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SUMMARY
The conventional finite-difference (FD) method often suffers from numerical dispersion
when too few samples per wavelength are used or when models have large velocity
contrast, or artefacts caused by source at grid points. In this paper, we present a fast
finite-difference scheme that is based on the application of vectors and matrices in 2-D
anisotropic media, and obtain the stability equations. Our method is based on a flux-
corrected transport (FCT) technique, originating from hydrodynamics, which can be
incorporated in the conventional finite-difference method to eliminate the numerical
dispersion and source-generated noises. An n-times decoupled absorbing boundary con-
dition is used in our study. Three-component seismograms in a transversely isotropic
medium with a vertical symmetry axis (TIV) are generated for two models using the
FCT finite-difference modelling. Compared with the results of the reflectivity method
and the conventional FD method without the FCT technique and any absorbing boundary
treatments, we conclude that our FCT based FD method can is very accurate and
efficient in computing synthetic seismograms in general heterogeneous and anisotropic
media.

Key words: anisotropic wave propagation, finite-difference method, flux-corrected
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..1 I _ „-,„NTRODUCTIO N sense, this is unphysical as the interaction in dynamic elasticity
1 I N T RK OD U C T I ON is of a local nature. Therefore, it is necessary to take into
With the requirements of large-scale wavefield simulations account local operators as we design a finite-difference scheme
and the development of parallel algorithms for modelling wave for seismic modelling. On the other hand, it is important to
propagation in general anisotropic and heterogeneous media, the consider local difference operators for fast implementation in
finite-difference scheme is a natural choice. Tsingas et al. (1990) parallel computers since the nearest-neighbour communication
presented a modelling algorithm that uses a finite-difference is extremely fast, and large anisotropic models are feasible
operator. Their algorithm is based on a MacCormack-type because of the intrinsic parallelism of the conservation equations.
splitting scheme for modelling wave propagation in transversely Unfortunately, the finite-difference method often suffers from
isotropic media. Faria & Stoffa (1994) used a finite-difference unphysical oscillations, i.e. the so-called numerical dispersion
algorithm to model a 2-D transversely isotropic medium, which or grid dispersion which is caused by the discretization of the
is based on the staggered grid scheme. Igel et al. (1995) presented wave equations, near large gradients in wave fields or when
a finite-difference algorithm for modelling general anisotropic the computational grid is too coarse. In addition, the source-
media. Their method is based on the convolution algorithm generated noises (artefacts due to source location at grid points)
and the Taylor series expansion. The pseudospectral method is can also lower the resolution of modelling results, although
attractive as the space operators are exact up to the Nyquist these can be effectively removed by spatial filtering with a
frequency. However, it requires the Fourier transform of the Gaussian window (Igel et al. 1995). To eliminate the undesirable
wavefield, which is computationally expensive for 3-D aniso- ripples and to raise the resolution of wavefield simulations,
tropic simulations. Moreover, taking the Fourier transform Boris & Book (1973) and Book et al. (1975) developed a flux-
means that each point interacts with every other point. In some corrected transport (FCT) technique to solve the first-order
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system of continuity equations in hydrodynamics. Yang et al. Adopting the central difference to approximate eq. (1) without
(1997) and Fei & Larner (1995) have applied the FCT tech- the source term F, we have
nique to the second-order acoustic equation. Here, we develop
this further by incorporating the FCT technique in the finite- nU+t -2 + A [A+ 112 (U 1 1 - 1 _ )
difference method to solve the second-order elastic wave j " +j Ax1 '+l 2 +
equations in general heterogeneous and anisotropic media.

A variety of absorbing boundary conditions for isotropic -A i-/2,y(U7nj- Ulj)]
media have been given for eliminating the unphysical reflection
at the grid boundaries (e.g. Clayton & Engquist 1977; Higdon A I+ j - J
1987; Sockacki et al. 1987; Randal 1988; Chang & McMechan Az [Qi j+l/2(U +l-1 Uj )

