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SUMMARY

A new technique for the analysis of low-frequency seismic recordings is introduced with
which constraints on the Earth’s large-scale aspherical structure can be obtained. The
technique, which we call ‘regionalized multiplet stripping’, applies multiplet stripping
(Gilbert & Dziewonski, Phil. Trans. R. Soc. Lond., A, 278, 187–296, 1975) to sets of
seismograms for which sources and receivers share a common great circle. Multiplet
stripping applied to such subsets reveals not only the well-known frequency shifts of
fundamental modes but also similar frequency shifts for a large number of overtones.
Geographical patterns of overtone frequency shifts can subsequently be related to
aspherical structure in an identical manner to the fundamental modes. The newly
estimated structure coefficients of overtones provide improved depth resolution for
the lowest-order aspherical structure. So far we have retrieved degree s=2 aspherical
structure coefficients for 271 spheroidal overtones with harmonic degree l>10. In
addition, structure coefficients for s=4 could be retrieved for a few well-excited low-n
branches. For the fundamental modes, we find very good agreement with single-record
peak frequency analyses. Predictions from recent 3-D mantle models generally agree
well with our new structure coefficients.
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1 INTRODUCT ION

The methods used to analyse low-frequency seismic data

in a normal-mode framework are of interest because they

hold the promise of directly constraining lateral variations

in density independent of variations in compressional and

shear wave velocities. Since the buoyancy force experienced

by density anomalies drives mantle convection, images of the

density variations are the crucial link between seismology and

geodynamics, and are essential for understanding the style of

mantle convection. The methods used to analyse normal-mode

spectra fall into two groups. The first group is concerned with

the analysis of isolated modes with low harmonic degree l. For

these modes the effect of aspherical structure can be fully

specified with a small set of so-called structure coefficients

and these coefficients can be estimated non-linearly from the

observed spectra. The most widely used technique is iterative

spectral fitting which, when applied to large data sets, has

allowed reliable estimation of structure coefficients up to spherical

harmonic degree s=4 (Ritzwoller et al. 1986, 1988; Giardini et al.

1987, 1988; Widmer et al. 1992; He & Tromp 1996; Resovsky &

Ritzwoller 1998). Higher-order structure coefficients have also

been estimated in several of these papers, though the values of the

different groups do not agree well.

A new and promising technique estimates the structure

coefficients linearly using an autoregressive technique to first

estimate the splitting matrix (Masters et al. 1999).

Among the modes suitable for these two methods are the

anomalously split modes which sample the inner core. Many

low-l mantle modes have also been analysed successfully, but

the overall number of modes analysed remains small (y90).

For fundamental modes with high harmonic degree (l>10),

aspherical structure no longer leads to observable splitting of

the spectrum. The 2l+1 singlets that make up the multiplet are

too numerous and the broadening caused by attenuation leads

to too much overlap. What is seen instead in the spectra is an

apparent shift of the peak frequency away from the degenerate

frequency. The asymptotic theory for modes with short wave-

length (high l) in smooth structures developed by Jordan (1978)

predicts this behaviour and relates the shift to the average

structure underlying the great circle connecting source and

receiver. In essence, the high- (low-) frequency singlets inter-

fere constructively on a great circle with faster (slower) than

average properties, while destructive interference cancels the

signals from the low- (high-) frequency singlets.
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Observations of peak frequency shifts of fundamental

spheroidal modes are readily made from spectra of single

recordings since fundamental modes contribute the largest

signal. This technique was pioneered by Masters et al. (1982).

However, application to overtones is only feasible for a very

limited number of modes that fall half way between two funda-

mental modes (e.g. 2S10 and 2S12). This leads to the situation

where the only normal modes contributing to aspherical structure

inversions are either low-l overtones or high-l fundamental

modes (e.g. Romanowicz & Roult 1986; Smith & Masters 1989).

In this paper, we present a new technique that allows

extraction of the peak shifting pattern of high-l overtones.

Since the asymptotic theory of Jordan (1978) applies equally to

fundamental modes and overtones, the interpretation of the

overtone peak shifts is straightforward.

Long-period seismic data can also be interpreted in a surface

wave context. To estimate surface wave dispersion the individual

branches must first be isolated. This separation can be accom-

plished on a regional scale in the frequency–wavenumber

domain by the use of a network of sensors (e.g. Nolet 1975;

Cara 1979). On a global scale, however, overtones were initially

only incorporated in full waveform inversions (e.g. Woodhouse

& Dziewonski 1984, 1986). Waveform inversions use all signals

in the (v, l) plane. However, since fundamental modes and

overtones are modelled simultaneously in the time domain,

and the former are typically much more excited than the latter,

one expects that only the structures sampled by the funda-

mental modes will be well resolved. The highly non-linear relation

between structure perturbations and seismic waveforms further

complicates any inference.

Inversions are greatly facilitated if the different overtone

branches can be isolated and their dispersion measured

individually. Early approaches were based on variable filtering

(Cara 1973) and were applied successfully to isolate the funda-

mental mode branch (e.g. Roult et al. 1990). Stutzmann &

Montagner (1993, 1994) proposed a technique to extract

path-averaged dispersion of overtone branches. However, their

technique makes rather restrictive assumptions regarding the

data and thus is only applicable to a small number of paths.

Recently, van Heijst and Woodhouse (1997) have introduced

a mode-branch stripping method that lends itself to appli-

cations to large data sets and that can be fully automated

(van Heijst and Woodhouse 1999). However, the frequency

band over which this method can separate the branches rapidly

narrows with increasing overtone number. For the first over-

tone, the band is approximately 4–20 mHz, for the second

overtone, 6–25 mHz, for the third overtone, 12–25 mHz and

for the fourth, 20–25 mHz. While this method can lead to a

significant improvement in both lateral and depth resolution in

the upper mantle and transition zone, the modes situated in a

large fraction of the (v, l) plane that sample the lower mantle

and outer core cannot be analysed or used to constrain the

mantle structure. Fig. 1 summarizes the location of the signals

in the (v, l) plane that can be analysed with the various

normal-mode methods. Regionalized multiplet stripping, as we

shall demonstrate, can retrieve the signature of aspherical

structure from many of the remaining modes in the (v, l) plane

below 10 mHz.

