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SUMMARY

Electromagnetic fields are computed for a 2-D electrically anisotropic earth using a finite-
element technique. The models consist of a background layered structure, containing
anisotropic blocks. Each block and layer may be anisotropic by assigning to them 3r3
conductivity tensors. The forward modelling problem leads to a coupled system of two
partial differential equations for the strike-parallel field components Ex and Hx. They
are solved numerically using the finite-element (FE) method. The resulting system of linear
FE equations is solved using a preconditioned conjugate gradient method. Subsequently,
strike-perpendicular field components Ey and Hy at the surface are found by numerical
differentiation of Ex and Hx, using spline interpolation.

The 2-D FE algorithm has been validated by comparison with a 2-D finite-difference
solution. Three model types are used to demonstrate the effect of anisotropy upon the
magnetotelluric responses: horizontal, vertical and dipping anisotropy. A fourth model
simulates the effect of anisotropy in the context of shear and subduction zones. The
model responses simulate the splitting of apparent resistivity curves at long periods, as
well as the existence of tensor impedances with significant diagonal elements, as has been
observed previously.

Key words: electrical anisotropy, electromagnetic induction, finite-element method,
magnetotellurics, 2-D conductivity structures.

1 INTRODUCT ION

In recent years, increased attention has been paid in electro-

magnetic induction studies to the influence of electrical aniso-

tropy, notably in attempts to fully understand magnetotelluric

(MT) observations at longer periods. The magnetotelluric

measurements from the Canadian shield reveal pronounced

electrical anisotropy in the lower crust and upper mantle (Kellett

et al. 1992; Mareschal et al. 1995). The large anisotropy of

MT curves from around the German Deep Drilling site (KTB)

is interpreted using an electrically highly anisotropic upper to

middle crust (Eisel & Haak 1999). Rasmussen (1988) suggested

an anisotropic model within a deep crust layer to explain MT

data along a transect in southern Sweden. The effect of aniso-

tropy for a layered structure was initially studied by O’Brien &

Morrison (1967). Investigations of 2-D anisotropic models began

with the work of Reddy & Rankin (1975), who considered

just the effect of horizontal anisotropy. More recently, Osella

& Martinelli (1993) calculated the magnetotelluric response

of models with smooth irregular boundaries and with a special

orientation of principal axes. Schmucker (1994) presented an

algorithm for the computation of the electromagnetic induction

in a non-uniform thin sheet above a layered half-space, which

may contain one or more layers of anisotropic conductivity.

Using the finite-difference (FD) method, Pek & Verner (1997)

and Weidelt (1996) modelled the MT response of generally

anisotropic 2-D and 3-D structures, respectively, with arbitrary

orientation of the principal axes.

In this paper, 2-D anisotropic structures are again studied,

but now using the finite-element (FE) technique. First, we

describe the numerical realization of the FE algorithm in detail.

Then, we demonstrate the application of the algorithm by

simulating theMT response for various simple test models. Our

results are compared with the finite-difference solution of Pek

& Verner (1997). Finally, we calculate theMT response of three

types of anisotropy: horizontal, vertical and dipping anisotropy.

We conclude with a model that simulates the tectonic setting

of a geological shearzone or a downgoing slab in a subduction

zone. Themain aim of this contribution is to present a FE scheme

for electromagnetic induction in 2-D anisotropic structures.

Though the FD solution for this problem is available, the

FE solution is needed because both the FD and FE methods

have their own particular advantages and serve as cross-check

for each other. In addition, the FE method can handle the

non-rectilinear geometry needed for modelling of realistic earth

structures.
*Now at: Institute of Geophysics, Freiberg University of Mining and

Technology, 09596 Freiberg, Germany.
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2 BOUNDARY VALUE PROBLEM

Consider the 2-D model shown in Fig. 1. The shaded anomalous

region is embedded into a single layer within the normal

structure, which consists of n layers and its bottom layer

extends downward to infinity. For simplicity, the anomalous

region is shown without internal boundaries as a single block

of directional-dependent conductivity � which differs in at least

one element from the surrounding conductivity tensor �j in

the jth layer. Our program allows, however, for more general

model structures, with subdivided anomalous regions into

various uniform blocks and with contacts to more than one

layer.

The anomalous region can extend in the positive y-direction

to infinity, i.e. the model may merge here into a new layered

normal structure. At this state the algorithm excludes induction

by sources with a significant lateral non-uniformity within the

lateral range of the numerical solution. The model is invariant

in the strike direction x. The inducing electromagnetic field is

also invariant in the x-direction, even though field vectors will

have three components for polarizations of the magnetic source

parallel or perpendicular to the strike, owing to the anisotropy.

Hence, the usual distinction between TE and TM modes for

2-D isotropic structures becomes invalid. This has the con-

sequence that, when the primary magnetic vector is perpen-

dicular to the strike, the electric field will have components in

the direction of the primary field, leading to a charge build up on

boundaries (except for the special case of dipping anisotropy).

