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SUMMARY

The calculation of the deformation due to shear and tensile faults in a half-space is
a fundamental tool for the investigation of seismic and volcanic sources. The solution
of the two-dimensional problem of a long inclined shear fault is well-known. The
purpose of the present paper is to present closed-form analytical expressions for the
subsurface stresses and displacements caused by a long inclined tensile fault buried in a
homogeneous isotropic half-space. The expression for the Airy stress function satisfying
appropriate boundary conditions at the surface of the half-space is obtained. This Airy
stress function is used to derive the expressions for the displacements and stresses
at an arbitrary point of the half-space. The variation of the displacement field with the
horizontal distance from the fault is studied numerically. The effect of the depth of
the upper edge of the fault and the dip angle on the deformation field is also examined.

Key words: deformation, dislocation, dyke injection, half-space, long tensile fault,
volcanic source.

1 INTRODUCT ION

Since dislocation theory was first introduced in the field of

seismology by Steketee (1958), numerous theoretical formu-

lations describing the deformation of a uniform half-space have

been developed (Okada 1992). In contrast to the progress that

has been made in the modelling of the deformation field due to

a shear fault, the studies related to a tensile fault are scarce.

However, tensile fault representation has several very important

geophysical applications, such as modelling of the deformation

field due to dyke injection in volcanic regions, mine collapse

and fluid-driven cracks. Recent studies have shown that a large

number of earthquake sources cannot be represented by the

double-couple source mechanism which models a shear fault.

According to Sipkin (1986), the non-double-couple mechanism

might be due to tensile failure under high fluid pressure.

Maruyama (1964) obtained surface displacements due to

vertical and horizontal rectangular tensile faults in a Poissonian

elastic half-space. Davis (1983) modelled the crustal deformation

associated with hydrofracture by a dipping rectangular tensile

fault beneath the surface of an elastic half-space. Yang & Davis

(1986) derived analytical expressions for the displacements,

strains and stresses due to a rectangular inclined tensile fault

in an elastic half-space. Bonafede & Danesi (1997) obtained

an analytical solution for the displacement and stress fields

produced by a long vertical tensile fault in a uniform half-

space, using a Galerkin vector approach. The corresponding

problem for two half-spaces in welded contact has been solved

by Bonafede & Rivalta (1999).

Singh & Garg (1986) obtained integral expressions for the

Airy stress function in an unbounded medium due to various

2-D sources. Beginning with these results, Rani et al. (1991)

obtained closed-form analytical expressions for the Airy stress

function, displacements and stresses in a homogeneous, iso-

tropic, perfectly elastic half-space due to an arbitrary line source.

By integration over the width of the fault, Rani & Singh (1992)

obtained the expressions for the Airy stress function, displace-

ments and stresses in a uniform half-space due to a long dip-slip

fault. The same procedure is followed in the present paper

to study plane strain 2-D deformation of a uniform half-space

due to a long inclined tensile fault of arbitrary depth. The 2-D

solution obtained here is useful because of its considerable
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simplicity as compared to the 3-D solution given by Yang &

Davis (1986). The elastic field due to a vertical tensile fault in

a uniform half-space given by Bonafede & Danesi (1997) and

Singh & Singh (2000) can be obtained as a particular case of the

solution given in the present paper on taking the dip angle

d=p /2.
The correspondence principle can be used for finding the

viscoelastic quasi-static field from the analytical elastic solution

given in the present paper (Singh & Singh 1990). The closed-

form analytical solution for an inclined tensile fault in a uniform

half-space may find useful applications towards extracting, from

geodetic and seismic data, information about the position, depth,

magma content and inclination of a buried dyke. The stresses

induced by dyke opening are also thought to be responsible

for the seismic activity generally observed prior to a volcanic

eruption, for inducing isotropic moment tensor components

and even for causing changes in the directions of the principal

stresses (Bonafede & Rivalta 1999).