2 REG IONAL IZED MULT IPLET
STR I PP ING

Ideally, multiplet stripping gives an unbiased estimate of the

multiplet degenerate frequency. An essential prerequisite is

that the seismograms used sample the Earth evenly. If our goal

is to estimate the degenerate frequency of the multiplet, this

prerequisite is the source of major concern regarding bias.
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Figure 1. Dispersion diagram for spheroidal modes and model PREM. The modes that can be analysed with either iterative spectral fitting or the

autoregressive (AR) technique are towards the low-l side. Peak shift measurements from single records are only feasible for fundamental modes.

Regionalized multiplet stripping works for most high-l overtones, except of course the Stoneley and inner core Stoneley modes.
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Since for the large majority of modes multiplet stripping is the

only technique that can be used to estimate their degenerate

frequency, such a bias may remain undetected and lead to

biased models of the spherically averaged Earth.

In the course of establishing a new degenerate frequency data

set, we were led to try multiplet stripping on subsets of records

for which sources and receivers share a common great circle.

From the asymptotic analysis by Jordan (1978) we know that

multiplets with high harmonic degree l (short wavelength)

are predominantly sensitive to the structure underlying the

great circle connecting source and receiver. Thus we expect

that multiplet stripping of high-l modes applied to records that

share a common great circle will yield a frequency estimate

that is representative of the structure along the great circle.

Given this link between the average structure underneath a great

circle and the observed frequency shift, it is straightforward to

devise a procedure that accounts for the effect of heterogeneous

mantle structure explicitly and yields an unbiased degenerate

frequency: we can step through all possible great circle orien-

tations and apply multiplet stripping to the set of records that

most closely samples this great circle. The frequencies obtained

from all the strips can then be corrected for a geographical

pattern and an unbiased mean obtained. As a byproduct of this

strategy to obtain unbiased degenerate frequency estimates we

also obtain a map of peak frequency shifts that we can interpret

in terms of aspherical structure much like fundamental mode

peak frequency measurements.

3 OUTL INE OF THEORY

3.1 Multiplet stripping

Multiplet stripping (Gilbert & Dziewonski 1975) linearly estimates

multiplet resonance functions from a set of observed spectra.

On a spherically symmetric, non-rotating Earth, the observed

spectrum of ground acceleration at the jth station uj(v) is a

weighted sum of multiplet resonance functions ck(v),

ujðuÞ ¼ AjkckðuÞ : (1)

Given an earth model [in our case PREM (Dziewonski &

Anderson 1981)] the multiplet excitation Ajk for a particular

earthquake–receiver pair can be computed. An important

aspect of this calculation is that only the value of the eigen-

function of the mode at the source and receiver are needed. The

eigenfrequency, however, does not enter A. For any spherically

symmetric earth model, mode eigenfunctions factor into model-

dependent radial eigenfunctions and a spherical harmonic

function describing angular variations. While computation of

the radial eigenfunction still requires an earth model, we find

that if the radial eigenfunctions are grossly wrong the multiplet

strips are degraded in quality but still informative. The best

example are modes near Stoneley mode branch-crossings

above 10 mHz, which are incorrectly predicted by current

models. PREM predicts 5S54 to be a Stoneley mode yet multiplet

stripping is able to retrieve a clear resonance function, indicating

that 5S54 is actually an upper mantle mode. This illustrates how

insensitive multiplet stripping is with regard to errors in the

radial eigenfunctions. The only a priori information needed are

the source and receiver coordinates together with the source

mechanism.

Multiplet stripping consists of solving eq. (1) for the

resonance functions ck(v):

c“ kðuÞ ¼ A�1
kj ujðuÞ : (2)

The estimated resonance functions ĉk(v) are termed multiplet

strips. Ax1 denotes the generalized inverse of A, which we

compute using singular-value decomposition for multiple right-

hand sides (Golub & Reinsch 1971). We apply multiplet stripping

to narrow frequency bands containing no more than five

adjacent fundamental spheroidal modes. Over such y0.5 mHz

wide bands, the source mechanism and hence A can be con-

sidered to be independent of frequency. This leads to an efficient

numerical algorithm, since we need to decompose A only once.

The multiplet index k runs over all multiplets in the chosen

frequency band and we typically include both spheroidal

and toroidal modes. In the numerical implementation, the

spectra u(v) are obtained by fast Fourier transformation of

the discretely sampled seismograms. This makes the left-hand

side of eq. (1) a matrix with the row index running over the

frequencies of our target interval. Since multiplet excitations

are always real, the matrix A is also real, while both the spectra

u(v) and the strips ĉ(v) are complex.

We choose identical time windows for all records and a

record length of 1rQ cycles of the target mode, where Q is the

quality factor of the mode as predicted by PREM. Since we are

not interested in high-Q overtones we always start the time

window on the event time and do not make use of the Earth as

an attenuation filter.

In a subsequent step, we estimate the peak frequency from

the complex strip ĉk(v) by fitting the spectrum of a decaying

cosinusoid with unknown frequency, attenuation, initial ampli-

tude and phase (Masters & Gilbert 1983). Since the spectra that

make up the left-hand side of eq. (1) are Hanning tapered for

reduction of spectral leakage, we also incorporate an identical

taper into the model resonance function. From the signal-to-

noise ratio in the strips, the error in the frequency estimate can

be computed (Dahlen 1982).

A further concern with the implementation of multiplet

stripping is that the records come from different instruments

that have not only differing gains but that also distort the

signal differently. Rather than deconvolving the data using the

instrument transfer function (an inherently unstable operation),

we have selected the instrument/recording unit with the

narrowest frequency response contained in our data set and

bandpass-filtered all records to that response. Since all modern

sensors/recording units have a broad-band frequency response,

this bandpass-filter operation can be accomplished with a very

short convolution filter. In this way we are guaranteed to

perform only numerically stable operations.

Since the different earthquakes in our database vary by a

factor of 300 in seismic moment (0.1jM0j30r1020 Nm), the

matrix A is completely dominated by the rows from the largest

events. This effectively downgrades our geographical coverage.

As a countermeasure we choose to normalize all spectra by

their rms amplitude. In this way, we downweight spectra with

high signal-to-noise ratio from large events but gain improved

coverage. Since many of the large events have complex and

poorly known source mechanisms, this weighting also reduces

the influence of these events.

After this balancing of the rows, the matrix A may still be

ill-conditioned. This occurs if a mode is included where the
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eigenfunction is vanishingly small throughout the upper

mantle and crust. Such modes cannot be excited by earth-

quakes and thus the corresponding column in A is very small.