Assuming a time variation exivt, the governing equations for

the electromagnetic field in the quasi-stationary approximation

are

+|E ¼ iuk0H , +|H ¼ pE , (1)

where m0 is the magnetic permeability of free space, and

p ¼

pxx pxy pxz

pyx pyy pyz

pzx pzy pzz

0
BBB@

1
CCCA

is the electric conductivity tensor. The tensor is symmetric, and

when rotated into the direction of its principal axes (xk, yk, zk),
it is given by

p0 ¼

px0 0 0

0 py0 0

0 0 pz0

0
BBB@

1
CCCA :

In the special 2-D case, eq. (1) reduces for a homogeneous block

of constant conductivity to

LEz

Ly
� LEy

Lz
¼ iuk0Hx , (2)

LEx

Lz
¼ iuk0Hy , (3)

� LEx

Ly
¼ iuk0Hz ; (4)

LHz

Ly
� LHy

Lz
¼ pxxEx þ pxyEy þ pxzEz , (5)

LHx

Lz
¼ pyxEx þ pyyEy þ pyzEz , (6)

� LHx

Ly
¼ pzxEx þ pzyEy þ pzzEz : (7)

It is now evident that if the strike-parallel components Ex

and Hx have been found, the remaining components Ey, Ez,

Hy and Hz can be obtained from spatial derivatives of Ex

and Hx. Eqs (2)–(7) can be combined to yield two second-order

differential equations for the strike-parallel components Ex

and Hx:

1

iuk0
+2Ex þ CEx þ A

LHx

Ly
� B

LHx

Lz
¼ 0 , (8)

+ . ðq+HxÞ þ iuk0Hx �
LðAExÞ

Ly
þ LðBExÞ

Lz
¼ 0 , (9)

where

D ¼ pyypzz � pyzpzy , A ¼ ðpyxpzy � pzxpyyÞ=D ,

B ¼ ðpzxpyz � pyxpzzÞ=D , C ¼ pxx þ pxyB þ pxzA ,

q ¼ 1

D

pyy pyz

pzy pzz

 !
:

From eqs (8) and (9) it is clear that anisotropy couples the

otherwise independent strike-parallel components Ex and Hx

through first-order partial derivatives. Consequently, there are

no separate TE and TM modes for the anomalous field in the

general anisotropic case. Hence, these equations must be solved

simultaneously for Ex and Hx.

In the forthcoming presentation of modelling results, various

special forms of anisotropy will be considered. Assuming as

in Fig. 1 a uniform anomalous domain and isotropy for the

surrounding normal structure, one or two of the principal axes

of p are taken to be parallel to corresponding axes of (x, y, z)

coordinates.

2.1 Horizontal anisotropy

With sxz=syz=0, the principal axis zk is vertical, the remaining

two principal axes xk and yk are in the horizontal plane (x, y)

with strike angle a with respect to the x axis. Eqs (8) and (9)Figure 1. The 2-D anisotropic model considered in this paper.
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then reduce to

1

iuk0
+2Ex þ

�
pxx �

p2xy

pyy

�
Ex þ

pxy

pyy

LHx

Lz
¼ 0 , (10)

L
Ly

1

pzz

LHx

Ly

� �
þ L
Lz

1

pyy

LHx

Lz

� �
þ iuk0Hx �

L
Lz

pxy

pyy
Ex

� �
¼ 0 :

(11)

The induction equations become simpler than eqs (8) and (9),

but the strike-parallel components Ex and Hx are still coupled

through first-order partial derivatives with respect to z. So

eqs (10) and (11) must be solved jointly in order to obtain Ex

and Hx.

2.2 Dipping anisotropy

With sxy=sxz=0, the principal axis xk of the conductivity

tensor is horizontal and in the strike direction, the remaining

two principal axes yk and zk are in the vertical plane (y, z) with

dip angle b with respect to the y axis. Now eqs (8) and (9)

decouple into two independent modes

+2Ex þ iuk0pxxEx ¼ 0 , (12)

+ . ðq+HxÞ þ iuk0Hx ¼ 0 : (13)

Eq. (12) for E-polarization can be solved using algorithms

for 2-D isotropic structures—only the electric conductivity has

to be replaced by sxx as scalar conductivity. However, the

resulting expression for the TM mode is still complicated.

2.3 Vertical anisotropy

If sxy=sxz=syz=0, all three principal axes of the conductivity

tensor are coincident with the axes of the (x, y, z) coordinates.

