
The distributions of slip rate and ductile deformation in a strike-
slip shear zone

Frédérique Rolandone and Claude Jaupart
Institut de Physique du Globe de Paris, 4, Place Jussieu, 75252 Paris, France. E-mail: rolandon@ipgp.jussieu.fr

Accepted 2001 August 15. Received 2001 July 30; in original form 2001 April 10

SUMMARY

A simple mechanical model and dimensional analysis are used to derive a scaling law for
the partitioning between slip rate on a strike-slip fault and distributed deformation in
the far-field. The depth of the fault, the distributions of stress, strain rate and slip rate
are solved for a given far-field force or displacement in a 2-D medium with a linear
temperature-dependent viscous rheology. At the shear zone axis, a mixed boundary
condition is used to account for the presence of both an active fault and a ductile
zone below. Over the vertical extent of the fault, the boundary condition is one of a
fixed shear stress distribution dictated by a friction law. In the ductile zone below, the
boundary condition is one of zero velocity. A deep fault or large vertical rheological
variations are required to localize deformation on the fault with small amounts of
regionally distributed deformation. In this model without thermal or strain softening,
strain localization occurs naturally beneath the fault. For large rheological variations,
the slip rate remains approximately constant over half the fault vertical extent and
progressively decreases to zero below. Thus, there is a thick transition zone between
block motion at the surface and distributed ductile deformation at depth. The near-
surface deformation field depends weakly on stress and strain in the lower ductile region
and the key controlling parameter is the vertical rheological variation over the depth of
the fault. A scaling law relates the far-field strain rate to the slip rate and depth of the
fault independently of frictional strength. For typical parameter values, the far-field
strain rate is found to be 10x15 sx1 or less, showing that strike-slip faults separate blocks
that can be considered rigid for all practical purposes. For the large vertical rheological
variations of relevance to geological examples, shear heating is mostly a result of friction
on the fault plane and is maximum at a small distance above the base of the fault.
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1 INTRODUCT ION

In active geological regions, deformation occurs in both brittle

and ductile regimes. In many studies, it is assumed that litho-

sphere behaviour depends primarily on depth, such that the

brittle–ductile transition is determined from regional estimates

for the distributions of temperature and strain rate (Goetze &

Evans 1979; Brace & Kohlstedt 1980). In the vicinity of a large

fault, however, this assumption may be misleading because of

strain localization and shear heating. In active regions, this has

made comparisons between model predictions and measured

displacement fields difficult. This is true for strike-slip shear

zones, which account for a large fraction of tectonic deformation

in many regions and are associated with devastating earth-

quakes. A thorough understanding of their deep structure and

deformation characteristics is required to link their behaviour to

far-field driving stresses and displacements. With few exceptions,

strike-slip shear zones have been studied using simplified repre-

sentations of the coupling between brittle and ductile layers. A

velocity discontinuity is usually imposed at the base of the fault,

with the slip rate kept at a constant value over the fault plane

and dropping to zero just below it. This idealized representation

has been used in hazard assessment, such that stress changes

following earthquakes are calculated in an elastic plate of con-

stant thickness overlying viscous material (e.g. King et al.

1988). It has also been used to discuss whether motions in the

ductile lower crust drive, or are driven by, deformation in

the shallow faulted crust (e.g. Savage 1990; Thatcher & England

1998; Bourne et al. 1998; Savage et al. 1999). Such a simple

representation may not be correct and one should determine

the vertical distribution of slip rate and the size of the transition

zone where deformation has both slip and ductile components.
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The behaviour of a fault zone depends on several variables,

including frictional strength, rheology of crustal rocks, thermal

structure and far-field stresses. In practice, therefore, it is

desirable to develop some understanding of the role of each

variable and how each one affects the slip and ductile com-

ponents of deformation in both the horizontal and vertical

directions. Both types of deformation generate shear heating

and it is important to specify their respective contributions when

evaluating the implied thermal perturbations (e.g. Lachenbruch

& Sass 1980, 1992; Scholz 1980; Turcotte et al. 1980; Ricard

et al. 1983; Thatcher & England 1998; Leloup et al. 1999). For

example, one might argue that frictional heat caused by slip

on the fault surface may be evacuated locally through fluid

circulation, as fault gouges may be permeable (Sleep & Blanpied

1992; Scholz 2000; Townend & Zoback 2000). Shear heating

is likely to reach a maximum near the base of the fault, where

shear stresses are largest and where deformation is likely to

have both slip and ductile components.

In this paper, we develop a mechanical model of a shear zone

in a ductile medium driven by far-field stresses or displace-

ments. We determine the relationships between the depth of

the fault, the vertical distribution of slip rate and the ductile

deformation field, as functions of far-field boundary conditions,

thermal structure and rheological parameters. For clarity, the

study is restricted to steady-state conditions, but is intended to

serve as the starting point for a fully time-dependent description

of a shear zone. Our approach has several characteristics in

common with recent studies. In Roy & Royden (2000), brittle

faulting is represented by elastic dislocations in a linear visco-

elastic medium with depth-dependent viscosity. The slip rate is

kept at a uniform value over fault surfaces and the depth and

spacing of faults are solved for. Chery et al. (2001) have studied

the behaviour of a fault zone in a temperature-dependent linear

ductile medium subject to a range of far-field conditions and

rheological variations. They specify the width of the shear zone

and do not study shear heating. In this paper, we consider a

large parameter range and use dimensional analysis to shed

light on the key control variables. This also allows extrapolations

to other cases. We evaluate the various components of shear

heating and demonstrate how they change as a function of the

control variables.

2 MODEL FORMULAT ION

2.1 Deformation mechanisms in the continental crust

Knowledge on the mechanical behaviour of the upper crust has

improved considerably over the previous two decades thanks

to material science studies and field observations (Sibson 1986;

Kohlstedt et al. 1995) (Fig. 1). At shallow depths, heavily

fractured and jointed rocks behave as unconsolidated granular

material. Thus, deformation proceeds by frictional sliding on

randomly oriented fractures, leading to a linear increase of

deviatoric stress with depth known as Byerlee’s rule (Byerlee

1978; Brace & Kohlstedt 1980). With increasing depth, the

frictional strength increases and the macroscopic behaviour

depends on whether rocks are intact or pervasively faulted.