1989). Zhang et al. (1993, 1999) suggested an absorbing boundary
condition based on the wave equations in 2-D transversely iso- -Qi,j-i/2(Uij - U"j1)]
tropic media. However, for the boundary equations, different t
displacement components for elastic waves are still coupled + (At) r[Cij( u - U
in the same boundary equation. Some boundary conditions, 4AxAz p, j + + +l
which have repeatedly absorbing ability and are decoupled, are
developed in this paper, which is called an n-times decoupled - Ct-l,(U,n

l
j +l - ' -l_-i)

absorbing boundary condition.
The FCT technique presented in this paper is fast and + Gi',+l(U+il,j+l- U lj+l)

requires little storage space, and it is based on the applicationn _ 
of vectors and matrices for modelling elastic propagation in - G_(U - L_)], (2)
general anisotropic media. To keep numerical calculation stable where Ax and Az denote the spatial increments in x- and
and accurate we also derive a stability criterion based on the --directions, respectively; t is the time-step size, U1j =
modulus of matrices. Finally, we show examples of three- U(ix, jAz, nAt), and
component VSP synthetic seismograms and our numerical results
illustrate that our FCT based FD technique in the conventional 1 1
finite-difference method is very accurate and efficient. Ai+l/ 2,J = 2 (Ai+lJ + Aij), Qij+l/2 = 2 (Qii+l + Qi,-),

where Aj=A(iAx, jAz), Q= (iAx, jAz), and Gj= G(iAx, jAz).

2 FINITE-DIFFERENCE SCHEME

The elastic-wave equations in a 2-D anisotropic medium can be 3 THE STABILITY CRITERION
written as

Richtmyer & Morton (1967) presented a variety of stability
( a, Z) A a+ C a U analyses. According to their energy method, and through a

P t( , a x A Ox xz series of mathematical operations, we obtain the following

a8~~ 7 ~a 6~a>~ u+stability criterion for the FD scheme in eq. (2)
+ Gx+QQ U+F, (1) 

(G x a)U (I) | I t)+QII(AI) <p,/ f ICI-C+G II-<2 II/ . IIQII,
where p(x, z) is the density, and A )

Cl C16 C15 C15 C14 C13 max[F(,),i lA -) +.lQ (At

A = C16 C66 C56 , C = C56 C46 C36 ,

C15 C56 C55 C55 c45 c35 jif\ iC+G\I>2 l IAJ'QJI,

c15 c56 c55 c55 c45 c35 where functions F(o, fB), a, B are given byCl5 C56 C55 C55 C45 635

G = Cl 4 C46 C45 , Q= c45 c44 C34 , F(a, )(At-= , A \A sin2 a+ A~z) IIQ\ sin2f

C13 C36 C35 C35 34 C33 (At)

W-itrxc- +4AxAz r/ C + Gll sin 2a sin 2/,

U= U ,cr( F= Uy ,, llll4QW IC- GiI4- 1611A .II )11Q1'/2

sin 2c IC+ G||2 L K411A I2 + ll Q2 j

where c4{x, z)(cij= ci) are elastic constants; ux, iy, and u- is the sin 2 = K C + GII sin 2ca
displacement components in x-, y- and z-directions, respectively; \/411 Q1 + K2 I C + Gl2 sin2 2a
f, fy andf: denotes the components of the source in x-, y- and
z-directions, respectively. The fact that matrices A, Q, and where K=Az/Ax, and I11-I denotes a matrix modulus.
C + G are symmetric is useful for computing the modulus of the In isotropic media, through computing the modulus of the
matrices. matrices A, Q, and C + G, for the FD scheme in eq. (2), we can
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obtain the following stability criterion 1 n+ I

At 2((2) Atl 2 J I + Th*. At/Ax [2uoi -0 ,o -- U 2+j ,j -2U 2.
2y) + (A + 2 )<p, 

+h 2,j 2
-

O j,j)

or Ax

rpAt .- 1 I, - 2h 2 (A ( /- 27 j + 0, ] '

where i and # are the Lame constants, vp, is the P-wave velocity. u,+l = _ + It 2un + 2 UnMl 
1

n"-I

The stability condition is independent of the S-wave velocity. I'M At/Az -I n +l2 iM-2 iM-2

Note that the stability criterion given above is the same as that A
of Aboudi (1971). + h. Az · (UtM_2 + Ui M -li,M-2)

As an example, for a transversely isotropic medium, choosing
the elastic constants cll = 18, c13=6.4, c33= 12, c55 =5.5, C66=4.2, At 2

then IIAII= 18, IIQII= 12, IIC+GI = 11.9. - 2h2 A 2u(tMi + U , (4c)
Obviously, the inequality IIC + G3l< 2/1AlllIIQII is satisfied

under this case, so we have where i=0, N are the left and right boundaries, respectively;
j= M is for the bottom boundary.

_ _8 12 The above analysis is similar to the paraxial absorbing
At• < p _'

boundary conditions presented by Clayton & Engquist (1977) and
Higdon (1987), and is valid for anisotropic wave propagation.