If in addition sxx=syy=sh, this results in an axially symmetric

situation with respect to z, in which the conductivity sh for any

horizontal direction differs solely from szz=so in the vertical

direction. This again decouples eqs (8) and (9), and we have

+2Ex þ iuk0phEx ¼ 0 , (14)

L
Ly

1

po
LHx

Ly

� �
þ L
Lz

1

ph
LHx

Lz

� �
þ iuk0Hx ¼ 0 : (15)

Though the induction equation for B-polarization becomes much

simpler than eq. (9), it cannot be solved by using 2-D isotropic

algorithms, because the conductivities in the horizontal and

vertical directions are different. If they are the same, then eq. (15)

also reduces to the isotropic case. The following boundary

conditions apply: on the outer boundary of the model, Dirichlet

boundary conditions are set, constructed from 1-D solutions

for the corresponding layered earth at the left- and right-hand

side of the model. At the top and the bottom of the model, the

boundary conditions are constructed as linear interpolations of

the respective 1-D values at the left- and right-hand sides of the

model (Pek & Verner 1997). On inner boundaries, the tangential

components of both electric and magnetic fields, Et and Ht,

must be continuous. From Fig. 1, Et and Ht are

Et ¼ Ey cos aþ Ez sin a ,

Ht ¼ Hy cos aþ Hz sin a :

It is now essential, to reformulate these relations as follows. Let

n be the outward normal unit vector to the inhomogeneous

region, and

p ¼ �AExey þ BExez , (16)

with A and B from eqs (8) and (9), with ey and ez being the

unit vectors along the y- and z-axes, respectively. Then, after

substantial derivations, the expressions

Et ¼ q
LHx

Ln
þ p . n (17)

and

Ht ¼
1

iuk0

LEx

Ln
(18)

are found for the tangential field components. The formulation

of eq. (17) is by no means self-evident and is essential for

the following derivations. Only with these expressions do the

basic integro-differential eqs (23) and (24) obtain their highly

condensed form, which conditions them for a straightforward

numerical treatment. More details are described in Li (2000).

3 F IN ITE -ELEMENT METHOD

The numerical approximation of the problem, posed by eqs (8)

and (9), will be based on the finite-element approach. The

strike-parallel field components, Ex and Hx, are tangential to

the conductivity structures and thus continuous everywhere.

Hence the assumption made in finite-element modelling that all

the field components are continuous across element boundaries

is satisfied. The approximation is performed on a model area V
that entirely embraces the zone of the 2-D inhomogeneities,

and extends far enough in all directions for the anomalous

fields to be very small on its external boundary. To avoid the

singularity of (9) owing to vanishing conductivity within the

insulating air layer above the earth, we assume that the air

has a very small, but non-zero conductivity, typically less than

10x12 Smx1 in our computations. Numerical tests show no

substantial dependence of the field solution on air conductivities

chosen within broad limits down to 10x30 Smx1.

The method of weighted residuals is used to derive the

integral equations from the differential eqs (8) and (9). Eq. (8)

is multiplied by an arbitrary variation of the electric field dEx

and integrated over the model area V:ð
)

1

iuk0
+2Ex þ CEx þ A

LHx

Ly
� B

LHx

Lz

� �
dEx d) ¼ 0 : (19)

In this equation, the first term of the integrand contains second-

order partial derivatives, and can be simplified by using Green’s

formula,ð
)
+2u o d) ¼

ð
!

Lu

Ln
o d!�

ð
)
+u .+o d) ,

where C denotes the boundary of the model area V. Then

eq. (19) can be written in the equivalent form,

1

iuk0

ð
)
+Ex

.+dEx d)�
ð
)

CEx dEx d)�
ð
)

A
LHx

Ly
dEx d)

þ
ð
)

B
LHx

Lz
dEx d)� 1

iuk0

ð
!

LEx

Ln
dEx d! ¼ 0 : (20)

Similarly, eq. (9) is multiplied by an arbitrary variation of

the magnetic component dHx and integrated over the region V,
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and, subsequently, modified using the Gauss formulað
)
+ . u o d) ¼

ð
!
u . n o d!�

ð
)
u .+o d) :

With the use of eq. (16) this leads to the integral equationð
)
+dHx

. ðq+HxÞ d)�
ð
)

iuk0 Hx dHx d)þ
ð
)
p .+dHx d)

�
ð
!

q
LHx

Ln
þ p . n

� �
dHx d! ¼ 0 : (21)

Here we have also used the formula

q+Hx
. ndHx ¼ q

LHx

Ln
dHx : (22)

The model area V can be subdivided into rectangular or

triangular elements. The formulation for the rectangular elements

is described by Li (2000). In the following section, the formu-

lations for the triangular elements are presented. The integrals

of eqs (20) and (21) thus decompose into integrals for each

element, numbered with index e=1, 2, . . . , ne,

Xne

e¼1

1

iuk0

ð
e

+Ex
.+dEx d)�

Xne

e¼1

ð
e

C Ex dEx d)

þ
Xne

e¼1

ð
e

�A
LHx

Ly
þ B

LHx

Lz

� �
dEx d)

�
Xne

e¼1

ð
!e

Ht dEx d! ¼ 0 , (23)

Xne

e¼1

ð
e

+dHx
. ðq +HxÞ d)�

Xne

e¼1

ð
e

iuk0Hx dHx d)

þ
Xne

e¼1

ð
e

p .+dHx d)�
Xne

e¼1

ð
!e

Et dHx d! ¼ 0 , (24)

where Ce denotes the boundary of the element e. In formulating

eq. (23) we have used the eq. (18) to convert the integrand of

the line integral into HtdEx. In a similar way, the integrand of

the line integral in eq. (24) has been obtained using eq. (17).