Stresses become sufficiently large for the activation of mech-

anisms driving regionally distributed deformation. Depending

on temperature, stress and the presence or absence of fluids,

such mechanisms may include non-localized cataclastic ductile

flow, semi-brittle flow involving both plastic and brittle processes,

power-law breakdown creep or grain boundary diffusion creep

(Kohlstedt et al. 1995). With such mechanisms, strain rates in

geological conditions are necessarily small, but the question of

exactly how small they can be motivates the present analysis.

At sufficiently large depths, temperatures are large enough for

fully plastic flow processes to dominate. Specifying constitutive

equations for the various regimes represents a formidable

challenge for the heterogeneous continental crust made of water-

bearing rocks with large variations of mineralogy and texture

(Kohlstedt et al. 1995).

In the simplest model, the transition from brittle to plastic

flow is such that the frictional strength exceeds the plastic flow

stress. This will be referred to as the brittle–ductile transition

in order to follow common usage, although it is a rather gross

approximation. The depth of this transition decreases with

decreasing strain rate, and may vary between depths of 6 and

25 km depending on rock type (Kohlstedt et al. 1995). Most

calculations are made with the strain rate set at 10x15 sx1, on

the grounds that smaller values are not geologically significant,

i.e. lead to displacements that are not relevant for tectonic

studies. In reality, this assumption glosses over one of the key

goals of tectonic studies, which is to assess whether continental

deformation is achieved through faults separating rigid blocks

or involves a significant component of regional strain. In a

region where a major fault extends through a large part of the

‘brittle’ crust, we are interested in how strain is partitioned

between sliding on the fault and regionally distributed deform-

ation. To solve this problem, one must determine slip rates on

the fault and strain rates away from the fault in a self-consistent

manner. This issue may be discussed using the San Andreas

fault system as an example. There, recent high-resolution images

of seismicity emphasize that earthquakes are concentrated in a

few very thin shear zones down to depths that typically exceed

10 km (Schaff et al. 2001). Furthermore, at distances greater

than about 50 km from the San Andreas fault, strain rates fall

below detection levels and, in fact, below the reference value of

10x15 sx1 (Thatcher 1990). These observations suggest that, at
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Figure 1. Schematic illustration of the mechanical behaviour of the

continental lithosphere. A thin uppermost layer of about 3 km thick-

ness is made of heavily jointed rocks and behaves as unconsolidated

granular material (Scholz 1998). Below this layer, a major fault extends

over thickness d and material deforms in a ductile regime. Brittle and

ductile deformation mechanisms depend on the local values of stress

and strain rate and cannot be imposed a priori. On the right is shown a

schematic representation of the vertical stress profile. In the thin

unconsolidated layer, stresses increase linearly with depth according to

Byerlee’s rule. In the lower crust, plastic deformation is such that

stresses decrease with increasing depth. In the intermediate region,

deformation gets localized in the vicinity of the fault, implying lateral

variations of stress and strain rate.
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depth and away from a major fault, stresses do not reach the

local frictional strength and raise the important question of

how such values of strain rate are achieved.

Byerlee’s rule specifies the stress profile for brittle crust, but

provides no constitutive equation between stress and strain

rate. Thus, for a given far-field driving force, displacements

in such material cannot be predicted by a mechanical model.

This explains why most studies of continental deformation rely

on kinematic boundary conditions and on assumptions for

the coupling between brittle and ductile layers (e.g. Thatcher &

England 1998). One important issue is whether stresses are only

depth-dependent and remain equal to the frictional strength

along the horizontal. There is little doubt that this is true at

very shallow depths in what may be called the ‘unconsolidated’

region. This is a region of ‘frictional stability’, such that earth-

quakes cannot be generated, which extends over 3 to 4 km

(Mori & Abercrombie 1997; Scholz 1998). In such weak material,

there is not much resistance to slip. Thus, there is no meaningful

limitation on strain rates, and one may assume that displace-

ments follow passively those of the substrate. Below this shallow

region, the frictional strength becomes large and the vertical

extent over which it may be overcome depends on two factors.

One is the magnitude of the driving tectonic force, and the

other is how this force is partitioned between brittle and ductile

regions. This difficulty led Thatcher & England (1998) to define

two end-member possibilities. In one of them, the ductile layer

is strongest and drives deformation in the passive upper crust.

This extends the unconsolidated region to the whole seismo-

genic upper crust. In this case, the top of the ductile layer

behaves as a traction-free surface and deformation is driven by

basal shear. In the other end-member, the brittle region is the

strongest part of the crust and drives deformation in the ductile

lower crust. A fault is separated by rigid blocks and a stepwise

change of velocity deduced from field studies is introduced as a

boundary condition at the top of the ductile layer. One problem

with these models is that, given that rather large horizontal

stress variations are predicted in the ductile medium, there is no

reason to believe that the brittle–ductile transition lies at a fixed

depth.

2.2 Governing equations

In the present model, the uppermost unconsolidated crustal

layer of thickness h is not taken into account. We assume that

this layer is ‘passive’, such that displacements follow those of

the substrate. Below this layer, distributed deformation occurs

away from one major fault (Fig. 1). A large fraction of the far-

field tectonic displacement is taken up by sliding on the fault

and strain rates are small away from the fault. For such low

strain rate deformation, we use a single temperature-dependent

flow law. There are large uncertainties on crustal rheology and

frictional strength, and hence our aim is to establish scaling

laws that allow compact information independent of specific,

and probably unreliable, choices of constitutive equations and

parameter values.

We do not consider the short-term earthquake cycle and

focus on the long-term behaviour, i.e. the secular slip rate on

the fault owing to the tectonic loading of the bounding blocks.

As a first step, the study is restricted to steady-state thermal

conditions with a temperature field that depends on depth

only. In 2-D, motion occurs only in the horizontal direction

parallel to the vertical shear zone, such that the velocity vector

v=(ox, 0, 0) and there are no along-strike variations (along the

x axis) (Fig. 2). Conservation of momentum in the x-direction

is written as follows:

Lpyx
Ly

þ Lpzx
Lz

¼ 0 , (1)

where syx and szx are the components of the stress tensor.