By constructing the generalized inverse of A from its singular-

value decomposition, one can find a stable inverse by judiciously

rejecting singular values. Since this procedure is not easily

automated we have chosen a different strategy to deal with

excessively small columns and simply eliminate the problematic

modes from our mode catalogue all together. We have eliminated

the Stoneley modes of the core–mantle boundary and the inner

core boundary as well as modes confined to the inner core. The

former two can be readily identified based on their group

velocity and the latter group has a quality factor close to the

average Qm value of PREM in the inner core (y85).

A further concern with multiplet stripping is leakage

from unmodelled modes immediately adjacent to the chosen

frequency band. Such tails of flanks from nearby modes can be

particularly large for fundamental modes and can lead to

biased frequency estimates. To avoid this problem we have

performed separate multiplet stripping experiments for each

mode with the chosen frequency window centred on the target

mode. In this way we avoid having to estimate the frequency of

a spectral peak near the edges of our target frequency band

where leakage effects can be severe.

3.2 Interpretation of frequency shifts

As introduced above, regionalized multiplet stripping applies

multiplet stripping to sets of seismograms that share a common

great circle. Here we address how such measurements can be

interpreted. Let the frequency shift dv� on the great circle with

pole at (H, W) be

dûkð#, ’Þ ¼ ukð#, ’Þ � �uk ,

where vk is the peak frequency estimated from the regionalized

strips and v�k is the mean frequency of the multiplet. This

frequency shift can, to zeroth order, be interpreted as a great

circle average of the splitting function of the kth multiplet

(Jordan 1978).

The splitting function f (h, w) summarizes the aspherical

structure sensed by one multiplet,

f ðh, �Þ ¼
X2‘

s¼0
even

Xs

t¼�s

ctsY
t
s ðh, �Þ , (4)

where the cs
t in this expansion are the structure coefficients

(defined in eq. 11 below) of the multiplet nSl. The splitting

function has frequency as units and its value at a particular

location (h0, w0) can be interpreted as the degenerate frequency

perturbation that the multiplet would experience if the spherically

averaged Earth structure were identical to the structure located

underneath (h0, w0).

The great circle average of the splitting function is

dûð#, ’Þ ¼ 1

2n

þ
#,’

d*
X2‘

s¼0
even

Xs

t¼�s

ctsY
t
s ðh, �Þ , (5)

where R denotes integration around the great circle with a pole

at (H, W). Integration of eq. (5) can be carried out analytically

(Backus 1964) and with Ps denoting the Legendre polynomial

of the order of s we obtain

dûð#, ’Þ ¼
X2‘

s¼0
even

Xs

t¼�s

Psð0ÞctsYt
s ð#, ’Þ : (6)

Eq. (6) states that the great circle average of a spherical

harmonic function Ys
t(h, w) is its value at the location of the

pole (H, W) multiplied by Ps(0). The Legendre polynomial Ps(0)

vanishes at the origin for odd values of s which has the well-

known consequence that the spectra of isolated multiplets are

insensitive to aspherical structure of odd harmonic degree. For

increasing harmonic degree s=0, 2, 4, 6, . . . the magnitude of

Ps(0) decreases and is 1, x1/2, 3/8, x5/16, . . . . This decrease

in Ps(0) effectively means that the shorter the wavelength of the

structure, the smaller its signature in the peak frequency shifts.

In other words, a map of peak-frequency shifts is a low-pass

filtered version of the splitting function.

We parametrize Earth structure as a superposition of

a spherically symmetric reference model M0 and a small

volumetric perturbation dm,

M+ðr, h, �Þ ¼ M0ðrÞ þ dmðr, h, �Þ : (7)

The perturbation can be expanded in spherical harmonics

dmðr, h, �Þ ¼
XSmax

s¼0

Xs

t¼�s

dmt
sðrÞYt

s ðh, �Þ (8)

and if we restrict heterogeneous perturbations to be isotropic

we obtain for the elements of the model vector

dmt
sðrÞ ¼ ½dktsðrÞ, ditsðrÞ, dotsðrÞ�

T : (9)

Apart from volumetric perturbations, the first-order discon-

tinuities can also be deformed. The height of the nth perturbed

interface above the unperturbed discontinuity can be described

with an expansion of the form

hnðh, �Þ ¼
XSmax

s¼0

Xs

t¼�s

htnsðrÞYt
s ðh, �Þ : (10)

Having a mathematical description for heterogeneous Earth

structure, we proceed and ask how such structure affects

normal-mode spectra. Woodhouse & Dahlen (1978) show that

to first order the structure coefficients cs
t of the kth multiplet are

linearly related to heterogeneous volumetric structure as well as

interface topography through

kc
t
s ¼

ða
0

kMsðrÞT . dmt
sðrÞr2 dr�

XN
n¼1

kBns
. htns . r

2
n , (11)

where kMs denotes the sensitivity kernels. These kernels depend

on the parameters of the unperturbed model, the eigenfunction

of the mode and the harmonic degree s of the structure but are

independent on the azimuthal order.

kMsðrÞ ¼ ½kMsðrÞ, kKsðrÞ, kRsðrÞ�T : (12)

The second term in eq. (11) is the contribution of boundary

topography where the index n labels the first-order discontinuities.

Eqs (6) and (11) can be combined to yield an explicit relation

between the expansion coefficients of heterogeneous structure

[dms
t(r), hs

t], on the one hand, and the observed great circle
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averages, dv̂k(H, W), on the other hand:

dûkð#, ’Þ ¼
X
s,t

Psð0ÞYt
s ð#, ’Þ

|

� ða
0

MsðrÞTdmt
sðrÞr2 dr�

X
n

kBnsh
t
nsr

2
n

�
: (13)

Aspherical structure can now be estimated in two ways. In

either case, we start by binning our records for all possible great

circle pole locations, moving the centre of the bin in regular

intervals over the surface of the Earth. With a bin radius of 20u
(and allowing for some overlap of the bins) we obtain 92 bins

for which we can carry out separate multiplet stripping experi-

ments for each mode. For the bins that contain enough records

to make eq. (1) overdetermined, we solve eq. (1) and inter-

actively estimate the peak frequency of the target multiplet

from the strips. At this point the two methods diverge: in

the first method, we use the j92 peak frequency estimates from

a target multiplet and employ eq. (6) to estimate the structure

coefficients for that mode (see Section 5). Subsequently, the

structure coefficients from all multiplets can be used in eq. (11)

to estimate the radial distribution of aspherical structure.

Note that structure of degree s and order t depends only on the

structure coefficients of the same degree and order. This leads

to separate linear inverse problems for each (s, t)-pair.