Boundary conditions must now be applied. On the inter-

element boundaries, the continuity of tangential components

of electric and magnetic fields (Hx, Ex) is required. As each

boundary is traversed twice in opposite directions during the

course of the integration, the sum of line integrals over the internal

element boundaries is equal to zero. On the outer boundary,

since Dirichlet boundary conditions are set, the variations of

electric and magnetic fields dEx and dHx are equal to zero.

Hence the line integral is also zero. In this way, eqs (23) and

(24) finally reduce to

Xne

e¼1

1

iuk0

ð
e

+Ex
.+dEx d)�

Xne

e¼1

ð
e

C Ex dEx d)

þ
Xne

e¼1

ð
e

�A
LHx

Ly
þ B

LHx

Lz

� �
dEx d) ¼ 0 , (25)

Xne

e¼1

ð
e

+dHx
. ðq +HxÞ d)�

Xne

e¼1

ð
e

iuk0Hx dHx d)

þ
Xne

e¼1

ð
e

p .+dHx d) ¼ 0 : (26)

Following the basic concept of the FE method in a linear

approximation, we assume that in each triangular element the

electric field Ex and the magnetic field Hx are linear functions of

y and z, and can be approximated by

Exðy, zÞ ¼
X3
i¼1

NiEi , Hxðy, zÞ ¼
X3
i¼1

NiHi , (27)

where Ei and Hi are the electric and magnetic fields at the ith

vertex with the coordinate (yi, zi), i=1, 2, 3, of the triangular

element D123 (Fig. 2), and Ni are linear shape functions. They

are defined by

Ni ¼
1

2*
ðaiy þ biz þ ciÞ , i ¼ 1, 2, 3 , (28)

where

* ¼ 1

2
ða1b2 � a2b1Þ , the area of the element *123 , (29)

a1 ¼ z2 � z3 , b1 ¼ y3 � y2 , c1 ¼ y2z3 � y3z2 , (30)

a2 ¼ z3 � z1 , b2 ¼ y1 � y3 , c2 ¼ y3z1 � y1z3 , (31)

a3 ¼ z1 � z2 , b3 ¼ y2 � y1 , c3 ¼ y1z2 � y2z1 : (32)

The area integrals in eqs (25) and (26) over an element are

evaluated using eqs (27)–(32). Then the integrals over all elements

can be assembled into two linear equation systems. The details

are given in Appendix A. Combining these equation systems,

we can write the final linear system in the matrix form as

K ¼ 0 , (33)

where

K ¼
K11 K12

K21 K22

 !
, U ¼

Ex

Hx

 !
:

K11 and K22 are symmetric square matrices of order nd

(where nd is the total number of nodal points in the entire model

area V), and K12 andK21 are non-symmetric square matrices of

Figure 2. Triangular FE element of the modelled cross-section.
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order nd that satisfy the symmetry relation K12=K21
T . Hence,

the matrix K is a square symmetric matrix of order 2nd. It is

sparsely occupied by complex elements. U is the column vector

of order 2nd, containing the electric and magnetic fields at all

nodal points as unknowns. Substituting the boundary conditions

on the outer boundary into eq. (33), these equations can be

solved for the field components Ex and Hx at the internal mesh

nodes, using the conjugate gradient method.

The conjugate gradient method as originally proposed by

Hestens & Stiefel (1952) is only suitable for real symmetric,

positive-definite matrices. Jacobs (1981) presented a complex

bi-conjugate gradient algorithm that extends the application of

the conjugate gradients to complex, indefinite systems. The con-

vergence of this generally conjugate gradient method is improved

by preconditioning the coefficient matrix K. We found that a

simple diagonal Jacobi scaling (Schwarz 1991) is a sufficient

preconditioner in our case. For the models we evaluated in this

paper, the grid contains up to 2500 nodes and the number of

equation is about 5000. We always used zero values U=0 as

starting values, after about 200 iterative steps, we always obtain

convergent solutions.

In the conjugate gradients method, only the non-zero elements

on and below the diagonal of the sparse symmetric coefficient

matrix K are required, which are stored in a 1-D array accord-

ing to the procedure of Schwarz (1991). With this algorithmic

implementation of the conjugate gradient solver, the computer

memory requirements of the solution are greatly reduced.

4 MAGNETOTELLURIC IMPEDANCES

Solving the linear equation system eq. (33), we obtain Ex and

Hx at each node. The other two magnetic field components

Hy, Hz are readily found from eqs (3) and (4), while the

relations for the electric components Ey, Ez are derived after

some additional calculations from eqs (6) and (7). In summary,

Hy ¼ 1

iuk0

LEx

Lz
,

Hz ¼ � 1

iuk0

LEx

Ly
,

Ey ¼ pyz

D

LHx

Ly
þ pzz

D

LHx

Lz
þ BEx ,

Ez ¼ � pyy

D

LHx

Ly
� pzy

D

LHx

Lz
þ AEx :

In our algorithm, the required derivatives are computed

numerically using spline interpolation.

