b). central frequency and the bandwidth of the Butterworth filter

Sato (1998) (p. 230-238), show how to use the parabolic are determined from the power spectra of the original wave-
wave equation to derive the MS-value of phase fluctuations. forms; the central frequency is fixed to 500 kHz and the band-
The parabolic wave equation is based on the assumption that width is set to 400 kHz. We applied the arrival time of the first
ak>> 1, where k is the wavenumber, thus the regime of ray clear minimum just after the onset of the P-wave. We corrected
theory is significant. The MS-value of phase fluctuations (D2 in the arrival times for slightly different source-receiver distances
eq. (8.27) of Sato (1998) is valid for a Gaussian random caused by a grid configuration of observation points. The
medium in the geometrical optic region that is Z>a=>L>>a, deviations of the measured arrival times from their mean value
where Z is the propagation distance and L is the source- are considered time-shifts. The MS-value <(bt)2> of time-shift
receiver distance. Hence, the MS-value of time-shift variations fluctuations is computed by taking the square of the observed
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Figure 2. Photograph of the Westerly and Oshima granite which shows 
the micro-structure of the samples. The three major constituent minerals 
are biotite (black), quartz (grey) and plagioclase (white). 

time-shifts and then calculating the mean value. Hence, 

where the integer A4 is the number of time-shifts in the sample 
(see Kreyszig 1993). The observed MS-value of time-shift 
fluctuations for Westerly and Oshima granite is 5.1 x lo-l6 and 
5.5 x 10-l’ s2, respectively, (see Table 1). In order to evaluate 
the picking error of the time-shift, we estimated the time-shifts 
of ultrasonic waves propagating through a homogeneous steel 
block of the same dimensions. The square root of the MS-value 
of the time-shift variation for steel, i.e. dm= 2.76 x lOpa s, 
is defined as the average error of the time-shift picking in the 

Table 1. The statistical parameters for the exponential auto- 
correlation function and the MS-value ((Jr)*) of timeshift variations 
for Westerly and Oshima granite. The reference velocity is denoted ~a, 
the rms value of relative slowness pertubations is written as E and the 
correlation length is denoted a. 

Sample 00 W) E (%) a (mm) <(W2> (s2) 

Westerly granite 4851.9 8.5 0.22 5.1 x 10-16 
Oshima granite 4644.1 9.4 0.46 5.5 x 10-15 

ultrasonic wave experiment. Notice that the square root of the 
MS-value of the time-shift fluctuations for Westerly granite 
(dm = 2.3 x 1OM8 s) is comparable with the root mean 
squared value of the time-shift variations for steel. Westerly 
granite can therefore be considered almost homogeneous. 

4 AUTO-CORRELATION FUNCTION 
FOR WESTERLY AND OSHIMA GRANITE 

The major constituent minerals present in Westerly and 
Oshima granite are biotite, quartz and plagioclase, identified 
by the black, gray and white areas in the microstructure images, 
Fig. 2 (Fukushima 2000). The distribution of these minerals is 
random in space with different grain sizes. The grain size in 
Westerly granite is small compared to that of Oshima granite. 

The characteristics of random media are described by 
spatial auto-covariance functions of the slowness and density 
fluctuations, or by their power spectra (Sato 1998). Well-log 
data are often applied for representing the underground random 
heterogeneity (Wu et al. 1994; Holliger 1996, 1997; Shiomi et al. 
1997; Goff & Holliger 1999). Since well-log data are sampled 
against depth with an equal interval, they are considered as 
continuous data that can easily be converted to the slowness or 
density fluctuations, and their auto-covariance functions are 
calculated directly from the data. On the other hand, Holliger 
& Levander (1992, 1994), Levander et al. (1994) and Goff et al. 
(1994) applied discrete data of velocity heterogeneity based on 
geological maps where the seismic slowness of each rock facies 
are given by the laboratory-measured seismic slowness. 