Following Yuen et al. (1978), Thatcher & England (1998)

and Chery et al. (2001), we use a temperature-dependent linear

isotropic viscous rheology for crustal and mantle rocks. One

reason for this approximation is that, with a suitable choice

of parameters, such a simplified rheology allows good agree-

ment with vertical stress profiles derived from laboratory studies

(Chery et al. 2001). The relationship between deviatoric stress

and strain rate is therefore

pij ¼ 2k_eij , (2)

where m is the temperature-dependent viscosity and ėij the strain

rate. The momentum equation is rewritten as follows:

L
Ly

k
Lox
Ly

� �
þ L
Lz

k
Lox
Lz

� �
¼ 0 : (3)

This study is intended as a starting point for time-dependent

calculations where the temperature field varies in both the

horizontal and vertical directions owing to shear heating. Thus,

viscosity must be considered to be temperature-dependent:

k ¼ T

2B
exp

E

RT

� �
, (4)

where T is the temperature, B is a material constant, E is the

activation energy and R is the universal gas constant. In the

following, the temperature varies only with depth (T=T0+bz),
and hence so does viscosity. Later on, we shall define a depth-

scale for vertical viscosity variations as a function of both E

and b.

In all calculations but one, the whole domain is characterized

by a single flow law. In reality, crustal and mantle rocks have

different rheologies but we shall show that the fault behaviour

is not sensitive to the rheology of deep material. We have made

calculations for a range of activation energies, implying different

rheological stratifications for the ductile medium. For dis-

location creep in continental crustal rocks, constitutive relation-

ships between strain rate and stress are power laws with values

of the activation energy and exponent varying between about

100 and 300 kJ molx1 and between about 2 and 3, respectively

(Carter & Tsenn 1987; Kirby & Kronenberg 1987; Kohlstedt
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Figure 2. Geometry and boundary conditions of the mechanical

model. Boundary conditions are in bold letters, and the variables to be

solved for are in italics.

Slip rate and ductile deformation in shear zones 181

# 2002 RAS, GJI 148, 179–192



et al. 1995). For geological strain rates, depending on temper-

ature, the same stress levels are achieved by a linear rheology

with values of the activation energy between about 70 and

110 kJ molx1 (Chery et al. 2001).

2.3 Boundary conditions

The behaviour of the shear zone at the axis is determined by the

vertical shear stress profile, and the slip rate on the fault is not

prescribed because this is the variable we seek to determine. If

stresses at the axis overcome the frictional resistance, the fault

is activated and some fraction of the total displacement is taken

up by sliding. On the contrary, if stresses are lower than the

frictional strength, there is no slip on the fault. The base of

the fault does not correspond to a fixed material discontinuity,

but lies at a depth that is dictated by the local stress field. Below

the fault, deformation occurs in the ductile regime and there is

no slip.

Given the large uncertainties on the true values of shear

stress on faults (e.g. Scholz 2000; Zoback 2000), we consider

two different constitutive equations for the fault. We use a

simple Amonton friction law with constant friction coefficient

and an alternative model in which the threshold shear stress for

sliding is constant, corresponding to zero friction coefficient.

Assuming that the principal contribution to the normal stress is

lithostatic pressure, the friction law states that the shear stress

on the active fault increases linearly with total depth z*:

pyx ¼ pc þ f ogz� , (5)

where sc denotes cohesion and f is a constant friction coefficient.

The top of the computational domain (at z=0) lies at depth

h below an unconsolidated layer. Thickness h needs not be

specified and only affects stress levels on the fault. In our

coordinate system, the frictional law is rewritten as

pyx ¼ p0 þ f ogz , (6)

where the ‘effective’ cohesion coefficient s0 includes the

contribution of friction associated with the weight of the

overburden:

p0 ¼ pc þ f ogh : (7)

In summary, for the mechanical model, the shear zone

axis at the left-hand edge of the domain is defined by a mixed

boundary condition, a shear stress profile dictated by the friction

law over the fault and a fixed velocity (ox=0) below. Far from

the fault plane, the medium has a block-like behaviour with no

vertical gradients of strain rate and displacement. Strike-slip

motion arises from a constant driving force that, in the steady

state, corresponds to both a fixed displacement rate and a fixed

stress distribution. At the top of the domain, unconsolidated

material offers no resistance to slip, which corresponds to

stress-free boundary conditions. The base of the computational

domain at high temperatures is also taken to be traction free.

Fig. 2 illustrates schematically the mechanical model and its

boundary conditions.

2.4 Method and aims

In order to account for large variations of physical properties

and small-scale stress gradients, we have used a finite-element

method. For given far-field conditions, the depth d of the fault,

the vertical distribution of the slip rate on the fault and the

deformation rates elsewhere are solved for. Geological systems

involve large vertical rheological variations and we have investi-

gated cases where the viscosity varies by as much as 3r1013

in order to generate the large range of conditions needed to

establish scaling laws. Calculations were carried out over a non-

uniform grid with 900r900 elements, such that the smallest

elements in the vicinity of the fault plane are 31 m wide. For

typical parameter values (Table 1), results were obtained in a

half-space with 95 km depth and 200 km wide—broad enough

that it does not influence the local behaviour of the shear zone.

These physical dimensions may be thought of as being repre-

sentative of the continental lithosphere in an active region, but,

as will be made clear later, do not influence the results in any

important way.

The accuracy of the solutions was ascertained in two ways.

Calculations on a finer mesh-size do not differ significantly. A

second test is provided by verifying that the total applied force

is conserved. With our boundary conditions (Fig. 2), eq. (1)

imposes thatðLz

0

pyx dz ¼ F , (8)

where Lz is the depth of the domain. F is the total shear force

and does not depend on y, the distance from the shear zone.

For our numerical results, condition (8) is satisfied at all distances

(y) to better than t2 per cent.

3 FAULT DEPTH AND DEFORMAT ION

Results are given first for a specific set of parameter values that

are not meant to be fully realistic (Table 1). Variables will be

shown in dimensionless form and the scaling analysis will allow

a general understanding independent of the specific values

chosen. At the top of the model, the viscosity is fixed arbitrarily

at a value m0=1026 Pa s, close to the values given by Thatcher

& England (1998). Other parameters are the friction coeffi-

cient f=0.6 (Byerlee 1978), density r=3r103 kg mx3 and

‘effective’ cohesion s0=90 MPa, which corresponds to the

frictional strength at a depth of 5 km. We also take a fixed

geotherm with gradient b=0.01 K mx1 and T0=323 K. Stresses

are normalized using the maximum stress on the fault:

pd ¼ po þ f ogd : (9)

Slip and displacement rates are normalized using the far-field

velocity at the right-hand boundary:

Uf ¼ oxðLy, zÞ : (10)

Table 1. Parameter values for most calculations.