The impedance tensor elements can be calculated using the

electric and magnetic fields of two orthogonal linear source

polarizations, e.g. for the primary magnetic field either in the

x-direction with H0=(H0x,H0y,H0z)=(x1, 0, 0) (polarization 1)

or in the y-direction with H0=(0, 1, 0) (polarization 2). The

primary field indicates the sum of the inducing field from sources

in z<0 and of the induced field in the normal structures at
Figure 3. The horizontally anisotropic dyke model of Reddy &

Rankin (1975).

Figure 4. Apparent resistivities (top) and phases (bottom) for the model in Fig. 3. Diamonds, results of the FD algorithm (Pek & Verner 1997); solid

line, results of the FE algorithm described in this paper.
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|y|p?. From

E1x ¼ ZxxH1x þ ZxyH1y , E1y ¼ ZyxH1x þ ZyyH1y , (34)

E2x ¼ ZxxH2x þ ZxyH2y , E2y ¼ ZyxH2x þ ZyyH2y , (35)

we obtain the impedance tensor elements

Zxx ¼ ðE1xH2y � E2xH1yÞ=det , Zxy ¼ ðE2xH1x � E1xH2xÞ=det

Zyx ¼ ðE1yH2y � E2yH1yÞ=det , Zyy ¼ ðE2yH1x � E1yH2xÞ=det

det ¼ H1xH2y � H2xH1y ,

and the apparent resistivities and impedance phases

oij ¼
1

uk0
Zij

�� ��2 ,
�ij ¼ tan�1 ImðZijÞ

ReðZijÞ
, i, j ¼ x, y :

5 NUMERICAL TEST

In order to test the adaptation of the FE method in the case of

electric anisotropy, our computed results for two test models

are compared with those obtained using the finite-difference

Figure 5. Test model for comparison of FD and FE solutions, consisting of an outcropping anisotropic block underlain by an anisotropic layer.

Figure 6. Apparent resistivities (top) and phases (bottom) for the model in Fig. 5. Diamonds, results of the FD algorithm (Pek & Verner 1997); solid

line, results of the FE algorithm described in this paper.
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Figure 7. A 2-D slab with dipping anisotropy in an isotropic homogeneous half-space with r0=1000V m. The conductivity tensor of the slab is given

by the principal resistivities rxk /ryk /rzk=500/10/500 V m for varying dip angles b.

Figure 8. Apparent resistivities for various dip angles b at T=10 s from Fig. 7.
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method. Fig. 3 shows the first test model that was originally

presented by Reddy & Rankin (1975). We computed the MT

response of this model for a period of 10 s and compared it

with that of the FD calculations by Pek & Verner (1997). The

results are displayed in Fig. 4, and show very good agreement

between the FE and FD solutions.

Fig. 5 shows the second test model presented by Pek &

Verner (1997).Ahorizontally anisotropic layer underlies an out-

cropping horizontally anisotropic 2-D block. The anisotropy

strikes of the two structures involved are perpendicular to each

other and not parallel to the structural strike of the 2-D model.

The model was chosen to demonstrate serious distortions of the

MT data, which can be caused by a complicated anisotropic

situation. In Fig. 6, the computed FE results for a period of 30 s

are compared with those of Pek & Verner (1997). The average

error in apparent resistivities is less than 0.5 per cent and the

discrepancies in phases are not more than 1u.

6 EFFECTS OF ANISOTROPY

It has been noted that laterally non-uniform isotropic earth

models are insufficient to account for MT tensor impedance, in

particular where strong impedance anisotropies persist more

or less unchanged over extended areas. This is best studied at

long periods, preferably in the period range of daily variations,

where the separation of ra-max and ra-min curves may reach

two orders of magnitude or more. Near Göttingen, ra-max

estimated for daily variations are between 100 and 1000 V m,

with ra-min values well below 10 V m (Schmucker 1998). In

areas with crystalline rock at the surface, similar observations

have been made at much shorter periods, to which our model

calculations apply. Accordingly, we have used model resistivities

in the principal directions of 100–500 V m for xk, 10 V m for yk
and 100–500 V m for zk.
In this section, a simple anisotropic slab model, embedded

into an isotropic homogeneous half-space with r0=1000 V m, is

used to demonstrate the effect of horizontal, vertical and dipping

anisotropy upon the magnetotelluric response. All calculations

are made at a period of T=10 s, unless stated otherwise. For a

period of 10 s the skin-depths are 50 km for the half-space and

5 km for 10 V m in the principal yk-direction. In particular, the

dimensions of the 8 kmr2 km slab with a lower boundary at

9 km are much smaller than the half-space skin depth.