We have adopted the second methodology to estimate the 
length-scale of heterogeneity for Westerly and Oshima granite 
using the digital images of their micro-structure in Fig. 2. We 
took images of rock surfaces by using a scanner with 600 dpi 
(dot per inch), and converted the images into tri-modal colour 
images (Fig. 3a for Oshima granite). The traverse line is set 
in the tri-mode pattern, and the P-wave slowness values are 
assigned to each area crossed by the traverse line (see Fig. 3b 
for the P-wave profiles for Oshima). We assume that quartz and 
plagioclase are isotropic having the mean velocity calculated 
from the Voigt-Reuss averages of the elastic parameters of 
single crystals. The Voigt-Reuss averages give the P-wave slow- 
ness uquartz= 1.527 x lop4 sm-’ for quartz and Uriasiociase= 
1.639 x lop4 sm-’ for plagioclase (Simmons & Wang 1971). 
On the other hand, biotite minerals show strong velocity aniso- 
tropy (Aleksandrov & Ryzhova 1961). We assume that the 
velocity fluctuation of granitic rocks are mostly controlled 
by the velocity difference between biotite and the other two 
minerals. For biotite, we select the slowness randomly from the 
range between the maximum and minimum P-wave slowness 
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(b) P-wave Velocity Profile for Oshima Granite 
7”” 1 r ” rtlTu 

--- 

e-1 

Figure 3. (a) The trimodal-colour image of Oshima granite; white, 
grey and black colours correspond to plagioclase, quartz and biotite, 
respectively. (b) 1-D Velocity fluctuation obtained from trimodal- 
colour image by assuming that the orientation of biotite is random and 
of the other minerals is isotropic. 

(U,in= 1.282 X lop4 srn-’ and u,,,=2.375 x 10e4 sm-‘). The 
slowness perturbation is then calculated by removing the mean 
slowness value of the slowness fluctuation in the traverse. 

After applying an anti-aliasing filter, the power spectral density 
function (PSDF) is estimated. This procedure is repeated for 
20 profiles and the average PSDF is obtained. The PSDF 
for Westerly and Oshima are shown in Fig. 4(a) and (b). The 
auto-covariance function is computed by taking the inverse 
Fourier transform of the average PSDF. The exponential auto- 
covariance functions with the best fitting values of the relative 
slowness perturbation and correlation length are plotted with 
the dashed line in Fig. 4(c) and (d). The best fitting values 
for the relative slowness perturbation and correlation length for 
Westerly and Oshima granite are 8.5 per cent and 0.22 mm, and 
9.4 per cent and 0.46 mm, respectively, (Table I). Notice that 
the characteristic length of heterogeneity for Oshima granite 
is about twice as large as that for Westerly granite but 
the strength parameter E is almost the same indicating that the 
difference of heterogeneity between the two granitic rocks is 
characterized by the difference of length-scale of heterogeneity. 

Wave number (l/mm) 

0 0.4 0.8 1.2 1.6 2 

Lag (mm) 
Figure 4. The independent determination of the auto-correlation 
function which describes statistically the slowness perturbation field 
of Westerly and Oshima granite. (a) The PSDF for Westerly granite. 
(b) The PSDF for Oshima granite. (c) The auto-correlation function for 
Westerly granite and its statistical parameters. (d) The auto-correlation 
function for Oshima granite and its stochastic parameters. It is found 
that the best fitting auto-correlation function to the curve in (c) and (d) 
is exponential. The best fitting exponential auto-correlation functions 
are shown with the dashed line in (c) and (d). 

It is interesting to note that the measured auto-covariance 
functions are neither of the Gaussian type nor of the von Karman 
type. The high frequency limit of PSDF is determined by the 
image resolution (600 dpi: 0.043 mm). The characteristic scale 
lengths of heterogeneity are larger than the resolution limit for 
both Westerly and Oshima granite. 