The second method is based on eq. (13) and estimates

aspherical structure directly from the original peak frequency

estimates. This involves solving one large linear system of

equations. The number of data, N, equals the number of peak

frequency measurements. The number of unknowns, M, is the

product of the number of layers in the model, the number of

parameters (e.g. rigidity, bulk modulus and density) and the

number of structure coefficients. The advantage of this approach

is that one arrives at a model with laterally variable resolution

that reflects the data coverage in Fig. 2.

4 THE DATA SET

Our data set consists of 12 000 recordings of the IRIS,

GEOSCOPE, MEDNET and GEOFON networks and includes

only events from 1991 to 1998. While the station distribution

has become more uniform over the last few years, the stations

with high-quality, low-frequency recordings are still primarily

continental sites. Therefore, we had to discard many recordings

from smaller events and stations on oceanic islands. Together

with the uneven distribution of earthquake sources we obtain a

data set which necessarily samples the Earth very unevenly.

The density of the poles of all great circles for the 12 000

seismograms in our edited database is shown in Fig. 2.

We have performed a number of controls with our seismic

data to ensure internal consistency. The traces were inspected

visually and defects flagged. This includes elimination of large

aftershocks, instrument calibration signals and noise bursts

owing to environmental influences on sensors. The next step

involves low-pass filtering and decimating the data to a sampling

interval of 20 s followed by removal of the tidal signal. Detiding

is performed by fitting harmonics with the frequencies of the

major tidal constituents to the time series. This leaves us with

the data in a form suitable for multiplet stripping. Since we

make use of both amplitude and phase information contained

in the earthquake signals, we need to verify that we have a good

model of both the earthquake source and the instrument

response. We do this by comparing our records with synthetic

seismograms computed for a 1-D reference earth model. Any

serious problems with the source mechanism, the instrument

response (i.e. reversed polarities), the timing of the records or

the station coordinates will lead to a poor fit and can be caught

in this way. Typical variance reductions for our 1-D synthetic

seismograms vary between 65 and 90 per cent, which translate

to very good fits in the time domain. We verify the good fit of

data and synthetic traces by visual inspection.
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Figure 2. Great circle pole density for the 12 000 records in the data set used for this study. The records are from 144 events between 1991 and 1998.

The values displayed are the pole counts in circular caps with 10u radius.
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5 E ST IMAT ING STRUCTURE
COEFF IC IENTS FROM PEAK
FREQUENCY MEASUREMENTS

To estimate structure coefficients as an intermediate step on

the way to structural models is advantageous since it enables

us to inspect along-branch consistency. Structure coefficients

are expected to vary smoothly along a branch since the eigen-

functions differ only slightly between adjacent modes and thus

sample similar structures. Thus along-branch consistency pro-

vides a powerful quality check. In addition, the use of structure

coefficients greatly simplifies the inversion for heterogeneous

structure. Eq. (6) provides the link between our peak frequency

measurements and the structure coefficients. On the left-hand

side of eq. (6) we have the spherical harmonic expansion of a

function with coefficients Ps(0)cs
t. Since the peak frequency

measurements are associated with an error, we only fit them

to within some prescribed tolerance (Parker 1989). A sensible

choice to select among the family of models that achieve this

misfit is to select the smoothest model g(h, w). We define R as

the roughness of a function on the unit sphere:

R ¼
ð ð �

+2
1gðh, �Þ

�2
d) (14)

where +1
2 denotes the surface Laplacian operator. The smoothest

model can then be identified as that for which R is minimal.

An alternative approach to estimating structure coefficients

uses spherical harmonic splines (Parker 1989). These splines are

the smoothest function under the measure eq. (14) that con-

nects a set of points on a sphere. Since the splitting function of

an isolated multiplet is an even function, we use even spherical

harmonic splines (G. Masters, private communication, 1999).

For data points with associated errors we can find a smooth

function that fits the data to within a prescribed tolerance. The

advantage is that the interpolating function exhibits no extrema

in areas where no data are present. Each spherical harmonic

spline has a representation in terms of an infinite sum of regular

spherical harmonic functions and, in our procedure of estimating

structure coefficients of a particular degree and order, we simply

take the corresponding expansion coefficients of our spline

function. We obtain an expansion for the peak frequency shifts

as a function of the pole location,

dûð#, ’Þ ¼
X?
s¼0
even

Xs

t¼�s

ut
sY

t
s ð#, ’Þ : (15)

Comparing eqs (6) and (15), we see that all we need to do to

obtain the structure coefficients cs
t is to divide the expansion

coefficients of the peak frequency shifts vs
t by Ps(0). Structure

coefficients estimated is this way still contain the signal from

the Earth’s hydrostatic ellipticity. Since ellipticity of figure con-

stitutes an axisymmetric degree s=2 structure, it only enters the

structure coefficient c2
0. The correction we have applied is

(Dahlen & Tromp 1998, eq. 16.221)

c0
2ðellipÞ ¼ 4

ffiffiffiffiffiffi
4n
5

r
au0

�
1 � 3

4‘ð‘þ 1Þ

�
, (16)

where a denotes the ellipticity parameter of Dahlen & Sailor

(1979).

In order to propagate the errors in the peak frequency measure-

ments to the structure coefficients we have used a bootstrapping

technique (Efron & Tibshirani 1986). In a first step we perturb

each peak frequency estimate ( fitsi) by a random amount

drawn from a normal distribution of zero mean and variance

si
2. In a second step we exactly fit a spherical harmonic spline

function to these perturbed frequency shifts and retain the

spherical harmonic expansion coefficients of this spline function

(eq. 15). Repeating these two steps 100 times, we obtain 100 esti-

mates for each structure coefficients. The bootstrap estimate of

the structure coefficients and their errors are then given by the

mean and standard deviations of the 100 estimates.

From the c0
0 coefficients we obtain an estimate of the multiplet

degenerate frequency in which bias owing to uneven sampling

of aspherical structure is greatly reduced. This provides a

valuable check on degenerate frequency estimates obtained with

regular multiplet stripping.