Viscosity at the upper boundary m0 1026 Pa s

Average density r 3r103 kg mx3

Cohesion s0 90 MPa

Friction coefficient f 0.6

Geothermal gradient b 0.01 K mx1

Upper boundary temperature T0 323 K

Width of computational domain Ly 200 km

Thickness of computational domain Lz 95 km
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With the linear rheology, these normalization procedures lead

to dimensionless variables that are independent of the viscosity

scale m0.

In each calculation, the far-field driving force F is imposed.

In the steady state, this is equivalent to specifying the far-field

displacement at some value that depends on the rheology and

thermal structure. Five different cases with different para-

meter values will be described in detail (Table 2). We shall also

present two sets of calculations in which a single parameter is

changed. In the first set, the driving force F varies, implying

different fault depths d. In the second set, we investigate how

changes of rheological stratification affect the fault behaviour

and stresses. Changes of rheological structure are generated

by changes of activation energy, but each case is identified by

the total viscosity variation in the domain, m0/mb, where mb is the

basal viscosity at z=Lz.

3.1 The distributions of velocity, slip rate and shear
stress

In model 1 (Table 2), we impose a relatively small far-field

force F and take an activation energy of 95 kJ molx1, implying

a vertical viscosity variation of ca. 11 orders of magnitude

(Fig. 3). In this case, a shallow fault with d=5 km deep is

activated. Such a shallow fault barely modifies the velocity field

in the lithosphere (Fig. 4).

The far-field velocity at the right-hand edge of the domain, at

y=Ly, is denoted by U1. At the top of the domain, sliding on

the fault accounts for only 15 per cent of U1. The deformation

is distributed quite evenly over the whole width of the domain

and strain rates are almost uniform along the vertical. On the

fault surface, the slip rate remains approximately constant over

a small vertical distance and decreases progressively towards

zero at z=5 km (Fig. 5). There is no well-defined surface over

which the slip rate is uniform, and there is instead a large

adjustment zone where the deformation proceeds by both slip

and ductile flow.

Shear stress follows the friction law down to the calculated

fault depth d, by definition, and decreases sharply below in

the region where all deformation occurs in the ductile regime

(Fig. 6). The stress field changes dramatically as one moves

away from the shear zone (Fig. 7).

Model 2 has the same rheological structure as model 1 and

a larger driving force, which leads to a larger far-field velocity

U2 (U2=32U1). Consequently, a deeper fault, d=12 km, is

activated, and this modifies the velocity pattern markedly

(Fig. 8). Near the surface, the fault now accounts for most of

the motion: at the upper boundary, the slip rate is 92 per cent

of the far-field velocity. Thus, the upper part of the domain

Table 2. Parameter values for five cases.

Model Cohesion Friction Activation Total vertical Driving Fault Normalized

so (MPa) coefficient energy viscosity variation force depth slip rate

f E (kJ molx1) m0/mb F (N mx1) d (km) Us /Uf

1 90 0.6 95 7.33r1010 9.0r1011 5 0.15

2 90 0.6 95 7.33r1010 2.8r1012 12 0.92

3 90 0.6 105 1.18r1012 2.2r1012 10 0.87

4 { 90 0.6 105 2.90r107 2.2r1012 10 0.87

5 { 180 0 105 1.18r1012 2.2r1012 10 0.87

{: Model with truncated viscosity profile (see text and Fig. 12).
{: Model with constant shear stress on the fault (see text).
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Figure 3. Vertical distribution of viscosity normalized to the largest

viscosity at the top of the model, m0, for models with fixed rheological

stratification, including models 1 and 2 (Table 2).

0.4 0.8

fault plane
0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140 160 180 200

D
ep

th
 (

km
)

Distance from the fault plane (km)

Figure 4. Velocity field for model 1 (Table 2). Velocity values have

been normalized by the far-field velocity at the right-hand side of

the domain, Uf=ox(Ly, z). Contours are shown for 0.1 increments. A

shallow fault 5 km deep is activated, which only affects the ductile

deformation pattern in a small region.
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has a quasi-rigid behaviour with negligible distributed ductile

deformation. The deformation is confined to the vicinity of the

fault and strain rates are very small away from the fault. At

depth, deformation is also concentrated in the vicinity of the

fault axis, even in the ductile region below the fault.

For a given rheological stratification, a higher driving force

or far-field velocity activates a deeper fault. If we focus on the

fault itself, however, and compare the vertical profiles of the slip

rate on the fault for models 1 and 2, we can see that the

differences are small (Fig. 9). For the deeper fault, block motion

is achieved over a slightly thicker region at the top and, corres-

pondingly, the transitional region with both slip and ductile

components is smaller. The stress fields for models 1 and 2 look

similar when allowance is made for the different fault depths.

However, the deformation fields differ markedly, because of

the different slip rate magnitudes. At the regional scale, the

shallower fault does not modify the velocity field and does not

take up a significant fraction of the deformation. With a larger

driving force, the fault roots deeper and, near the surface,

deformation is mainly achieved by slip on the fault. At depth,

strain is localized in a relatively narrow shear zone beneath the

fault. This is achieved without elevated temperatures near

the fault.

3.2 Fixed rheological stratification and variable fault
depth

In a first set of calculations (Table 3), we have kept the same

rheological structure (Fig. 3) and have considered a range

of values for the driving force F. Increasing the driving force

acts to increase shear stress values at the axis, and hence to

deepen the fault. As the fault depth increases, sliding on the

fault accounts for an increasing fraction of the total defor-

mation. A measure of this is provided by the ratio of the slip

rate to the far-field velocity, Us /Uf (Fig. 10). For the deepest

fault (d=15 km), this ratio reaches a value of 0.98, i.e. distri-

buted deformation only accounts for 2 per cent of the far-field

displacement.
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Figure 5. Vertical profile of slip rate on the fault plane for model 1,

normalized to the far-field value at the right-hand side boundary, Uf.

5

10

15

0

D
ep

th
 (

km
)

0 0.2 0.4 0.6 0.8
Normalized stress

1 1.2

Figure 6. Vertical distribution of shear stress syx(0, z) at the shear

zone axis for model 1. Stresses correspond to the friction law down to

the base of the fault at depth d=5 km.
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normalized by the maximum stress on the active fault, sd=s0+frgd.