Goff & Holliger (1999) recently found that the heterogeneous 
structure of most of the crystalline crust can be characterized 
by the power spectra changing from l/f to l/f’ within the 
measured frequency range. If  this is true, the heterogeneity is 
self-similar and no characteristic scale of heterogeneity exists. 
The smooth decay of the PSDF (Fig. 4a and b) of the granitic 
rocks in the higher frequency is similar to the results found 
in Goff & Holliger (1999). The characteristic length a corres- 
ponds to the longest wave length limit of heterogeneity. The 
exponential auto-covariance function seems to simulate the real 
crustal heterogeneity better than other types of auto-covariance 
functions. Thus, the present experiments may be realistic for 
simulating real crustal heterogeneity in the shorter wave length 
regime. 
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The width of the Fresnel zone is LF= m~2.7 cm for both 
Westerly and Oshima granite using ultrasonic waves with the 
central frequency equal to 500 kHz (3,=9.7 mm for Westerly 
granite and 1=9.3 mm for Oshima granite) and L=8 cm. 
(The width LF of the Fresnel zone is derived in Spetzler & 
Snieder 2001b). By comparing the width of the Fresnel zone 
with the correlation length for Westerly (a= 0.22 mm) and 
Oshima granite (a = 0.46 mm), we see that the ultrasonic wave 
laboratory experiment is in the regime of scattering theory 
according to eq. (17). 

5 2-D NUMERICAL EXPERIMENT TO 
TEST THE STOCHASTIC SCATTERING 
APPROACH 

We use a finite-difference (FD) solution of the acoustic wave 
equation to test the scattering theory for the statistical measure- 
ments of the MS-value of time-shift variations in the real 
ultrasonic wave experiment. The applied source function is a 
Ricker wavelet. An incident plane wave is emitted in a 2-D, 
Cartesian medium and recorded at the source-receiver distance 
L = 8 cm. The waveforms measured at the receiver positions 
are bandpass-filtered between 250 and 1000 kHz. We operate 
with two slowness fields in the FD-modelling experiment; 
the reference slowness field which has the constant reference 
slowness u. = 2.5 x 10e4 srn-‘, and the perturbed slowness 
field with the slowness field u(r) =uo(r) +ui(r) where u,(r) is a 
realization of the exponential or Gaussian quasi-random medium. 
For both kinds of quasi-random media, we fix the relative 
slowness perturbation to 3 and 10 per cent, and the correlation 
length varies between 0.4 and 2 mm. The realizations of the 
exponential and Gaussian random medium are normalized 
according to Table I in (Frankel & Clayton 1986). 

An example of a numerical simulation of an exponential 
quasi-random medium using the statistical values (correlation 
length and the rms value of slowness fluctuations) for Oshima is 
shown in Fig. 5. There is a close resemblance between Fig. 2b 
and 5 which indicates that the FD-experiment using quasi- 
random media simulates the physical laboratory experiment 
well. 

Notice that the mean value of slowness perturbations is not 
necessarily zero in a finite sampling of a random medium (see 
Mtiller et al. 1992). We have corrected the realizations of the 
exponential and Gaussian slowness fields by subtracting each. 
point of the FD-grid with the difference between the mean 
value of the slowness field sample and the reference slowness uo. 
Thereby, each realization of the exponential and Gaussian 
random media in the numerical experiment has the mean value 
equal to the reference slowness. 

The synthetic time-shifts are obtained by comparing 
the bandpass-filtered reference waveforms from the constant 
reference model with the bandpass-filtered perturbed wave- 
forms due to the perturbation models. In Fig. 6, the perturbed 
seismograms for realizations of the exponential and Gaussian 
quasi-random media using a =0.4, 1 and 2 mm, and e= 10 per 
cent are shown. The fluctuation of the first arrival increases 
for increasing value of the correlation length. Similarly, the 
coda-wave generation is more significant for higher values 
of the correlation length for both exponential and Gaussian 
random media. The traveltime of the reference waveform 
and of the perturbed waveform is determined using the first 

Figure 5. Numerical simulation of the slowness field for Oshima 
granite. The statistical values for the exponential random medium 
describing the slowness field of Oshima granite are a=0.46 mm and 
.5=9.4 %. 