An arbitrary dislocation has three components: strike-slip,

dip-slip and tensile (crack opening). The 2-D solutions for

the strike-slip and dip-slip dislocations were given by Freund &

Barnett (1976) and Rani & Singh (1992). The corresponding

solution for a tensile dislocation is obtained in the present

paper. Thus combining the results of Rani & Singh (1992) with

the results given in the present paper one can obtain the solution

for an arbitrary 2-D dislocation in a uniform half-space.

2 THEORY

Let the Cartesian coordinates be denoted by (x1, x2, x3) with

the x3-axis vertically downwards. Consider a 2-D approxi-

mation in which the displacement components u1, u2 and u3 are

independent of x1 so that h /hx1w0. Under this assumption the

plane strain problem (u1=0) can be solved in terms of the Airy

stress function W such that

q22 ¼ L2’=Lx23, q33 ¼ L2’=Lx22, q23 ¼ �L2’=Lx2Lx3 , (1)

where tij are the stress components. Following Rani et al. (1991)

and Singh & Singh (2000), we obtain the following expression

for the Airy stress function for an inclined tensile fault of

width L and infinite length (in the x1-direction) in a uniform

half-space x3i0:

’ ¼½kb=2nð1� pÞ�fðs� x2 cos d� X3 sin dÞ loge ðS=RÞ

þ 2x3½x2ðx2 sin dþ d cos dÞ þ x3X
0
3 sin d�S�2

þ 2sx3½ðX 0
3 sin d� x2 cos dÞ sin d� d�S�2gE , (2)

where m denotes the shear modulus, s the Poisson’s ratio, d the

depth of the upper edge of the fault (Fig. 1), d the dip angle,

b the displacement discontinuity normal to the fault and

X3 ¼ x3 � d, X 0
3 ¼ x3 þ d ,

R2 ¼ ðx2 � s cos dÞ2 þ ðX3 � s sin dÞ2, (3)

S2 ¼ ðx2 � s cos dÞ2 þ ðX 0
3 þ s sin dÞ2 ,

f ðsÞE ¼ f ðLÞ � f ð0Þ :

From eqs (1) and (2), we get the following expressions for the

stresses:

q22 ¼½kb=2nð1� pÞ�f½3X3 sin dþ x2 cos d� sð1þ 2 sin2 dÞ�

|ðR�2 � S�2Þ � 8 sin dðd þ s sin dÞS�2

þ 2ðs� x2 cos d� X3 sin dÞ

|½ðX3 � s sin dÞ2R�4 � ðX 0
3 þ s sin dÞ2S�4�

þ 4ðd þ s sin dÞ½x3ð3X 0
3 sin d� x2 cos dþ sþ 2s sin2 dÞ

þ 2ðX 0
3 þ s sin dÞðX 0

3 sin d� x2 cos dþ sÞ�S�4

� 16x3ðd þ s sin dÞðX 0
3 sin d� x2 cos dþ sÞ

|ðX 0
3 þ s sin dÞ2S�6gE , (4)

q33 ¼½kb=2nð1� pÞ�fðx2 cos d� X3 sin d� s cos 2dÞðR�2 � S�2Þ

þ 2ðx2 cos dþ X3 sin d� sÞ

|½ðX3 � s sin dÞ2R�4 � ðX 0
3 þ s sin dÞ2S�4�

þ 4x3ðdþ s sin dÞ½x2 cos d� 3X 0
3 sin d� sð1þ 2 sin2 dÞ�S�4

þ 16x3ðd þ s sin dÞðX 0
3 sin d� x2 cos dþ sÞ

|ðX 0
3 þ s sin dÞ2S�6gE , (5)

q23 ¼½kb=2nð1� pÞ�fðX3 cos d� x2 sin dÞðR�2 � S�2Þ

þ 2ðx2 sin d� X3 cos dÞ

|½ðX3 � s sin dÞ2R�4 � ðX 0
3 þ s sin dÞ2S�4�

� 4x3ðd þ s sin dÞðx2 sin dþ 3X 0
3 cos dþ s sin 2dÞS�4

þ 16x3ðd þ s sin dÞðx2 sin dþ X 0
3 cos dÞ

|ðX 0
3 þ s sin dÞ2S�6gE , (6)