Table 3. Parameter values for calculations in which the driving force F

is the only variable parameter. The activation energy for ductile flow is

kept constant, corresponding to a vertical rheological variation, m0 /mb,

of 7.3r1010. All other parameters (Table 1) are kept constant.

Driving force Fault depth Normalized slip rate

F (N mx1) d (km) Us /Uf

9.0r1011 5 0.15

1.4r1012 7 0.46

2.0r1012 10 0.80

2.8r1012 12 0.92

3.7r1012 15 0.98
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3.3 Variable rheological stratification and fixed fault
depth

In this second set of calculations, we have kept the fault depth

at a constant value d=10 km and have varied the activation

energy for ductile flow, implying changes of vertical rheological

variation (Table 4). For these calculations, the driving force F

is almost constant. As the vertical viscosity variation is increased,

the upper part of the domain becomes increasingly stiffer than

the lower part, implying that deformation is increasingly taken

up by sliding on the fault. Thus, the ratio of the slip rate to the

far-field velocity, Us /Uf, increases (Fig. 11).

3.4 Local behaviour in the vicinity of the fault

We have seen that the deformation characteristics depend

on the vertical rheological variation between the top and the

bottom. However, we have also seen that the largest stresses are

limited to the vicinity of the fault. This suggests that the lower

part of the domain, where viscosity is lowest, does not affect the

upper part. To verify this, we have considered two models with

different viscosity structures in the lower part of the domain,

numbered 3 and 4 (Table 2). Both have faults extending to the

same depth d=10 km. Model 3 has a large vertical rheological

variation of 12 orders of magnitude. In model 4, the vertical

viscosity profile of model 3 is truncated at 27 km depth, which

generates a more viscous substratum (Fig. 12).

The velocity fields for models 3 and 4 are almost identical in

the upper part of the domain, both near the fault and at a large

horizontal distance from it (Figs 13 and 14), but are markedly

different from one another in the lower part of the domain. This

shows that the low-viscosity region at the base of the domain

0.8

0.4

0.95

 fault plane 
0

10

20

30

40

50

60

70

80

90

D
ep

th
 (

km
)

0 20 40 60 80 100 120 140 160 180 200

Distance from the fault plane (km)
Figure 8. Velocity field for model 2. Velocity values have been normalized by the far-field velocity Uf. Solid contours are shown at steps of 0.1. The

vertical rheological variation is the same as in model 1, but a higher driving force is applied. With respect to model 1 in Fig. 4, far-field strain rates are

much smaller, showing that rigid behaviour is achieved. Horizontal velocity gradients are large in a deep ductile shear zone below the fault, showing
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the top of the fault, Us|z=0, respectively.

Table 4. Parameter values for calculations with fixed fault depth

d=10 km and variable activation energy for ductile flow. All other

parameters (Table 1) are kept constant.

Activation energy Vertical viscosity variation Normalized slip rate

E (kJ molx1) m0/mb Us /Uf

075 2.84r108 0.38

082 1.99r109 0.59

090 1.83r1010 0.77

095 7.30r1010 0.80

105 1.18r1012 0.87

110 4.73r1012 0.90

117 3.32r1013 0.93
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has little influence on fault behaviour and on how deformation

becomes localized at shallow levels. The deep viscosity structure

only influences the width of the basal shear zone. One should

not conclude from this that the upper and lower regions are

mechanically decoupled, because the regional stress fields are

similar.

We have also considered a different friction law in order

to evaluate its impact on the results. Model 5 has the same

characteristics as model 3 (Table 2), save for the stress distri-

bution on the fault. This was set to a constant value equal to the

average shear stress in model 3 (equal to s0+1
2 frgd). We found

that the velocity pattern is not modified in any significant

manner and that the slip rate on the fault takes the same value

in both cases (Table 2). The only noticeable differences are in

the local stress field near the fault (Figs 15 and 16). We note,

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 10 10 10 10 10 10
8 9 10 11 12 13 14

Vertical rheological variation  µ /µ 

N
or

m
al

iz
ed

  s
lip

 r
at

e 
U

 /U s
f

0 b
Figure 11. Normalized slip rate Us /Uf as a function of the total

vertical viscosity variation, m0 /mb, for models in which the depth of the
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The depth of the fault is fixed at d=10 km and the vertical viscosity

profile is shown in Fig. 12. As in model 2, most of the deformation is

accommodated by sliding on the fault.
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however, that these differences disappear at a small horizontal

distance (approximately equal to the fault depth d) from the

fault.

4 PHYS ICAL ANALYS I S

We have seen that, for a given vertical rheological variation,

increasing the far-field force implies a deeper fault and stronger

strain localization near the fault. For a fixed fault depth,

increasing the vertical rheological variation between the top

and the bottom also leads to strain focusing. In fact, both series

of calculations achieve the same effect: increasing the depth

of the fault acts to increase the vertical rheological variation

over the active fault, with the same consequence. Furthermore,

we have found that the rheological structure at great depth

does not affect the fault behaviour. These two results suggest

that the main controlling variable is the vertical variation of

rheology over the depth of the fault.

4.1 Scaling analysis

Calculations require a large number of input parameters, such

as the friction coefficient, the activation energy for ductile flow

and the total far-field force. Different variables are sensitive

to different input parameters, and it is useful to make these

various relationships explicit. In the previous sections, the

importance of ductile deformation was assessed using the ratio

of the slip rate to the far-field velocity, Us /Uf. The problem

with this procedure is that, for a given strain rate, however

small it may be, the far-field velocity increases with the width of

the computational domain. It is more appropriate to seek an

intrinsic strain rate scale, which allows a measure of ductile

deformation independent of domain size. The far-field strain

rate G provides such a scale and, as shown by eq. (13), is a

simple function of the driving force and the vertical viscosity

function.