clear minimum of the waveforms as point of measurement. The 
FD-time-shift is the difference between the reference and 
perturbed traveltime. For each distinct correlation length and 
magnitude of the slowness perturbation field, five realizations 
of the exponential and Gaussian random media with different 
random seed number are used to generate the FD-time-shifts. 
For each realization of the random media, 150 time-shifts are 
measured in the FD-experiment. Given the correlation length 
and magnitude of the slowness perturbation field for either 
the exponential media or the Gaussian random media, the MS- 
value of the sample of the FD-time-shift fluctuations for every 
realization is calculated with eq. (19). It gives five MS-values 
of time-shift fluctuations, ((at)*),, where j= 1,. . .5, for each 
combination of the correlation length and the rms value of 
relative slowness perturbations for the exponential random 
media and the Gaussian random media. The average value 
((W2>‘i”, of the sample of MS-values of FD-time-shifts for 
each set of the correlation length and the rms value of relative 
slowness perturbation fields is computed as 

(20) 

The standard deviation o(((&)*)) of the sample of MS-values 
of FD-time-shift variations for each combination of the 
correlation length and the rms value of the relative slowness 
perturbation field is given by 

~2(((w2>) = j& -$ (((st)*>, - <(6t)2),,a,)2 > (21) ,=I 
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Figure 6. Synthetic seismograms from the FD-simtulation of the laboratory experiment using different realizations of an exponential quasi-random

quasi-random medium with a 2 mm.
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Figure 6. Synthetic seismograms from the fD-simulation of the laboratory experiment using different realizations of an exponential quasi-random

error in the estimation of the MS-value of FD-time-shifts. random media in the FD-experiment, we must use the 2-D
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sensitivity kernel for a plane wave due to diffraction theory, MS-value of time-shift perturbations for Westerly (a =0.22 mm)
hence and Oshima (a = 0.46 mm) granite is shown with points and error

2 bars. The size of the error bars for the MS-value of time-shifts
+Av sin (n7VI 0 - + 7) for Westerly and Oshima granites indicates the picking error

K(x, -) = a/0 A{(v) v( ) dv. (22) of the time-shifts in the ultrasonic wave experiment. Westerly
JAv VL - x granite has a slightly different reference slowness and rms value

which is explicitly derived in Spetzler & Snieder (2001b). of relative slowness fluctuations than Oshima granite so the

The ray theoretical MS-value of time-shift fluctuations is observed MS-value of time-shift fluctuations for Westerly granite

calculated with eq. (4) wherein the exponential and Gaussian in Fig. 7 has been corrected by multiplying with the factor
auto-covariance function is inserted. (UIi ''/luf Este2t)2 1.33. We see in Fig. 7 that ray theory

The width of the Fresnel zone due to a plane wave is about overestimates the observed MS-values of time-shift fluctuations

LF = 3IL =3.9 cm (Spetzler & Snieder 2001b) for L =8 cm for Westerly and Oshima granite. The MS-value of time-shift
and A=l/(uovo) =6.4 mm. According to eq. (17), we are in variations computed with scattering theory is inside the error
the regime of scattering theory using the correlation length bars of the observed statistical value for Westerly granite and a

a 0.42 mm in the numerical experimentbit below the error bar of the observed MS-value for time-shifts
for Oshima granite. However, the MS-values of time-shifts that
take the scattering of waves into account are in the same order of
magnitude as the observed statistical values for the Westerly and

6 RESULTS Oshima granites, while the MS-values of time-shift fluctuations

In this section, we present the statistical measurements of the computed with ray theory are a factor 1015 larger than the
MS-values of time-shift fluctuations from the laboratory experi- stochastic values observed in the ultrasonic wave experiment.
ment and from the FD-numerical experiment. In Fig. 7, the We have simulated the ultrasonic wave experiment with
theoretical MS-value of time-shift fluctuations for different a 2-D numerical experiment which is explained in details
correlation lengths between 0.15 and 0.55 mm are computed in Section 5. The MS-values of time-shift fluctuations for an