Figure 1. Geometry of a long tensile fault in a half-space (x3i0). The

fault is of width L in the down-dip direction and of infinite length in

the strike (x1) direction. d is the dip angle, d is the depth of the upper

edge of the fault and b is the dislocation normal to the fault.
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q11 ¼ pðq22 þ q33Þ ¼ ½p=ð1þ pÞ�ðq11 þ q22 þ q33Þ

¼ ½pkb=nð1� pÞ�fðX3 sin dþ x2 cos d� sÞðR�2 � S�2Þ

� 4 sin dðd þ s sin dÞS�2 þ 4ðd þ s sin dÞðX 0
3 þ s sin dÞ

|ðX 0
3 sin d� x2 cos dþ sÞS�4gE , (7)

q12 ¼ q13 ¼ 0 : (8)

The strains can be calculated through the relations

2ke22 ¼ ð1� pÞq22 � pq33 ,

2ke33 ¼ ð1� pÞq33 � pq22 ,

2ke23 ¼ q23, e11 ¼ e12 ¼ e13 ¼ 0 : (9)

Corresponding to the stresses given by eqs (4)–(8), the

displacements are given by

u1 ¼ 0, 2k ui ¼ �L’=Lxi þ ð1� pÞ
ð
ðq22 þ q33Þdxi ði ¼ 2, 3Þ :

(10)

We find

u2 ¼½b=4nð1� pÞ�fð3� 2pÞ cos d loge ðR=SÞ

þ 2ð1� pÞ sin d½tan�1 ðx2 � s cos d� s sin dÞ

� tan�1 ðx2 � s cos dÞ=ðX 0
3 � s sin dÞ�X3 cos d� x2 sin dÞ

|½X3 þ s sin dR�2 � ðX 0
3 þ s sin dÞS�2� þ 2ðd þ s sin dÞ

|½ð1� 2pÞðx2 sin dþ d cos dÞ þ 2ð1� pÞx3 cos d�S�2

� 4x3ðd þ s sin dÞðX 0
3 þ s sin dÞðx2 sin dþ X 0

3 cos dÞS�4gE ,

(11)

u3 ¼½b=4nð1� pÞ�fð1� 2pÞ sin d loge ðR=SÞ

þ 2ð1� pÞ cos d½tan�1 ðX3 � s sin dÞ=ðx2 � s cos dÞ

� tan�1 ðX 0
3 þ s sin dÞ=ðx2 � s cos dÞ� þ ðX3 � s sin dÞ

|ðs� x2 cos d� X3 sin dÞðR�2 � S�2Þ þ 2ðd þ s sin dÞ

|½2ð1� pÞðx2 cos d� X 0
3 sin d� sÞ þ 3x3 sin d�S�2

� 4x3ðd þ s sin dÞðX 0
3 þ s sin dÞ

|ðX 0
3 sin d� x2 cos dþ sÞS�4gE : (12)

It has been verified that on taking d=0, d=90u in

eqs. (4)–(12) the results of Singh & Singh (2000) for a vertical

tensile fault are obtained as a particular case. Similarly, the

results of Bonafede & Danesi (1997) for a vertical tensile fault

are obtained as a particular case of the corresponding results

for an inclined tensile fault given here if we replace b byxb due

to the difference in the sign convention of the two studies.

3 Numerical results and discussion

We wish to study the 2-D displacement field due to a long

inclined tensile fault of width L in a uniform half-space. For

numerical calculations, we take s=0.25 and define the following

dimensionless quantities:

Y ¼ x2=L, Z ¼ x3=L, D ¼ d=L, Ui ¼ ui=b ,

where b is the displacement discontinuity normal to the fault.