Detailed analysis for heterogeneous media can be found in
Yang (1996). Because the matrices A, Q, and C+G are sym-
metric, the modulus of matrices in the stability criterion given
above can be given via their eigenvalues 5 THE FCT FINITE-DIFFERENCE

IIAII = p(A), IIQII = p(Q), iC± + Gll = p(C+ G), ALGORITHM
To eliminate the numerical dispersion caused by discretization

where p(A), p(Q) and p(C + G) denote the spectral radii of the of the wave equations, we apply the flux-corrected transport
matrices A, Q, and C+G, respectively. technique developed by Boris & Book (1973) and Book et al.

(1975) to the second-order elastic wave equations. In general,
the FCT based FD algorithm is divided into three main steps:
finite-difference iterating (Stage 1), diffusion computation

CONDITIONS (Stage 2), and offsetting diffusion (Stage 3). The details are
described in the Appendix. In the finite-difference calculation

In the finite-difference calculations, an artificial reflection arises step, the discrete eq. (2) is used, which is identical to the con-
at the edges of the model domain. To eliminate this spurious ventional FD method. The numerical solutions computed in
reflection, let Stage 1 are smoothed in the diffusion stage to suppress the

artificial ripples caused by the grid dispersion. Unfortunately,

(+at± ~ = 0, (3) in the smoothing procedure, the true ripples are also suppressed
because the smoothing process is applied to every grid node in

be a n-time decoupled absorbing boundary condition. Where the computation regions, resulting in a lowering of the precision
h is a non-negative parameter determined by elastic constants of modelling. However the amplitude loss of the true ripples
and density, xj denotes x or z; u, is the displacement com- will be recovered through the non-linear offsetting treatments
ponent in xj direction, n denotes absorbing times, the '+' sign is including in Stage 3.
for the right or bottom boundary, and the '-' sign is for the left
boundary.

In transversely isotropic media, let h = cl I l/p or h = 1c 441p
in eq. (3), we can obtain the left and right or bottom absorbing
boundary conditions for u, components. Let h= Ic 66 1p or To test the accuracy of our FTC method, we compare the
h = jc44 Ip, we can obtain the left and right or bottom absorbing synthetic seismograms calculated using FCT method and the
boundary conditions for uys components. anisotropic reflectivity method (Booth & Crampin 1983a,b).

If we choose n = 2, and Ul, = U in eq. (3), discretizing eq. (3) We use a three-layered model with parameters given in Table 1.
for different boundaries, we have Five receivers are placed in well from z = 144 m (R1) to

II 1 [ Uz = 192 m (R5) spaced 12 m apart. The source with frequency
UN] I1 A' - I- N At/Ax 2u

N '
-

u 1j
-UN-2 f= 10 Hz Ricker wavelets is located at z = 168 m and the level

distance from the source to the receivers is 456 m. The time
At n+l -I variation of the source function is (1I-27r2 f 2t2)e (ft) 2. The

+-h Ax -(U + X N-2j -UN-2) 2-times decoupled absorbing boundary condition is used in
FCT numerical calculations. The synthetic VSP seismograms,

- 2h2 (ŽA *(un - 2U!nI + UI .)l , (4a) computed by the FCT and reflectivity method are compared
-iX/ -2h -2jx ' in Fig. 1. The spatial step in the FCT computation is 12 m. The
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Table 1. Parameters used in Model 1 direction is chosen. The sample rate is 0.002 s. In the second
model, a spatial increment of 45 m and a time increment of

Layer Thickness Cil C13 C33 C44 C66 p
(No.) (m) (GPa) (GPa) (GPa) (GPa) (GPa)6 ( 0.0025 s are chosen. In both cases, the source is an explosion
(No.) (m) (GPa) (GPa) (GPa) (GPa) (GPa) (g cm-3)

and has a Ricker wavelet with a peak frequency of 25 Hz.

1 600 30 8.4 25 10 8 2.1 The wavefields are recorded by 119 receivers for Model 2 (139
2 240 20 6.4 19 5.5 4 3.5 receivers for Model 3) spread from the surface (z=0) to the
3 360 30 8.4 25 10 8 2.1 depth of 4165 m for Model 2 (6255 m for Model 3) spaced 35 m

for Model 2 (45 m for Model 3) apart. The source is located
at the depth ofz= 70 m and the distance between the source to
the first receiver is 3080 m for Model 2 (4860 m for Model 3).
Typically a minimum number of 5 grid points per minimum

R 1 --I- ·I . wavelength is required for FD, and this number is reduced to
. -. ~~~~~~~V ~about 2-3 for FCT. On a Pentium III 400 IBM PC with 64 MB

RAM, it took about 30 min for Model 2 for and 35 min for
R2 / - --' --- -- - Model 3 using standard FD.