6.1 Dipping anisotropy

Fig. 7 shows how the principal axes are orientated with respect

to the rectangular cross-section of the slab. The principal

resistivities of the anisotropic slab are rxk /ryk /rzk=500/10/500,

in V m, respectively. Fig. 8 shows the apparent resistivities for

various dip angles b at a period of 10 s. This figure indicates

that:

(1) the apparent resistivity rxy is independent of the dip

angle b, as the magnetotelluric field depends solely on rxxwrxk

in this case and is not affected by the anisotropy;

(2) the apparent resistivity ryx is affected considerably by b.
The ryx curves are not symmetric with respect to the centre of

the model—the minimum of the curves is off-centre and shifted

to one side depending on the sign of the dip. This shift increases

with increasing deviation of the dip from either the horizontal

or vertical direction. We can explain this behaviour by looking

at the distribution of the electrical fields. Fig. 9 shows the

distribution of the electrical field in the yz-plane for three

dip angles b (=30u, 60u, 90u) in the polarization 1, in which

the generating primary magnetic field is H0=(x1, 0, 0). The

starting point of each arrow is the finite-element node. The

length and the direction of the arrows reflect the magnitude and

the direction of the field at that point. The figure clearly shows

that the magnitude and the direction of the field change with

the dip angle b within the anisotropic slab.

Figure 9. The distribution of the electrical fields in the yz-plane

for the model in Fig. 7. The generating primary magnetic field is

H0=(x1, 0, 0) and the period of the field is 10 s.

396 Y. Li

# 2002 RAS, GJI 148, 389–401



(3) If b=0, ryx corresponds to the apparent resistivity

produced by a model with resistivities of 10 V m along the y

direction and 500 V m along x and z directions. Similarly, if

b=90u, ryx corresponds to that produced by a model with

vertical anisotropy, with the resistivities 500 V m along x and y

directions and 10 V m along the z direction.

The apparent resistivity and phase curves for various dip

angles b (=0u, 30u, 60u, 90u) at the model centre C (yC=0) are

shown in Figs 10(a) and (b), respectively. From these figures

one can see that the apparent resistivities at very short periods

approach the true resistivity of the half-space, and the phases

approach 45u. However, with increasing period rC
xy and rC

yx

deviate significantly, wC
xy and wC

yx too, and this deviation is

dependent on the dip angle b. While rC
yx and wC

yx curves are

distinct for different dip angles b, the rC
xy and wC

xy curves

coincide with each other. Moreover, the apparent resistivity rC
xy

at the very long periods converges to the value appropriate for

the resistivity of the half-space, the phases wC
xy and wC

yx approach

45u, but rC
yx is still under the influence of the anisotropic slab.

The apparent resistivity ryx and phase wyx at the surface points

A(yA=x0.8 km) and B(yB=0.8 km), which are symmetric with

respect to the model centre C, are shown in Figs 10(c) and (d),

respectively. From these figures it can be seen that the apparent

resistivity and phase curves at A, rA
yx and wA

yx are different from

Figure 10. The apparent resistivity and phase curves at the surface points A, B and C for the model in Fig. 7.

Figure 11. A 2-D slab with horizontal anisotropy in an isotropic homogeneous half-space with r0=1000 V m. The conductivity tensor of the slab is

given by the principal resistivities rxk /ryk /rzk=100/10/100 V m for varying anisotropic strike angles a.
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those at B. However, they coincide with each other, when b=0u
and 90u. It is easily seen that the apparent resistivity rxy and

phase wxy at A are identical with those at B.

6.2 Horizontal anisotropy

Fig. 11 shows the orientation of the principal axes, which are

now tilted in the horizontal plane by an angle a. The principal
resistivities of the anisotropic inhomogeneity are rxk /ryk /rzk=
100/10/100, respectively, in V m. According to the technique of

Siemon (1997), the magnitudes of the rotated off-diagonal

impedance elements, |Zxaya| and |Zyaxa|, are plotted along the

coordinate axes, rotated into the Swift principal direction, and

the diagonal impedances, |Zxaxa| and |Zyaya|, attached to them as

cross-bars. Fig. 12 shows the magnetotelluric impedances in

Siemon’s representation along a surface profile for various

anisotropy strike angles a at a period of 10 s. From Fig. 12 we

can conclude that:

(1) immediately above the anisotropic block, the minimum

and maximum axes indicate the direction of the high and low

conductivity, respectively;

(2) significant diagonal elements of the impedance tensor,

|Zxaxa| and |Zyaya|, exist (except for a=0u and 90u), and increase

Figure 12. MT principal axes for various strike angles a. Cross, absolute values of the off-diagonal MT tensor elements Zxaya, Zyaxa; crossbars,

absolute values of the diagonal MT tensor elements Zxaxa, Zyaya with reference to Swift-rotated coordinates (xa, ya).