using ray theory (dotted line) in eq. (4) and 3-D scattering exponential and Gaussian quasi-random medium are shown in
theory (dashed line) in eq. (10) for the exponential random Fig. 8. The MS-values of time-shift variations computed with
medium in the laboratory experiment. Notice that a logarithmic ray theory and 2-D scattering theory are shown with the dotted
scale is used for the y-axis. The reference slowness and relative line and dashed line, respectively, while the numerically observed
slowness perturbation given in Table 1 for Oshima granite were MS-values of time-shift fluctuations for several correlations
applied as statistical model parameters in the exponential auto- length are plotted with points and error bars. In Fig. 8(a)
covariance function for the two granite samples. The observed (exponential quasi-random medium) and (b) (Gaussian quasi-

random medium), the relative slowness perturbation e= 3 per
cent. In Fig. 8(c) (exponential quasi-random medium) and
(d) (Gaussian quasi-random medium), e=10 %. It is seen

100 Observed lab. MS-values A- that 2-D scattering theory predicts the numerically observed
3-D scattering theory ---- MS-values of time-shift perturbations within the error bars,

Ray theory
.%.. ................................ . w e while the ray theoretical MS-values of time-shift variations are

...................... . generally too large.

10 .............. Oshima granite We show in Figs 9 and 10 that 2-D scattering theory
10 j .(dashed line) is much more accurate than ray theory (dotted line)

Westerly granite to predict the FD-time-shifts (solid line) using deterministic
t)

iE .realizations of exponential and Gaussian quasi-random media
. ...--.. with correlations length smaller in size than the width of the

o 1 , ---' Fresnel zone. The ray theoretical time-shift is calculated with
C- ......-- -- eq. (3) and the time-shift due to scattering theory is computed

c > -- ---. with eq. (9) using the 2-D sensitivity kernel for a plane wave
E25 *"in eq. (22). For the realizations of exponential quasi-random
0.1 , media and Gaussian quasi-random media with e=10 % in

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 Figs 9 and 10, respectively, the correlation length a=0.4.
Correlation length, a (mm) 1 and 2 mm which corresponds to the points for which the

Figure 7. The MS-value of time-shift fluctuations versus the cor- numerically observed MS-values of time-shift fluctuations
relation length computed with ray theory (dotted line) and 3-D in Fig. 8 are computed. In all the figures with the time-
scattering theory (dashed line) for the exponential random medium shift fluctuations obtained from deterministic realizations of
in the ultrasonic wave experiment. The offset L=8 cm, the slowness exponential and Gaussian quasi-random media, it is observed
uo=2.153 x10- 4 sm- ' and the relative slowness perturbation e=9.4 that the scattering theoretical time-shift fit the FD-time-
per cent for Oshima granite. The observed MS-value of time- shift quite well while ray theory often overestimates or predicts
shift fluctuations from the laboratory experiment is plotted at the

time-shifts out of phase with the FD-time-shifts.correlation length a=0.22 mm (Westerly) and 0.46 mm (Oshima) with t o 
points and errorbars. We see that scattering theory predicts the observed The MS-value of time-shift fluctuations in Figs 7 and 8 and
MS-value of time-shift fluctuations obtained from Westerly granite the time-shifts in Figs 9 and 10 are calculated using first order
(within the errorbars) and Oshima granite (just below the errorbar), while ray perturbation theory, thus principally we only show that
ray theory overestimates the observed MS-values of time-shift variations ray theory based on Fermat's principle does not hold in the
in the laboratory experiment. laboratory experiment and the FD-experiment. The effect of
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Figure 8. MS-values of time-shift fluctuations for exponential and Gaussian random media with different correlation lengths in the FD-experiment.
The reference slowness is 2.5 x 10 - 4 sm - 1, the source-receiver offset is 8 cm for an incident plane wave and the frequency-range is from 250 to
1000 kHz. The MS-value of time-shift fluctuations for ray theory is plotted with the dotted line and for scattering theory with the dashed line. The
numerical data are computed for the correlation length which is between 0.4 and 2 mm. The error bars show the standard deviation of the numerically
observed measurements. (a) The exponential random medium with the relative slowness perturbation E = 3 per cent. (b) The Gaussian random medium
with e=3 per cent. (c) The exponential random medium with .= 10 per cent. (d) The Gaussian random medium s= 10 per cent. Scattering theory for
waves propagating in 2-D is better than ray theory to predict the observed MS-values of time-shift fluctuations computed in the numerical experiment.