-~v..f~~~~ ~~~Synthetic seismograms generated by the FD method with-
:'.~~~~~~~^ .- ~out absorbing boundary conditions are shown in Fig. 2 and the

R 3 \ - synthetic seismograms computed by the FCT based FD with
.. V~g~~ ~~2-times decoupled absorbing boundaries are shown in Fig. 3.

'-.*a,^~~~~~~ ~Fig. 2 is only used as a reference. We can see that the numerical
R4 ----- ~--dispersion and boundary reflections are very strong from

Fig. 2. In contrast, the seismograms in Fig. 3 are very clean.
Furthermore, the qP-, qSV-, qSH-waves, and the reflected,

R5 ' \ . - - transmitted, and converted waves can all be clearly identified
_____________________ from Fig. 4. Fig. 4 shows the synthetic VSP seismograms

computed by the FCT based FD with the 2-times absorbing
0.00 0.40 Time (s) 0.80 1.20 boundaries for Model 3, we can also identify clearly qP-,

Figure 1. Acoustic seismograms at receivers R1, R2, R3, R4, and R5 qSV-, qSH-waves, and the converted waves although these
in well, generated by the FCTFDM for grid step sizes Ax= Az= 12 m waveforms are more complicated than these shown in Fig. 3
(solid lines) and anisotropic reflectivity method (dashed lines). The (Model 2). In addition, different arrival times for qP- and
coordinates of the source and receivers Rl, R2, R3, R4, and R5 are qS-waves and shear-wave splitting in the anisotropic media can
(504, 168), (960, 144), (960, 156), (960, 168), (960, 180) and (960, 192), be seen from the synthetic VSP seismograms shown in Figs 3
respectively, and 4.

To compare the FCT with the standard FD method, we use
the same medium parameters as those of Model 2. The acoustic

time steps are 0.6 ms. Fig. 1 shows that the FCTFDM on a wave-fields are recorded in a well, and the source is located at
coarse grid can provide generally identical result to the z = 816 m and the level distance from the source to the receivers
reflectivity method. is 2400 m. The 2-times decoupled absorbing boundary condition

Synthetic seismograms are generated for two VSP models: is used in numerical calculations. The synthetic VSP seismo-
one has two layers and the other has four. The parameters are grams, computed by the FCT and the 4th-order staggered FD
given in Table 2 (Model 2) and Table 3 (Model 3), respectively. code, are shown in Figs 5(a) and (b), respectively. The spatial
Both models are transversely isotropic with a vertical symmetry step in Fig. 5(a) is 24 m, and the spatial step in Fig. 5(b) is 8 m.
axis (TIV). In the first model, a grid size of 35 m in x- and z- Figs 5(a,b) show that the FCT can provide same accuracy as

the FD method, but need less memory and less computational
costs. Actually, the computational speed of the FCT for

Table 2. Parameters used in Model 2 generating Fig. 5(a) is about 16 times of that of the FD method

Layer Thickness Cel C13 C33 C4 4 C6 6 P for generating Fig. 5(b), and the memory of the FCT is about

(No.) (m) (GPa) (GPa) (GPa) (GPa) (GPa) (g cm-3) 78 per cent of that of the FD. The computations were per-
formed on a Pentium III 600 with 128 MB memory. It shows

1 2415 30 8.4 25 10 8 2.1 that the FCT is more efficient than the standard FD in com-
2 1750 20 6.4 19 5.5 4 3.5 puter memory and computer speed, and therefore the FCT is

more suitable for synthetic VSP seismograms of large models.

Table 3. Parameters used in Model 3

7 DISCUSSION AND CONCLUSIONSLayer Thickness l C1 3 C3 3 C4 4 C6 6 PSION AND CONCLUSION
(No.) (m) (GPa) (GPa) (GPa) (GPa) (GPa) (gcm- 3) It is important to consider local difference operators for

1 ~2655 40 13 33 12 8 2.0 parallel computing as the nearest-neighbour communication is
2 1350 20 6.5 16.5 6 4 2.0 extremely fast, and large anisotropic models are feasible because2 1350 20 6.5 16.5 6 4 2.0
3 675 40 13 33 12 8 2.0 of the intrinsic parallelism of the conservation equations. We
4 1575 20 6.5 16.5 6 4 2.0 have presented a FCT-based FD scheme to model seismic wave

propagation in general anisotropic media. This method is fast

© 2002 RAS, GJI 148, 320-328
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Figure 2. Three-component synthetic seismograms for Model 2, generated by the finite-difference method without absorbing boundary conditions. 
(a) u, component (b) uY component (c) U, component. 