Thus, Y is the dimensionless horizontal distance from the upper

edge of the fault, Z the dimensionless depth, U2 the dimen-

sionless horizontal displacement, and U3 the dimensionless

vertical displacement (uplift is xU3).

The expressions for the surface displacements are obtained

on putting x3=0 in eqs (11) and (12). We find

u2 ¼ðb=nÞ½� sin d tan�1 ðx2 � s cos dÞ=ðd þ s sin dÞ

þ ðx2 sin dþ d cos dÞðd þ s sin dÞR�2
0 �E, (13)

u3 ¼ðb=nÞ½cos d tan�1 ðx2 � s cos dÞ=ðd þ s sin dÞ

þ ðx2 cos d� d sin d� sÞðd þ s sin dÞR�2
0 �E, (14)

where

R2
0 ¼ ðx2 � s cos dÞ2 þ ðd þ s sin dÞ2 : (15)

Fig. 2 shows the variation of the horizontal surface

displacement with the horizontal distance from the upper

edge of the fault for four values of the dip angle d=0u, 15u, 60u,
90u. Fig. 2(a) is for a horizontal tensile fault with dislocation in

the vertical direction. In this case, the horizontal displacement

is antisymmetric about the surface point vertically above the

mid-point of the fault. As the depth of the fault increases, the

maximum horizontal displacement at the surface decreases.

Figs 2(b, c) are for d=15u and 60u, respectively. For a surface-

breaking fault (D=0), the horizontal surface displacement is

discontinuous at the origin (upper edge of the fault), the magni-

tude of discontinuity being b sin d. Fig. 2(d) is for a vertical

tensile fault with dislocation in the horizontal direction. For

a vertical tensile fault the horizontal displacement is anti-

symmetric about the origin. For a surface-breaking vertical fault,

the horizontal displacement has a discontinuity of magnitude b

at the origin.

Fig. 3 shows the variation of the surface uplift (xU3) with

the horizontal distance from the upper edge of the fault for four

values of the dip angle d=0u, 15u, 60u, 90u. Fig. 3(a) is for a

horizontal tensile fault with dislocation in the vertical direction.

In this case, the vertical displacement is symmetric about the

surface point vertically above the mid-point of the fault. As the

depth increases, the maximum uplift decreases. Figs 3(b and c)

are for d=15u and 60u, respectively. For a surface-breaking

fault (D=0), the uplift is discontinuous at the origin (upper

edge of the fault), the magnitude of the discontinuity being

b cos d. For a surface-breaking vertical fault (Fig. 3d), the

uplift is symmetric about the origin and has a non-zero value

at that point. However, for a buried vertical fault, the uplift is

symmetric about the origin and vanishes at that point.

From eq. (13) we find that, for a surface-breaking (d=0)

long tensile fault, the horizontal surface displacement (u2) on

the hanging wall side is maximum for x2=L cos d and

ðu2Þmax ¼ bððn=2Þ sin dþ cos dÞ=n :

For a fault which does not break the surface,

u2 ¼ u3 ¼ 0 at x2 ¼ �d cot d :

This is the point at which the fault when extended meets the

surface.
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(a) (b)

(d)(c)

Figure 3. (a) variation of the dimensionless surface uplift xU3=xu3 /b with dimensionless horizontal distance Y=x2 /L from the upper edge of the

fault for d=0u. (b) variation of the uplift with Y for d=15u. (c) variation of the uplift with Y for d=60u. (d) variation of the uplift with Y for d=90u.

(a) (b)

(d)(c)

Figure 2. (a) variation of the dimensionless horizontal surface displacement U2=u2 /b with dimensionless horizontal distance Y=x2 /L from the

upper edge of the fault for various values of the dimensionless depth D=d /L of the upper edge of the fault for d=0u. (b) variation of U2 with Y for

d=15u. (c) variation of U2 with Y for d=60u. (d) variation of U2 with Y for d=90u.
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