At the right-hand side of the domain, far from the fault

plane, velocity does not vary with depth. Thus, one has

LoxðLy, zÞ
Lz

¼ 0 , (11)

and hence, using the momentum eq. (3):

LoxðLy, zÞ
Ly

¼ G , (12)

where G is the far-field strain rate which does not depend on

depth. The total applied shear force is

F ¼
ðLz

0

pyxðLy, zÞ dz ¼ G

ðLz

0

kðzÞ dz : (13)

It is convenient to define a depth-scale for viscosity variations:

d ¼

ðLz

0

kðzÞ dz

k0

: (14)

Changing variables in the viscosity integral leads toðLz

0

kðzÞ dz ¼ 1

2B

E2

aR2

ðRTb=E

RT0=E

h expð1=hÞ dh , (15)

where Tb=T(Lz) is the temperature at the base of the

domain. The integrand decreases rapidly and the integral is

for all practical purposes independent of the upper bound. This

is written as follows:ðLz

0

kðzÞ dz& 1

2B

E2

aR2

ð?
RT0=E

h expð1=hÞ dh ¼ 1

2B

E2

aR2
h1ðh0Þ ,

(16)
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where h1 is a dimensionless function of dimensionless variable

h0=E/RT0. From this, one has

d ¼ E

bR
h1ðh0Þ

h0 expð1=h0Þ
¼ E

bR
h2ðh0Þ , (17)

where E/bR has the dimensions of depth and the function

h2 is also dimensionless. d provides a depth-scale for viscosity

variations and depends on the temperature gradient and

rheological parameters. Far from the fault plane, the total force

is therefore given by

F ¼ Gk0d : (18)

On the left-hand side of the domain, one may write

F ¼
ðd

0

pyx dzþ
ðLz

d
pyx dz : (19)

The second term is very small (see Fig. 6) and hence

F&
ðd

0

pyx dz&
ðd

0

ðp0 þ f ogzÞ dz ¼ p0d þ 1

2
f ogd2 : (20)

This shows how the total applied force determines the length-scale

of our problem. We define a depth-scale [d] such that

F ¼ p0½d� þ
1

2
f og½d�2 : (21)

This scale is close to the true fault depth d, as expected from

eq. (20) and as shown below. One may introduce another

depth-scale, dc, such that

f ogdc ¼ p0 : (22)

For a large driving force or small cohesion, i.e. large values of

F/s0dc, eq. (21) simplifies:

for large
F

p0dc
, ½d�&

ffiffiffiffiffiffiffiffi
2F

f og

s
: (23)

This shows how the driving force imposes the vertical extent of

the active fault for given friction parameters.

Using the same line of reasoning, the stress scale is given by

the friction law:

½p� ¼ p0 þ f og½d� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

0 þ 2f ogF
q

: (24)

We have scales for the depth, [d], as well as for the strain rate, G,

and hence a velocity scale:

½U � ¼ ½d�G : (25)

This velocity value corresponds to the cumulative effect of

ductile deformation away from the fault, and provides a scale

for plastic flow which may be compared with the maximum slip

rate on the fault, Us. The ratio between these two velocity

values provides a convenient way to assess the importance of

slip in the near-surface deformation field. For a large force

or negligible cohesion, equations for the velocity and stress

scales simplify to

for large
F

p0dc
, ½p�&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f ogF

p
(26)

½U �&
ffiffiffiffiffiffiffiffi
2F

f og

s
F

k0d
: (27)

To summarize, for a given friction coefficient and cohesion,

the driving force determines the depth of the active fault and

the shear-stress scale. Knowledge of the rheology then allows

the calculation of scales for the strain rate and the velocity.

4.2 A scaling law for the slip rate on the fault

Using dimensionless variables, the governing equations and

boundary conditions depend on six dimensionless numbers:

F

p0dc
,
½d�
dc

,
b½d�
T0

,
E

RT0
,
Ly

½d� and
Lz

½d� : (28)

We now show that this large set can be reduced to only one

significant number. The first two numbers, F/s0dc, [d]/dc provide

a measure of the importance of cohesion in the stress balance.

For large F or small cohesion, both numbers are large and the

results can be taken in the limit of these two numbers being

infinite with small differences. This is to say that cohesion plays

a subordinate role in the behaviour of a deep fault. The last

two dimensionless numbers depend on the dimensions of the

computational domain, Ly and Lz. Both take large values and

hence once again do not influence the results significantly. In

other words, fault zone behaviour is entirely determined by the

local stress-field and is not sensitive to the size of the deform-

ing medium. Another illustration of this will be given below.

We conclude that only two dimensionless numbers are truly

important, b[d] /T0 and E /RT0. The first provides a measure of

the temperature difference between the top and bottom of the

fault, and the second is a rheological parameter. Together with

the viscosity law, these two numbers yield a third one, the

viscosity variation over the fault zone, m0/m([d]).

One further simplification derives from the observation

that fault zone behaviour is not affected by deformation in

the lower part of the domain. We therefore argue that the key

dimensionless parameter is the local vertical viscosity variation

over the fault, m0/m([d]), which is a function of the two important

dimensionless numbers listed above. If this analysis is correct,

all dimensionless variables in the problem must be functions

of this dimensionless number alone. To verify this, in Fig. 17

we show the dimensionless slip rate, Us /[U], as a function of

1
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lations for fixed rheological stratification and variable fault depth.
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fault depth. The full straight line has a slope of 2/3, corresponding to a
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m0 /m([d]). Indeed, taken together, all our results define a single

relationship with little scatter and a plot close to a power law

with a 2/3 exponent. The values for model 5 (Table 2), which

has a different constitutive friction law for the fault, also fall on

this relationship. The key controlling parameter is therefore the

local viscosity variation over the fault.

The dimensionless slip rate Us /[U] provides a measure of

strain localization on the fault and, conversely, can be used

to assess the importance of distributed strain away from the

fault. Thus, the scaling law of Fig. 17 simply states that, with

increasing vertical viscosity variation, slip on the fault accounts

for an increasing fraction of the total deformation. This law is

valid for a range of activation energies implying a range of

vertical variations of viscosity, as measured by the depth-scale

d in eq. (17). It is also unaffected by changes of friction law.

Thus, we expect that it is not sensitive to the detailed form of

the constitutive equations used in the model. Perhaps the most

important point is that it does not involve the frictional strength,

the magnitude of which remains highly controversial. In practice,

one may measure directly most of the variables in the scaling

law (fault depth, slip rate, far-field strain rate). This feature will

be used below.

As expected, the dimensionless fault depth, d/[d], is always close

to 1, and tends to 1 as the vertical viscosity variation increases.

For example, for m0/m([d])=5r104, one has d/[d]=0.94. The

limit of very large vertical viscosity variation is of course the

relevant one for geological applications. In this limit, the depth-

scale [d] provides a very good estimate of the depth of an active

fault. This shows that, for given far-field forcing, a weak fault

(with a low friction coefficient) extends to larger depths than a

strong fault (with high friction coefficient). This simple result

had already been noted by several authors (e.g. Chery et al.