Figure 13. The real parts of the electrical fields, Re(Ex) and Re(Ey), along the surface profile for the model in Fig. 11. The generating primary

magnetic field is H0=(0, 1, 0) and the period of the field is 10 s.
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with the deviation of the anisotropy strike a from the structural

strike of the model;

(3) far from the inhomogeneity, where the anomalous field

fades out, the off-diagonal elements become equal, |Zxaya|=
|Zyaxa|, and the diagonal elements disappear: |Zxaxa|=|Zyaya|p0

for |y|p?. When passing through the edge of the anisotropic

block towards the homogeneous half-space, a certain reduction

of the impedances takes place within a transition zone where

the above directional pattern can be severely distorted, especially

if large anisotropies and shallow anomalous conductors are

involved.

Fig. 13 shows the real parts of the electrical fields, Re(Ex)

and Re(Ey), along the surface profile for the various strike

angles a(=0u, 30u, 45u, 60u, 90u) in polarization 2, in which the

generating primary magnetic field is H0=(0, 1, 0). It can be

seen from this figure that the magnitude and the direction of the

field change with the strike angle a within the anisotropic slab;

the y-component of the electrical field, Re(Ey) exists except that

a=0u and 90u, and becomes greater when the strike angle a is in
between these values.

6.3 A tilted slab model

Fig. 14 shows a 2-D model as in Fig. 7 for the special case

of b=90u, but the slab is tilted by 45u, simulating a direction-

dependent conductivity in a shear or subduction zone. Owing

to shearing, it could be expected that the slab has different

conductivities in the direction of shearing and perpendicular to

it. If no such difference exists and assuming that the slab as a

whole is a better conductor than the surrounding layer, a non-

symmetric central minimum in ra is observed for a primary

field in the strike direction. If the parallel resistivity is 10 times

greater than resistive surrounding rocks, the asymmetry is

preserved, but with a barely visible minimum above the slab. If

the slab is a much better conductor in the direction of shearing,

then the minimum in ryx is more pronounced, as is to be

expected (Fig. 15a). With respect to the splitting of ra-curve,

Fig. 15(b) shows that it begins well below 1 s and that it merges

into a quasi-static offset for longer periods.

7 CONCLUS IONS

We have presented an algorithm for the numerical modelling of

magnetotelluric fields in anisotropic 2-D structures. The main

features of our numerical scheme are as follows.

(1) The conductivity tensor of each anisotropic block is

represented by a symmetric 3r3 matrix, thus allowing us

an arbitrary anisotropy to be considered within the medium,

including the special cases of the horizontal, vertical and

dipping anisotropy.

(2) The numerical treatment of the problem involved is based

upon the finite-element method, which is well suited to sloping

model boundaries and topography, as exemplified in Fig. 14.

(3) Assuming a very small, but positive air conductivity,

the air layer can be integrated into the conductive model.

The equations for both modes can then be approximated

homogeneously over the entire model area, which makes the

approximation process much simpler than distinguishing the

air-and-earth and earth-only variables as done by Pek & Verner

(1997), with the air conductivity set exactly to zero. With fast

iterative techniques used to solve the system of FE linear

equations, the additional Hx-variables within the air layer do

not present an excessive problem. The numerical experiments

performed show that the solution for the field components

is stable and practically unaffected within broad limits of the

air conductivity chosen, specifically from 10x12 Smx1, which

is small enough for rock conductivities and well below the

extremely low conductivity of air above the earth.

(4) A modified conjugate gradient technique is used to solve

the equation system eq. (33), with a complex and symmetric

matrix. We found that a simple diagonal scaling (Jacobi scaling)

is a sufficient preconditioner in our case.

Figure 14. A 2-D model as in Fig. 7 for the special case of b=90u, but
the slab is tilted by 45u, simulating a shear or subduction zone with

different resistivities parallel and perpendicular to the slab boundaries.

Figure 15. Apparent resistivities ryx on a profile across the slab for

T=10 s (a) and apparent resistivity curves at the site y=0 (b) for the

tilted slab model of Fig. 14. Resistivity ryk, parallel to slab boundary,

either equal to the highly resistive host rocks, or equal to rzk per-

pendicular to slab boundary (isotropic case), or 10 times less than rzk.

Apparent resistivities rxy curves for ryk between 10 and 1000Vm follow

the ryx curve closely for ryk=1000 V m.
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(5) The strike-perpendicular field components Ey and Hy are

computed numerically using the spline interpolation.
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APPENDIX A : DERIVAT ION OF THE
L INEAR EQUAT ION SYSTEM

The first integral of eq. (25) over an element e is

1

iuk0

ð
e

+Ex
.+dEx d) ¼ dET

xeK1e Exe , (A1)

where Exe=(E1, E2, E3)
T, dET

xe=(dE1, dE2, dE3) and K1e is a

3r3 symmetric matrix with the elements

K1e ¼
1

iuk0

1

4*

a21 þ b21 sym:

a1a2 þ b1b2 a22 þ b22

a1a3 þ b1b3 a2a3 þ b2b3 a23 þ b33

0
BBB@

1
CCCA :

The second integral of eq. (25) over the element e is

�
ð

e

C Ex dEx d) ¼ dET
xeK2e Exe , (A2)

where

K2e ¼ �C*
12

2 sym:

1 2

1 1 2

0
BBB@

1
CCCA :

The third integral of eq. (25) over the element e isð
e

�A
LHx

Ly
þ B

LHx

Lz

� �
dEx d) ¼ dET

xe K3eHxe (A3)

where Hxe=(H1, H2, H3)
T and K3e is a non-symmetric matrix

K3e ¼
1

6

�Aa1 þ Bb1 �Aa2 þ Bb2 �Aa3 þ Bb3

�Aa1 þ Bb1 �Aa2 þ Bb2 �Aa3 þ Bb3

�Aa1 þ Bb1 �Aa2 þ Bb2 �Aa3 þ Bb3

0
BBB@

1
CCCA :

Before summing up the integrals over all the elements, the

column vectors of individual element Exe, Hxe and dExe, each

with three components, are grouped into global vectors Ex=
(E1, . . . , End

)T, Hx=(H1, . . . , Hnd
)T and dEx=(dE1, . . . , dEnd

)T,

where nd is the total number of nodal points over the entire

model area V. The element matrices K1e, K2e and K3e, each

of size of 3r3, are expanded to K1e, K2e and K3e with nd rows

and nd columns, respectively. This is done by adding rows and

columns of zeros to the element matrices. The sum of the

integrals (25) over all elements gives

dET
x

Xne

e¼1

K1e þ
Xne

e¼1

K2e

 !
Ex þ dET

x

Xne

e¼1

K3e Hx ¼ 0 , (A4)

or

dET
x K11 Ex þ dET

x K12 Hx ¼ 0 , (A5)

with

K11 ¼
Xne

e¼1

K1e þ
Xne

e¼1

K2e , K12 ¼
Xne

e¼1

K3e :

The matrix K11 is a symmetric square matrix of order nd,K12 a

non-symmetric square matrix of the order nd.
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Considering that dEx is arbitrary, we arrive at

K11 Ex þ K12 Hx ¼ 0 , (A6)

which is a system of nd linear equations with 2nd unknowns

E1, . . . , End
, and H1, . . . , Hnd

.

To find the solution for Ex and Hx, we must further derive

another linear equation system for the above variables using

eq. (26). The first integral of eq. (26) over an element e isð
e

+dHx
. q +dHx d) ¼ dHT

xe K4e Hxe , (A7)

where Hxe=(H1, H2, H3)
T and dHxe=(dH1, dH2, dH3)

T. K4e is

a symmetric 3r3 matrix,

K4e ¼
1

4*

a1a1 þ b1b1 a1a2 þ b1b2 a1a3 þ b1b3

a1a2 þ b1b2 a2a2 þ b2b2 a2a3 þ b2b3

a1a3 þ b1b3 a2a3 þ b2b3 a3a3 þ b3b3

0
BBB@

1
CCCA ,

with

a1 ¼ q11a1 þ q21b1 , a2 ¼ q11a2 þ q21b2 , a3 ¼ q11a3 þ q21b3 ,

b1 ¼ q12a1 þ q22b1 , b2 ¼ q12a2 þ q22b2 , b3 ¼ q12a3 þ q22b3 :

The second integral of eq. (26) over the element e is

�
ð

e

iuk0Hx dHx d) ¼ dHT
xe K5e Hxe , (A8)

with

K5e ¼ � iuk0*
12

2 sym:

1 2

1 1 2

0
BBB@

1
CCCA :

The third integral of eq. (26) over the element e is, again with

the use of eq. (16),ð
e

p .+dHxd) ¼ dHT
xeK6eExe , (A9)

with

K6e ¼
1

6

�Aa1 þ Bb1 �Aa1 þ Bb1 �Aa1 þ Bb1

�Aa2 þ Bb2 �Aa2 þ Bb2 �Aa2 þ Bb2

�Aa3 þ Bb3 �Aa3 þ Bb3 �Aa3 þ Bb3

0
BBB@

1
CCCA :

Comparing the latter matrix with K3e, we can see that

K3e=KT
6e.

Consistently with the previously used arrangement of the

mesh nodes, the single-element vectors Exe, Hxe and dHxe are

again grouped into Ex=(E1, . . . , End
)T, Hx=(H1, . . . , Hnd

)T

and dHx=(dH1, . . . , dHnd
)T, respectively, and the matrices K4e,

K5e andK6e are expanded to K4e, K5e and K6e, respectively, all

of the order nd. The sum of the integrals in eq. (26) over all the

elements finally results in

dHT
x

Xne

e¼1

K4e þ
Xne

e¼1

K5e

 !
Hx þ dHT

x

Xne

e¼1

K6e Ex ¼ 0 , (A10)

or

dHT
x K22 Hx þ dHT

x K21 Ex ¼ 0 , (A11)

with

K21 ¼
Xne

e¼1

K6e, K22 ¼
Xne

e¼1

K4e þ
Xne

e¼1

K5e:

Since dHx is arbitrary, we finally obtain a linear equation

system

K21 Ex þ K22 Hx ¼ 0 : (A12)
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