5.1 Bias due to cap averaging

Ideally, all records included in a regionalized stripping experi-

ment sample the same great circle. Given the uneven distri-

bution of sources and receivers, on the one hand, and given

the large number of records needed to strip for weakly excited

overtones, on the other hand, we are forced to perform some

binning of our records. By binning records where the great

circle pole falls within a circular cap of a given radius, we

effectively increase the data coverage at the price of some loss

in resolution. In addition, the retrieved structure coefficients

are expected to be biased low. This bias has been estimated in

Fig. 3 where we have plotted the spherical harmonic expansion

coefficients for a circular cap of variable cap radius. Binning

the data is equivalent to convolving the splitting function with

the spherical cap of constant amplitude. For our preferred cap

size of 20u radius we expect degree s=2 structure coefficients to

be biased low by 10 per cent and degree s=4 coefficients to be

biased low by 30 per cent. Since the distribution of great circle

poles within each spherical cap is not even, the actual bias may

differ somewhat. The bottom line is that a 10 per cent bias

is well within our error bars for the degree s=2 structure

coefficients (see below).

6 RESULTS

Application of regionalized multiplet stripping to our data

set of 12 000 records is successful for a large number of modes.

We start with the fundamental mode branch since we have

independent structure coefficient estimates for these modes

from single-record peak frequency measurements (e.g. Masters

et al. 1982; Romanowicz & Roult 1986; Smith & Masters 1989)

and from surface wave analyses (e.g. Wong 1989; Montagner &

Tanimoto 1990; Trampert & Woodhouse 1995; Laske & Masters

1996; Ekström et al. 1997).

In Fig. 4 the raw strips are shown for the fundamental

spheroidal mode 0S45 with a frequency of 5.15 mHz. All

strips are normalized to a unit maximum amplitude. Multiplet

stripping failed to extract a clean resonance function for two

cap locations only. For this mode, multiplet stripping seems

to fail once the number of records in a bin falls below y100.

Considering that the mean (median) number of records per bin

is 530 (430) one could reduce the cap radius in an attempt to

resolve shorter-wavelength structure.

As an example of a mantle overtone, we show the strips

for the mode 7S25 with a frequency of 7.96 mHz (Fig. 5). This
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mode is sensitive to structure throughout the entire mantle. For

this mode, multiplet stripping failed to extract a clean resonance

function for y25 per cent of the bins. We attribute this failure

to a lack of signal, since it mostly occurs in bins with few

records. The variation in the peak location is clearly visible.

Bins for which eq. (1) is not overdetermined (i.e. the number

of modes in the frequency band is larger than the number of

seismograms in the bin) have been discarded from this plot.

This was the case for seven bins. Around y450 records seem to

be required in a bin before 7S25 can be isolated from neigh-

bouring modes. Increasing the bin radius may produce more

robust degree s=2 structure coefficients. The mean (median)

number of records per bin for this mode are 633 (533).

From the strips with sufficiently high signal-to-noise ratio

(shown in Figs 4 and 5) we have estimated the peak frequency

for each bin. The signature of large-scale mantle structure in

such measurements is best seen when plotting the peak frequency

shifts at the location of the corresponding great circle pole.

Figs 6 and 7 show the resulting maps for 0S45 and 7S25. A

coherent large-scale pattern is evident. This is also true for 7S25

where rather large holes in the data coverage are present.

Where such holes exist we discard structure coefficients for s=4

or greater.

From the interactively assigned noise level in each strip,

a formal error, s, in the peak frequency can be computed

(Dahlen 1982). The lower map in Fig. 6 is a ‘signal’ map. The

symbol sizes are proportional to f /s where fts is the peak

frequency and its assigned error in a particular bin. Comparison

with Fig. 2 shows that the two are correlated. We note, how-

ever, that the most densely populated bins off New Zealand

do not produce the strips with the highest signal-to-noise ratio.

We speculate that the complex structures around the pacific

rim, which are sampled by this group of great circles, leads

to complications in the spectra. In fact, we often see hints of

split multiplet strips for this great circle. When estimating peak

frequencies from such complicated spectra, the model of a

single decaying cosinusoid is often inadequate. This leads to a

large unmodelled residue that raises the estimate of the noise

level and hence the error of the peak frequency estimate.

Our procedure, exemplified with the above two modes, has

been applied to all multiplets below 13 mHz and structure

coefficients estimated. Modes with harmonic degree l<10 have

been excluded, as they certainly do not satisfy the asymptotic

criteria s%l. Restricting ourselves to modes with li10 we

have practically removed all modes with any sensitivity to inner

core structure. This is desirable as we need not worry about

anomalously split modes for which multiplet stripping is known

to yield biased frequency estimates. The results for degree s=2

and the branches n=0, 5 and 7 are summarized in Figs 8–10.

For s=4 the structure coefficients for the second pseudo-branch

are shown in Fig. 11. Also shown with the estimated structure

coefficients are the predictions of model SCB10L18 (G. Masters,

private communication, 1999). Model SCB10L18 is a mantle

model derived from the travel times of long-period body waves,

surface wave dispersion and normal-mode structure coefficients.

The effect of the Earth’s hydrostatic ellipticity has been sub-

tracted from the observed c2
0 structure coefficients using eq. (16)

whereas the contribution of the crust has been computed based

on the model CRUST5.1 (Mooney et al. 1998) and is added to

the predictions of model SCB10L18. Note, however, that none of

the structure coefficients obtained in the current study entered the

construction of SCB10L18. The good agreement is encouraging

as we can expect the new constraints to be consistent with pre-

vious observations and also because we can expect the degenerate

frequencies to be largely free of bias from uneven sampling of

aspherical structure.
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Figure 3. Estimation of bias in structure coefficient estimates owing to binning of data. Shown are the spherical harmonic expansion coefficients of a

spherical cap with unit amplitude and variable radius. The cap is centred on the North pole so that only spherical harmonics with azimuthal order t=0

contribute. The spherical harmonics are normalized such that a d-function has equal amplitude at all degrees. The different curves are labelled with the

cap radius in degrees. For a cap radius of 20u we expect our estimate of the degree s=2 structure coefficients to be biased low by 10 per cent and for

s=4 by 30 per cent.
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0S45 (20o cap radius)

5.0 5.2
Frequency (mHz)

λ φ N

0 0 301
0 15 490
0 30 560
0 45 528
0 60 568
0 75 781
0 90 543
0 105 336
0 120 92
0 150 83
0 165 207

15 0 553
15 15 711
15 31 555
15 47 478
15 62 332
15 78 295
15 93 430
15 109 285
15 125 111
15 140 112
15 156 240
15 172 247
15 187 443
15 203 797
15 219 745
15 234 887
15 250 1119
15 266 949
15 281 455
15 297 175
15 313 172
15 328 121
15 344 263
30 0 1153
30 18 1175
30 36 498
30 54 205
30 72 139
30 90 379
30 108 439
30 126 242
30 144 233
30 162 276
30 180 486
30 198 937
30 216 1223
30 234 1313
30 252 1259
30 270 824
30 288 374
30 306 384
30 324 383
30 342 633
45 0 1059
45 22 974
45 45 344
45 67 226
45 90 353
45 112 415
45 135 390
45 157 283
45 180 395
45 202 1133
45 225 1581
45 247 1339
45 270 742
45 292 395
45 315 484
45 337 615
60 0 477
60 30 421
60 60 358
60 90 382
60 120 400
60 150 360
60 180 449
60 210 943
60 240 1095
60 270 598
60 300 394
60 330 430
75 0 365
75 60 308
75 120 348
75 180 453
75 240 616
75 300 316
90 0 259

Figure 4. Regionalized multiplet strips for mode 0S45. The latitude l

and longitude w of the cap position are given to the right of each strip.