2001), but the scaling analysis goes further and shows how a

change of frictional strength affects the slip rate on the fault

through its effect on fault depth.

5 GEOLOGICAL IMPL ICAT IONS

The results obtained in this paper rely on several assumptions

and hence must be used with caution to assess any specific shear

zone. Strain localization below the fault should be enhanced

with a non-linear strain-softening rheology. A single rheological

equation was taken for the whole lithosphere. In reality, one

should account for at least crust and mantle layers, but this

would not affect the fault zone behaviour because it is not

sensitive to the rheology of deep layers. Finally, the temperature

field was taken as being horizontally uniform. Rheological laws

for crustal rocks are strongly temperature dependent. Shear

heating acts to increase temperatures in the vicinity of the

fault, and hence the bulk effect is to increase the local vertical

rheological variation and to localize the deformation further.

However, this effect depends critically on the poorly con-

strained frictional strength of faults. This uncertainty does not

affect our scaling law for the slip rate (Fig. 17).

5.1 The far-field shear stress distribution

The vertical shear stress profile far from the fault zone is

pyxðLy, zÞ ¼ GkðzÞ ¼ F
kðzÞðLz

0

kðzÞ dz
: (29)

This follows the vertical viscosity profile, as in classical

calculations of lithosphere strength (Goetze & Evans 1979;

Brace & Kohlstedt 1980). When interpreting this result, several

factors must be borne in mind. One is that the top of the

domain (at z=0) does not correspond to the Earth’s surface,

but lies below an unconsolidated layer about 3 km thick where

stresses conform to Byerlee’s rule (Scholz 1998; Fig. 1). A

second factor is that absolute values of stress depend on the

magnitude of driving force F, which depends on the frictional

strength of the fault (eq. 20). Finally, these results only hold for

strike-slip deformation and have no validity for other tectonic

regimes.

The maximum shear stress is achieved at the upper boundary:

pyxðLy, 0Þ ¼ F
k0ðLz

0

kðzÞ dz
¼ F

d
, (30)

where the rheological depth-scale d is defined by eq. (17).

The maximum shear stress increases with increasing vertical

rheological variation and increasing driving force F. In an

active region, one may determine the active fault depth d and

derive estimates for F as a function of the frictional strength. In

Figs 7 and 15, shear stress values have been scaled to the maxi-

mum stress on the fault, sd, and obviously exceeds the frictional

strength of the fault near the upper boundary. Thus, other

faults in the area can remain idle only if they are strong enough,

i.e. with large enough friction coefficients, which corresponds

to the ‘weak fault in a strong crust’ scenario (Zoback 2000).

Faults with the same frictional properties would be set in motion

and should be added to the model. However, this is not likely to

change the ductile stress field significantly. As shown by Fig. 15,

this stress field varies markedly over a horizontal distance

approximately equal to d and settles to the far-field distribution

at larger distances. Thus, for the near-fault stress field to be

modified significantly, active faults must be distant by less than

2d from one another, which is seldom achieved in practice.

The relatively large stresses predicted by the model are

achieved over a small vertical extent that is typically less than

2 km. For the Earth, adding the unconsolidated uppermost

crustal layer, this corresponds to a depth interval of between

about 3 and 5 km. At such shallow depths, the confining pressure

may be small enough for the fracture strength to be larger than

the frictional strength (Kohlstedt et al. 1995). In this case, only

existing faults may be set in motion. If the fracture strength is

exceeded, however, new faults must be generated implying that

the mechanical model is not appropriate. Such a phenomenon

requires a time-dependent calculation in which fault spacing

is determined in a self-consistent manner, as in Roy & Royden

(2000).

5.2 Distributed deformation away from strike-slip faults

We have derived a simple scaling law that states how the

various variables depend on one another (Fig. 17). This result

holds for a range of activation energies and characteristic depth-

scale for rheological variations, and is expected to remain valid

for other rheological laws. This scaling law may be rewritten as

follows:

G ¼ C
Us

½d� , (31)
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where C is a constant of proportionality that depends on the

vertical rheological variation over the fault. This rheological

variation depends on the local geothermal gradient and on the

activation energy for ductile flow, and is likely to be larger than

104 in most cases, especially in active zones with elevated

geothermal gradients. Thus, from Fig. 17, the constant C is

expected to be smaller than 10x2. In practice, both the fault

depth and the secular slip rate are known from seismic and

deformation studies. Furthermore, with high-precision geo-

detic measurements, far-field strain rates may be determined,

which allows an estimate of the constant C, which in turn yields

constraints on crustal rheology and temperatures.

The key advantage of the scaling law is that there is no

need to know the frictional properties of the fault, which only

affect the absolute stress values. Thus, eq. (31) can be used to

estimate the far-field strain rate regardless of how strong the

fault really is. As an illustrative calculation, we use typical values

for the San Andreas system: Us=3 cm yrx1 and [d]=10 km.

For Cj10x2, we find that Gj10x15 sx1. This upper bound

is precisely the strain rate value that is commonly adopted

for estimates of lithosphere strength (Kohlstedt et al. 1995).

More importantly, this is also the threshold value below

which distributed deformation can be considered negligible for

tectonic studies. This demonstrates that the properties of the

continental upper crust do indeed lead to rigid-body motion

away from strike-slip faults. From a more general perspective,

the condition for rigid behaviour is that faulting extends to

sufficiently large depths so that the local vertical rheological

variation is large enough (Fig. 17). This may be achieved by

small friction coefficients or locally enhanced temperature

gradients.

5.3 Shear heating

The mechanical work done locally near an active fault

includes both frictional and viscous components. The frictional

component is given by

�f ¼ pyxð0, zÞUsðzÞ , (32)

with 0jzjd. Dimensional analysis gives a frictional heat

scale:

½�f � ¼
½p�2½d�
k0

: (33)

The total amount of frictional heat is

Wf ¼
ðd

0

�f dz : (34)

Ductile shear heating is given by two terms, corresponding to

shear along vertical planes (Qyx) and horizontal planes (Qzx):

rd ¼ ryx þ rzx ¼ rV þ rH , (35)

with Qyx=syxhox /hy and Qzx=szxhox /hz. The viscous heat scale

is given by

½rd� ¼
½p�2

k0

: (36)

The various components of shear heating for model 3 are shown

in Figs 18 and 19. Ductile shear heating rates along horizontal

and vertical planes have the same order of magnitude (Fig. 19).