ray bending in Gaussian random media has been investigated 7 DISCUSSION
by Spetzler & Snieder (2001b). They apply second order ray

perturbation theory, thereby including the bending of rays The results of this study has serious implications for seismic

in the calculation of the time-shift due to the perturbation of exploration and seismology. In Table 2 we present the charac-

the slowness medium. Spetzler & Snieder (2001b) find that ray teristic values for the wavelength 2 , the length L of the ray path
bending effects are not important in Gaussian random media between the source and receiver, the width LF of the Fresnel
when the Fresnel zone is larger than the correlation length zone and the length-scale a of slowness anomalies found in
of the realization of the Gaussian random model. The result of present-day tomographic inversions in seismic exploration and
Spetzler & Snieder (2001b) also holds for the results from the seismology. For reference, see Parra & Bangs (1992) for vertical
laboratory experiment and FD-experiment in this study. seismic profiling tomography (VSP), Goudswaard et al. (1998)

Table 2. Characteristic values of wave experiments in seismic exploration and seismology. The wavelength is denoted 2,
the length of the ray path between the source and receiver is L, the length-scale of observed slowness anomalies is a and
the width of the Fresnel zone is written as LF. The following abbreviations are used; VSP: vertical seismic profiling, CT:
crosswell tomography, RS: reflection seismic, RSWT: regional surface wave tomography, GSWT: global surface wave
tomography and GBWT: global body wave tomography.

2/ L LF a

VSP 5-250 m 300 m 38-274 m 10-15 m
CT 210 m 500m 32-70m 510 m
RS 80 m 200 m (shallow)-8 km (deep) 126-800 m 25-50 m
RSWT 450 km 1-70 deg 200-1735 km 1000 km
GSWT 450 km 20-160 deg 870-4940 km 3000-4000 km
GBWT 6 km 100-20000 km 25-346 km 50-100 km
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Figure 9. Time-shifts obtained from ray theory, 2D scattering theory 20 40 60 80 100 120 140
and the ED-solution of the wave equation for different realizations Index of data
of an exponential quasi-random medium with the reference slowness Figure 10. As in Fig. 9, but using different realizations of the

u= 2.5 x s m and the relative slowness perturbation e= 10 per Gaussian quasi-random medium with the relative slowness pertur-
cent. The source-receiver offset L=8 cm for an incident plane wave. bation e 10 per cent. (a) The correlation length a= 0.4 mm, (b) a= 1 mm
The measured waveforms are bandpass-filtered in the frequency- and (c) a 2 mm.
range from 250 to 1000 kHz. (a) The correlation length a=0.4 mm,
(b) a= 1 mm and (c) a=2 mm.

& Sparkman (1998) for global body wave tomography
(GBWT). For 3-D wave propagation experiments that is

for crosswell tomography (CT), Hatchell (2000) for reflection VSP, CT and GBWT, the maximum width of the Fresnel zone
seismic (RS), van der Lee & Nolet (1997) for regional surface is given by
wave tomography (RSWT), Trampert & Woodhouse (1995)
for global surface wave tomography (GSWT) and Bijwaard LF = v.L, (23)
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(Spetzler & Snieder 2001b) and for RS, the maximum width of where the real measurements using ultrasonic waves were done.
the Fresnel zone at the reflector is as well given by eq. (23) but We would also like to thank Roel Snieder for his comments and
the parameter L is then the two-way length of the wave path advices in order to improve the manuscript. The two reviewers
from the source to the reflector and back to the receiver. Klaus Holliger and Ulrich Wegler showed much interest in this
Surface wave tomography (e.g. RSWT and GSWT) is a 2-D study, and their remarks helped us to clarify many important
wave propagation experiment, so the maximum width of the points in the paper. The investigations were (in part) supported
Fresnel zone on the sphere is given by by the Netherlands Geosciences Foundation (GOA) with financial

aid from the Netherlands Organisation for Scientific Research
LF 3RI tan () (24) (NWO) through the project 750.297.02.