The third column gives the number of records N that are included in the

strip of a particular bin. This frequency band contains 36 spheroidal

and 17 toroidal modes. The figure shows how multiplet stripping is

capable of isolating a target mode and conveys the signal level in the

strips from which the peak frequency measurements are made. See text

for details.

7S25 (20o cap radius)

7.8 8.0
Frequency (mHz)

λ φ N

0 0 393
0 15 616
0 30 722
0 45 692
0 60 656
0 75 906
0 90 628
0 105 379
0 120 114
0 135 67
0 150 137
0 165 264

15 0 682
15 15 884
15 31 713
15 47 591
15 62 377
15 78 344
15 93 486
15 109 350
15 125 153
15 140 150
15 156 259
15 172 310
15 187 532
15 203 993
15 219 931
15 234 1061
15 250 1346
15 266 1119
15 281 508
15 297 186
15 328 168
15 344 323
30 0 1357
30 18 1439
30 36 658
30 54 251
30 72 221
30 108 537
30 126 305
30 144 260
30 162 316
30 180 574
30 198 1182
30 216 1511
30 252 1596
30 270 996
30 288 402
30 306 407
30 324 409
30 342 698
45 0 1234
45 22 1219
45 45 503
45 67 384
45 90 533
45 112 529
45 135 424
45 157 332
45 180 507
45 202 1392
45 225 2025
45 247 1699
45 270 912
45 292 426
45 315 513
45 337 652
60 0 570
60 30 602
60 60 547
60 90 545
60 120 497
60 150 450
60 180 595
60 210 1212
60 270 720
60 330 461
75 0 416
75 60 393
75 120 420
75 180 574
75 240 761
75 300 334
90 0 286

Figure 5. Strips for mode 7S25 obtained from regionalized multiplet

stripping. The frequency band used for the strips contains 43 spheroidal

and 23 toroidal modes. See Fig. 4 for details.
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Comparing Figs 8–11, the necessarily smooth trends of

the branches appear with very different degrees of clarity.

For the fundamental modes the trends of the branches are

unambiguous—a result of the fact that this branch is generally

very well excited and that the sensed upper mantle structure is

relatively large in amplitude. At the other extreme is the 7Sl

branch for s=2 (Fig. 10). This branch is on average only feebly

excited and it is predominantly sensitive to the comparably

homogeneous lower mantle. Hence the scatter along the branch

is relatively large and its deviation from zero hardly significant.

In Table 2 the degenerate frequencies are given. While these

values can be expected to be largely free from bias owing to

uneven sampling they may still contain bias from coupling

to nearby multiplets. However, since the frequency separation to

neighbouring modes (and thus the coupling strength) is different

for every multiplet along a branch, we expect that multiplet–

multiplet coupling does not lead to systematic bias for entire

branches.

6.1 Toroidal modes

Since about half the records in our data set come from hori-

zontal component seismograms we have also tried regionalized

multiplet stripping on toroidal modes. However, we find that

the procedure was only successful for the fundamental mode

branch, 0Tl. For toroidal overtones the global coverage is too

uneven. This is no surprise since very often vertical component

seismograms from island stations are of rather high quality,

while horizontal components are extremely noisy and must be

discarded. We still included the horizontal component seismo-

grams in the regionalized multiplet stripping experiments (left-

hand side of eq. 1) since they also help to separate spheroidal

overtone branches with different polarization of the surface

particle motion. To avoid bias from the unmodelled signal on

the horizontal components, we also always include the toroidal

modes on the right-hand side of eq. (1).

7 APPRAI SAL OF THE STRUCTURE
COEFF IC IENTS

Table 1 gives the amount of signal (initial variance) and the

misfit of model SCB10L18. Let us introduce the new index i

that uniquely identifies a quadruplet of indices (n, l, s, t) such

that citsi denotes the structure coefficients cs
t and its standard

Regionalized multiplet strips for 0S45 (20o cap radius)
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Figure 6. Peak frequency shifts obtained from regionalized multiplet

stripping for mode 0S45 (upper panel). The individual peak frequency

measurements were made from the strips shown in Fig. 4. The symbols

are plotted at the mean pole locations of all records that fall into a

particular bin. Stars and diamonds indicate positive and negative

frequency shifts, respectively. Frequency shifts are proportional to

symbol size and the extremal values are given below the figure. The

inverse of the errors of the estimated peak frequency shifts is shown in

the lower map. A weak correlation with Fig. 2 can be seen.

Regionalized multiplet strips for 7S25 (20o cap radius)
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Figure 7. Peak frequency shifts for mode 7S25 obtained from

regionalized multiplet stripping (upper panel). The individual peak

frequency measurements are made from the strips shown in Fig. 5. A

large-scale pattern in the frequency shifts is apparent despite some large

gaps in the data. Because of these gaps, we do not believe that degree

s=4 structure can be reliably estimated. The lower panel shows again a

‘signal map’. We note, that the strips with the highest signal-to-noise

ratio do not coincide with the best sampled great circle where the pole is

NE of New Zealand (see Fig. 2). This great circle passes through

northern Chile and follows the north Pacific rim all the way to Sumatra.