and requires a small amount of storage space as only three 
nearest grid points are involved in a direction. Our method has 
two important stages: diffusion and compensation steps besides 
the conventional finite-difference computations. Although 
the FCT-based FD method adds the diffusion (Stage 2) and 

offsetting (Stage 3) calculations resulting in added computation 
costs in comparison with the conventional FD method, it offers 
the opportunity to use a coarse grid to obtain the same 
accuracy that is comparable to the conventional FD method on 
a fine grid. Therefore, the total computational costs of the FCT 
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based FD do not exceed that of the conventional FD methods calculations for the diffusion and offsetting and this will further
on a fine grid, and are more efficient than standard FD. In increase the computational efficiency of the FCT based FD.
addition, the diffusion and offsetting stages are independent of Provided a suitable time increment, not only stable calcu-
the finite-difference stage, so it is easy to implement the parallel lations can be kept, but also iterative speed can be improved
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Figure 4. Three-component synthetic seismograms for Model 3, generated by the FICT based FD with the 2-times absorbing boundary conditions.

(a) u, component (b) u~, component (c) uz component.

while the spatial increment is a constant. We have obtained the ing boundary conditions have n-times absorbing ability and are
stability criterion based on the modulus of the elastic stiffness decoupled for three-displacement components. The property is
matrices. A new absorbing boundary condition has been given very useful to reduce the errors introduced in discretizing the
to the elastic wave equations in anisotropic media. The absorb- absorbing boundary equations. Moreover, we have given a
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Figure 5. Comparison of FCT and FD methods: (a) acoustic synthetic seismograms generated by the FCT with a grid step size Ax=Az=24 m; 
(b) acoustic synthetic seismograms generated by the 4th-order staggered grid FD with a grid step size Ax = AZ = 8 m. 

stable discrete formula for the absorbing condition while the 
absorbing times n = 2. Synthetic seismograms in Figs 3 and 4 
show that the n-times decoupled absorbing boundary conditions 
are very effective. 

As we have seen, the FCT technique can effectively suppress 
the numerical dispersion that arise in the FD algorithms when 
a too coarse grid is used or large gradients and even discon- 
tinuities in the wavefield are involved. In data processing noise 
due to source location at grid points caused are usually inevitable. 
Actually, these noise presented in numerical modelling is a 
spurious oscillation or unphysical ripples. In wavefield simu- 
lations, the source-noise is also an important factor of lower- 
ing the resolution of the numerical synthetic seismograms. 
Fortunately, from Fig. 3 as compared with Fig. 2 we can clearly 
see that the FCT technique can eliminate successfully the noises 
caused by seismic sources located at grid points in the finite 
difference implementation. 
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(a) Computing diffusive fluxes at the nth time-step: (c) Ultilizing the offsetting diffusive fluxes and modifying
n -n-i + U7i-), the modified solution UJ1+ l , again, then we obtain corrected

p+" 2,i= 1 (U+in -- 4. - U 7 - 1
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- Iun-1+1/ = o1i .( Un - Un1 - U7n,+ + U. y ), uj U. j - (Xi+l/2,j - X i- /2,j) - (Zi,+l1 /2 - Zi,j-/2),

where ri1 =diag(tli, ry, Ol z) is a diagonal matrix. The elements where
71ix, I1ly and l1, are the smooth parameters for three displace-
ment components ux, uy and u:, respectively. Usually, 0 <rj< Xi+1/2,
(j= 1, 2, 3), and they can be chosen as some constants. The
larger the value of ?ij, the more complete is the elimination of = (s, ' max{0, min[sx,,,i- 1/2j, Ij,' '. ,, ) ),, SI. 'Xm,i+3/2,j]})3 xi 
numerical dispersion and source-noises, also the more serious is
the amplitude loss of true ripples. The value is often determined Zi+i/2

from a few small-scale numerical experiments. We find that = ma min[s - i ·- ,j+3/2}) 31,
r o r * \*l* = (Sm * max{0, mints m *'-mJ,.-/2, i '"" *f il), Sm -,,,.y+3/22})3x S ,

0.008 <qij<0.05 (j=l, 2, 3) is acceptable in our numerical 
examples. Of course, /ij can also be a function (e.g. linear). S' = (sn)3, 1 = (sign(p+ll/2 j)) 3x1

(b) Through diffusive fluxes P and Q, we smooth the
numerical solutions of the eq. (2) to eliminate grid dispersion S- = (s,,)3 1 = (sign(q,'lj+lI/2))x 1,
and source noises.

where m= 1, 2, 3, and the footnote m denotes the mth element
UIj U:'jI + (Pn+I /2. -pi

7-i/2j) + (Qn/j+i/2 - Qj-1/2) in these vectors X, Z, S and S.
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