Both are largest slightly above the base of the fault, which is

also true for frictional shear heating (Fig. 18). Thus, temper-

ature changes owing to shear heating will be most dramatic

above the base of the fault, with important consequences for

rheology and for strain localization.

The total amount of heat generated by viscous dissipation is

Wd ¼
ð ð

rd dy dz ¼ WV þWH : (37)

This integral includes a large contribution caused by the large

stresses and strain rates in the vicinity of the fault, and a much

smaller contribution involving stresses at large horizontal

distances away from the fault. This second contribution is an

increasing function of the width of the computational domain,

Ly, and hence is not relevant to a local analysis. We there-

fore consider only the first contribution, which we estimate
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over a fixed (and arbitrary) horizontal distance of 15 km.

Changing this distance by a few kilometres does not affect the

quantitative result in any significant manner. The respective

importance of frictional and ductile shear heating varies depend-

ing on the vertical rheological variation over the fault. For fixed

far-field force F (Table 5), increasing the rheological variation

over the fault plane acts to increasingly localize deformation

in the vicinity of the fault. Consequently, frictional heating

becomes increasingly important (Fig. 20).

The scales for the frictional and ductile components of

shear heating, Wf and Wd, are identical and equal to [s]2[d]2/m0.

Substituting for the stress and depth scales, in the limit of no

cohesion, one finds that this scale does not depend on f, the

friction coefficient. Thus, the total amount of heat generated

does not depend on f, which reflects the global energy balance

in the system. For a given force F, changing the friction

coefficient acts to change shear stresses on the fault, but it also

acts to change the fault depth, and hence the size of the region

over which heat is dissipated. For example, decreasing the

friction coefficient acts to deepen the fault and to generate heat

over a larger volume, implying a smaller temperature rise.

With shear heating, the local thermal structure at the vicinity

of the fault differs from the regional structure and may vary

with time. It is premature to speculate how shear heating affects

fault behaviour, however, it obviously acts to increase the local

rheological variation over the fault and hence is likely to

enhance slip over ductile deformation near the surface.

5.4 Vertical variations of the slip rate on a fault

The vertical distribution of seismic slip on a fault, together with

the length of the fault zone which is set in motion during an

earthquake, determines the short-term stress field following

an earthquake. The present model predicts that distributed

deformation extends over a large fraction of the fault depth

(Fig. 9). This result pertains to the secular slip rate on the

fault, and hence should be compared with the cumulative slip

over a whole seismic cycle. Unfortunately, such data are not

available yet, but it does seem that, save for creeping fault

segments, coseismic displacements contribute the largest part

of the slip budget of a fault. Precise measurements of coseismic

and post-seismic displacements are available for two recent

earthquakes, at Landers, California, in 1992 (Hernandez et al.

1999; Pollitz et al. 2000) and Izmit, Turkey, in 1999 (Reilinger

et al. 2000). Post-seismic displacements are caused by viscous

relaxation in the lower crust and only account for 10 per cent

of the coseismic displacements (Pollitz et al. 2000; Reilinger

et al. 2000). At Landers, the interseismic velocity field over 3.5

years is dwarfed by the post-seismic velocity field (Pollitz et al.

2000). On both faults, therefore, coseismic slip values probably

allow reasonable estimates for the vertical profile of secular slip

rate. These data demonstrate that, on average, slip is largest at

the surface and progressively decreases with depth (Hernandez

et al. 1999; Reilinger et al. 2000), much in the manner illustrated

in Fig. 9.

5.5 Discussion

The present model emphasizes that, in regions with major faults,

stresses vary horizontally over small distances at relatively

shallow depths in the crust. Another point is that the secular

slip rate on the fault progressively decreases to zero in a

thick transition zone where deformation also involves ductile

flow. Previous models rely on simplified representations of

the coupling between brittle and ductile regions. For example,

brittle behaviour is usually confined to an upper layer of con-

stant thickness in which velocities and slip rates do not vary

with depth (e.g. Thatcher & England 1998; Leloup et al. 1999).

That this really happens in nature cannot be demonstrated

by available data, and hence represents a strong assumption

on fault behaviour. This assumption affects the distributions

of stress and strain rate in the ductile region, as well as the

magnitude of shear heating. One consequence is that shear

heating is largest at the base of the fault, contrary to our results

(Figs 18 and 19). Another consequence is that the horizontal

component of ductile shear heating, WH, is much smaller than

the vertical component, WV (Leloup et al. 1999), whereas both

have similar magnitudes in our model (Table 5).

6 CONCLUS ION

The simple mechanical model of this study emphasizes that

it is not possible to impose independently the far-field driving

velocity or force, the depth of a fault and the vertical profile of

slip rate on the fault. For a given friction law, the driving force

imposes the depth of the fault that becomes activated. For

weak vertical rheological variations and shallow faults, near-

surface deformation is distributed over a wide region and only

a small fraction is accommodated by sliding on the fault. For

large vertical rheological variations and deep faults, most of the
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Figure 20. Ratio between frictional and viscous shear heating as a

function of vertical viscosity variation over the fault depth.

Table 5. Mechanical work arising from friction on the fault (Wf) and

viscous dissipation arising from ductile deformation (Wd). WV denotes

dissipation caused by shear stresses on vertical planes parallel to the

fault.

m0 /m([d]) Wf /Wd* WV /Wd*

102 0.64 0.76

5.6r102 1.12 0.61

3.2r103 1.78 0.52

7.9r103 2.06 0.52 {
2.3r104 2.33 0.51

*: dimensionless
{: model 3

Slip rate and ductile deformation in shear zones 191

# 2002 RAS, GJI 148, 179–192



deformation is accommodated by sliding on the fault. To localize

deformation, large rheological variations or deeply rooted faults

are required. These two characteristics are equivalent and a single

parameter is sufficient to describe fault behaviour: the vertical

rheological variation over the depth of the fault. A scaling law

independent of fault strength relates the slip rate and the

far-field strain rate.

Owing to the complex stress distribution in the vicinity of the

fault zone, strain localization may occur at depth without local

strain or thermal softening. In geological conditions, such that

vertical rheological variations are large, quasi-rigid behaviour

is predicted for the near-surface environment. However, at depth,

the slip rate varies significantly over a large fraction of the fault

vertical extent in a large adjustment zone with both slip and

ductile deformation.
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