Thus half of this great circle follows convergent plate boundaries. In the

strips belonging to this great circle we often find large residues, which

we attribute to the complex structures sampled by waves sampling this

great circle. The criterion for the validity of our asymptotic theory

(s%l) is probably violated on this great circle.
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error of the multiplet nSl. Also let c̃i denote the matching

structure coefficient predicted for model SCB10L18. We now

introduce gi as a measure of the amount of signal available

initially,

gi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

� ci

pi

�2

vuut : (17)

Our corresponding measure of the final misfit of model

SCB10L18 is gf.

gf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

� ci � ~ci
pi

�2

vuut : (18)

A concise way to quantify the amount of added information

contained in the newly estimated structure coefficients is to

perform ranking and winnowing of the data (Gilbert 1971) and

to compare the number of significant Earth data (sEd) with

relative errors less than a given threshold. For a compilation of

recently published structure coefficients of 75 mantle-sensitive

Table 1. Fit of model SCB10L18 to observed c2
t structure coefficients.

gi and gf are defined in eqs (17) and (18), respectively. N gives the total

number of coefficients for a branch. Since degree s=2 structure

comprises five structure coefficients for every multiplet, the number of

multiplets in a branch is Nmodes=N/5.

Branch gi gf N

00 6.91 4.38 195

01 2.26 1.46 100

02 2.07 1.50 110

03 3.15 1.84 65

04 2.09 1.74 105

05 2.36 1.98 150

06 2.07 1.60 110

07 2.24 1.76 85

08 1.73 1.61 45

09 2.71 2.06 50

10 2.54 2.11 50

11 1.76 1.37 30

12 3.27 2.48 35

13 3.82 2.88 10

14 2.18 1.94 5

all 3.57 2.43 1145
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Figure 8. Degree s=2 structure coefficients for the fundamental mode

branch 0Sl. The lower set of observations in each frame are the results

from regionalized multiplet stripping. The upper data set is from single-

record peak frequency analyses (Smith & Masters 1989) and is offset by

+20 mHz. Superimposed on both data sets are the predicted values for

model SCB10L18 (G. Masters, personal communications, 1999). See

text for details.
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Figure 9. Same as in Fig. 8 but for the 5Sl branch. Model SCB10L18

seems to predict this branch very well.
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Figure 10. Same as in Fig. 9 but for the 7Sl branch. Note that while

the coefficients exhibit considerable scatter they are not inconsistent.
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Table 2. Estimated multiplet degenerate frequencies in mHz.