F 2 \L)2, 
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multiplication of two time-shifts, thus The distance r = 1 2 + (z' ~- 11)2 and 1= Ix'- x"J. We split
<(6t)2>(L) ~~~~~~~~~~~~the integration of the variable x" in eq. (C3) into two parts;

one integration from zero to x' and another integration
pL pL from x' to L. The MS-value of time-shift fluctuations is then

= (euo )2 JJJ J K(x', z')K(x", z")dx~d~z'dxY'dz"1 written as

=(eulo )2 J K(x', z')dx'd:'J K(x", z")dx"dz" K<(t)2>(L) ={ dz' J dz" dx'

= (EuoL)2 , (Bi1) <F f (r)ij(X', x"', z', z")dx"

because each scattering theoretical sensitivity kernel integrated[J
over the 2-D volume between the source and receiver is equal to L

the source-receiver offset L as shown below in eq. (132). Hence + f (r) q(x', x"', z', dx (C4)
L cc I.-

J-00 K~~~~x, z~~dzdx ~Define 1=x'-x" and 1=x"-x' for the first and second
v +voA L' integration of x" inside the squared brackets, respectively.

V= u0L A A(,)vv x(L - Making a change of variable, we obtain that

x fC in~v~uoL~)+- )ddxdv<(bt)2> (L) Vdz'J dz"J dx`

u0Li fvo+AV + ~ 1dzF'd.,ix' ' 1d',z"d
2i Jxo-0 ' J x(L - x) [JQ0~x f

x J (ei(vnuoL,(L-,±) 4-e ei(vnhuoL (L-,±)4) dzdxdv + Jo f (r),(x', x' + 1, z', z" )dj (C5)

u0OvVL 1 (2 x(L -x))~dd As shown explicitly in Appendix A of Spetzler & Snieder
~J,, voAv J x(-) vuoL} (2001 a), we can change the order of integration of the variable

x' and I in eq. (C5). Moreover, the auto-correlation function
[0 A~i,)d L 1d . 12 (r) depends on I and can be removed outside the squared

0A~v d x L (2 brackets. The final result of the MS-value of time-shift

Stationary phase theory (Bleistein 1984) is applied to evaluate fluctuations for waves propagating in 2-D media is written as
the integration of the variable:z between -woand cc. A similar co 
derivation holds for 3-D scattering theory for a point source <( bt)

2
>(L) = dz'f dz" Jodlf (V12 ± (Z' -Z:11)2

and for the 2-D diffraction sensitivity kernel for a plane wave. L~ ' 

APPENDIX C: THE CONVERGING OF < i(,x'-,z,")'

THE MS-VALUE OF TIME-SHIFTL
FLUCTUATIONS TOWARDS ZERO rL-1

WHEN THE CORRELATION LENGTH ±o iq(x"', +1, ', , (C6)
GOES TO ZERO I1

In this appendix, eq. (16) is derived explicitly for 2-D scattering where we explicitly write r = 162 ~+(z' - :11)2 in the auto-
theory. A similar derivation is valid for the scattering of waves correlation function. Finally, we can investigate what happens
propagating in 3-D. The following integration technique can to the scattering theoretical MS-value of time-shift fluctuations
also be found in Roth et al. (1993) and in Spetzler & Snieder in the limit that the correlation length goes to zero. In that
(2001la). Let particular case, the auto-correlation function

f (r) = <bu(x', z'>3u(x", z") >, (Cl1) f(EUO) 2 if z" = z" and I = 0

and f (, = ,2. i l2(ZI - ZI)) 0 if 10 (C7)

The MS-value of time-shift fluctuations using scattering theory We see that the auto-correlation function in eq. (C7) is only
of 2-D propagating waves in eq. (10) is then written as non-zero for the variable 1=0. This means that the MS-valueJ . rL L of time-shift fluctuations using 2-D scattering theory con-

OD f (r) q(x', x"', z', z") dx'dz,'dx"dz". verges towards zero in the limit that the correlation length goes
-~~ J -~~~ JOJ 0 ~~~to zero because the integration of the variable I in eq. (C6)

(C3) yields zero.
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