Mode f s Mode f s

0S18 2673.52 0.14 0S19 2775.76 0.20

0S20 2875.52 0.21 0S21 2975.95 0.05

0S22 3074.19 0.06 0S23 3170.42 0.16

0S24 3265.20 0.19 0S25 3359.23 0.23

0S26 3451.29 0.23 0S27 3543.16 0.29

0S28 3633.65 0.19 0S29 3724.37 0.56

0S30 3815.18 0.25 0S31 3905.11 0.22

0S32 3994.53 0.68 0S33 4082.22 0.36

0S34 4171.84 0.32 0S35 4261.15 0.32

0S36 4350.37 0.30 0S37 4439.59 0.42

0S38 4528.63 0.44 0S39 4617.91 0.50

0S40 4706.96 0.48 0S41 4797.12 0.51

0S42 4886.43 0.52 0S43 4976.59 0.56

0S44 5064.98 0.65 0S45 5156.83 0.60

0S46 5246.89 0.61 0S47 5335.74 0.75

0S48 5427.73 0.81 0S49 5517.36 0.73

0S50 5607.66 0.78 0S51 5699.22 1.24

0S52 5788.65 1.06 0S53 5881.16 1.13

0S54 5972.47 1.20 0S55 6064.50 1.36

0S56 6156.39 1.01 0S57 6247.17 1.05

0S58 6339.33 1.43 0S59 6434.61 1.69

0S60 6526.92 1.33 1S11 2346.17 0.19

1S15 3172.89 1.18 1S16 3340.84 1.02

1S17 3493.39 0.84 1S18 3643.75 0.61

1S19 3792.23 0.91 1S20 3939.97 0.76

1S21 4085.64 0.61 1S22 4231.47 0.80

1S23 4376.25 1.16 1S24 4521.03 1.16

1S25 4662.65 1.10 1S26 4809.11 1.38

1S27 4952.77 1.59 1S28 5088.65 1.56

1S29 5233.02 1.53 1S30 5373.06 1.78

1S31 5513.54 2.08 1S32 5652.36 2.33

1S33 5788.81 2.06 1S34 5929.20 2.90

1S35 6061.83 2.37 1S36 6192.96 3.00

1S37 6331.98 3.30 1S38 6465.34 2.65

1S39 6594.33 3.40 1S40 6728.29 3.85

2S10 2403.95 0.37 2S11 2572.04 0.25

2S12 2737.21 0.82 2S13 2896.99 0.55

2S14 3065.81 0.85 2S27 5746.13 0.85

2S28 5903.81 1.10 2S29 6068.14 1.28

2S30 6228.56 1.17 2S31 6385.16 1.13

2S32 6541.09 1.49 2S33 6697.19 1.34

2S34 6852.39 1.44 2S35 7011.91 2.31

2S36 7164.41 2.45 2S37 7318.55 2.07

2S38 7473.00 1.81 2S39 7623.39 2.66

2S40 7774.94 2.50 2S41 7921.24 3.89

2S42 8072.22 4.79 2S43 8219.54 4.06

2S44 8360.54 4.24 2S45 8508.96 4.44

2S46 8656.20 4.83 2S47 8807.27 5.10

3S10 3082.12 0.41 3S11 3219.52 0.53

3S12 3361.36 0.41 3S13 3507.55 0.55

3S14 3656.20 0.53 3S15 3810.98 0.59

3S16 3966.85 0.65 3S17 4124.01 0.60

3S18 4283.80 0.67 3S19 4446.13 0.67

3S20 4608.98 0.88 3S21 4771.58 0.75

3S22 4932.87 0.85 3S23 5098.42 0.76

3S24 5262.94 0.81 3S41 8823.12 2.57

3S42 8976.89 2.41 3S43 9138.26 2.30

3S44 9290.13 2.43 3S45 9441.41 2.94

3S46 9603.01 2.74 3S47 9750.64 2.46

3S48 9908.12 3.87 3S49 10 052.90 3.48

3S50 10 206.65 3.49 4S10 3864.07 0.63

4S11 4007.03 0.71 4S12 4153.64 0.71

4S13 4292.05 1.04 4S14 4435.30 0.81

4S15 4585.08 1.08 4S16 4729.85 1.04

4S17 4885.32 1.14 4S18 5043.66 1.05

4S19 5200.63 1.53 4S20 5362.19 1.26

4S21 5526.07 1.29 4S22 5695.97 1.38

4S23 5861.48 1.34 4S24 6028.67 1.49

4S25 6197.23 1.58 4S26 6365.49 1.24

4S27 6535.54 1.73 4S28 6702.65 1.86

4S29 6872.95 1.30 4S30 7038.11 1.30

4S31 7204.41 2.12 4S32 7369.39 1.58

4S33 7536.51 1.87 4S34 7700.08 1.83

4S35 7859.58 1.78 4S36 8019.95 1.48

4S37 8184.38 1.48 4S38 8342.15 2.15

4S39 8499.51 2.34 4S40 8663.48 2.81

5S12 4696.82 0.48 5S13 4925.46 1.02

5S14 5136.40 0.77 5S15 5327.26 1.12

5S16 5505.95 1.09 5S17 5669.85 1.28

5S18 5829.20 1.96 5S19 5988.49 2.17

5S20 6152.22 1.88 5S21 6310.38 2.18

5S22 6473.56 1.85 5S23 6635.43 1.79

5S24 6800.78 2.32 5S25 6965.94 1.92

5S26 7132.66 1.79 5S27 7291.93 2.22

5S28 7455.36 2.08 5S29 7616.88 2.41

5S30 7778.52 2.60 5S31 7941.78 2.35

5S32 8099.06 2.06 5S33 8253.59 2.54

5S34 8407.77 3.84 5S35 8570.59 2.82

5S36 8726.95 3.44 5S37 8884.50 2.89

5S38 9043.70 3.10 5S39 9200.63 3.12

5S40 9360.49 3.77 5S41 9511.31 3.40

5S42 9679.32 3.10 5S43 9835.77 4.64

5S44 9989.46 3.55 5S45 10 151.42 2.94

5S46 10 307.00 3.31 5S47 10 476.61 3.61

5S48 10 638.30 3.84 5S49 10 796.93 3.45

5S50 10 962.40 3.25 5S51 11 115.99 3.32

5S52 11 282.07 2.65 6S14 5413.08 1.29

6S15 5600.20 1.20 6S16 5806.74 1.33

6S17 6020.71 1.13 6S18 6238.10 1.38

6S19 6446.15 1.76 6S20 6653.89 1.31

6S21 6855.20 1.80 6S22 7050.31 1.64

6S23 7234.75 1.48 6S24 7412.49 2.08

6S25 7588.13 2.01 6S26 7756.13 2.10

6S27 7921.94 1.63 6S28 8088.18 2.04

6S29 8255.78 2.03 6S30 8417.21 2.07

6S31 8588.30 2.65 6S32 8759.31 3.13

6S33 8926.92 2.62 6S34 9092.08 2.92

6S35 9257.99 3.61 6S36 9423.84 3.10

6S37 9599.31 2.31 6S38 9760.55 2.99

6S39 9928.85 2.27 6S40 10 088.84 3.57

7S12 5069.25 1.53 7S17 6610.15 3.77

7S19 6919.81 4.48 7S20 7077.02 3.61

7S21 7248.37 2.82 7S22 7418.73 1.96

7S23 7593.92 1.68 7S24 7778.87 2.24

7S25 7964.31 2.73 7S26 8154.33 2.26

7S27 8342.30 1.70 7S28 8522.63 1.99

7S29 8712.29 2.08 7S30 8902.52 2.35

7S31 9089.29 2.74 7S32 9279.15 2.30

7S33 9457.46 2.07 7S34 9636.83 2.67

7S35 9820.29 2.70 7S36 9998.50 3.37

7S37 10 174.04 3.68 7S38 10 347.65 3.28

7S39 10 528.43 4.93 7S40 10 710.29 4.15

8S10 5506.78 0.62 8S11 5709.54 1.99

8S21 7976.33 4.25 8S22 8127.86 4.39

9S10 5605.54 1.51 9S11 5880.83 0.83

9S12 6185.07 0.85 9S13 6479.69 0.82

9S14 6766.30 1.00 9S15 7026.49 1.09

9S16 7232.73 2.51 9S18 7541.47 3.86

Table 2. (Continued.)

Mode f s Mode f s
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modes (He & Tromp 1996; Resovsky & Ritzwoller 1998, and

G. Masters, private communication 1998) we find 21 (27) sEd

with a relative error of less than 1 per cent (10 per cent). When

combined with the data set of this study we arrive at a new data

set with 342 mantle-sensitive modes. For this data set we find

55 sEd with a precision better than 1 per cent. While these

numbers are calculated for the structure coefficient Im(c2
2), they

remain essentially unchanged for other azimuthal orders t and

harmonic degree s=2.

8 CONCLUS IONS

We have presented a new technique to retrieve both aspherical

structure coefficients and multiplet degenerate frequencies

from overtones with harmonic degree greater than 10. While

degenerate frequency estimates for these modes have been

obtained in previous studies using the regular multiplet stripping

technique, such estimates were very probably biased due to

uneven data coverage.

As far as the newly obtained structure coefficients are

concerned we hope that other techniques can also be extended

to high harmonic degree overtones. This would provide an

independent check on our results.

While estimation of the longest-wavelength density structure

independent of seismic P and S velocities has been attempted

recently (Ishii & Tromp 1999, 2001), the ability of current

structure coefficient data sets to resolve such density structure

remains controversial (Masters et al. 2000). Considering that

the new structure coefficients presented here all come from

relatively high-frequency modes—the median degenerate fre-

quency is 7.5 mHz—we expect that they only make a modest

contribution to resolving mantle density structure.

However, the new observations should provide valuable addi-

tional constrains for both the construction of new spherically

symmetric reference earth models and models of the longest-

wavelength P- and S-velocity mantle structure.

A complete list of the estimated structure coefficients for

degrees s=2, 4 is available both at http://www.geophys.uni-

stuttgart.de/ywidmer and the REM (Reference Earth Model)

website http://mahi.ucsd.edu/Gabi/rem.html. The websites include

also a machine-readable version of Table 2, branch plots similar

to forallbranches Figs 8–11, for all branches and the peak shift

patterns as in Figs 6 and 7 for all multiplets.
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Table 2. (Continued.)
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Figure 11. Same as in Fig. 9 but for structure of degree s=4 and for

the second pseudo-branch: 3Sl for l<25 and 2Sl for l>25. Mode

eigenfunctions along this pseudo-branch vary smoothly and hence

we also expect the structure coefficients to exhibit smooth variations

with l. Model SCB10L18 seems to predict this branch very well.
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