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SUMMARY

Three-dimensional (3-D) electromagnetic (EM) inversion is increasingly important for
the correct interpretation of EM data sets in complex environments. To this end, several
approximate solutions have been developed that allow the construction of relatively fast
inversion schemes. We have developed a localized quasi-linear (LQL) approximation
that is source-independent and, therefore, appropriate for multisource array-type surveys,
typical in many geophysical applications, such as airborne EM, cross-well tomography,
and well logging. This method is based on the assumption that the anomalous electric
field within an inhomogeneous domain is linearly proportional to the background
electric field through an electrical reflectivity tensor l̂. This tensor is determined by
solving a source-independent minimization problem based on the integral equation for
the scattering currents. We have also developed a new, fast 3-D EM inversion method,
based on this new approximation, and applied it to synthetic and real helicopter-borne
EM data. The results demonstrate the stability and efficiency of the method and show
that the LQL approximation can be a practical solution to the problem of 3-D inversion
of multitransmitter frequency-domain EM data.

Key words: electrical conductivity, electromagnetic induction, electromagnetic methods,
electromagnetic modelling, electromagnetic surveys, inversion.

1 INTRODUCT ION

Electromagnetic (EM) exploration of the Earth’s interior

has advanced in recent years through the development of

new techniques for modelling and inverting EM field data. The

integral equation (IE) method is a powerful tool for EM

numerical modelling (Weidelt 1975; Hohmann 1975; Dmitriev

& Pozdnyakova 1992). This method is based on expressing the

electromagnetic fields as a system of integral equations with

respect to the anomalous currents within an inhomogeneity.

One can transform the integral equations into a system of linear

algebraic equations by approximating the anomalous current

distribution, ja, by piecewise constant functions. The algebraic

system is then solved numerically (Xiong 1992), and the EM

field is calculated at the receivers. The main difficulty with

this technique is the size of the matrix of the linear system of

equations, which can demand excessive computer memory and

calculation time. This limitation of the integral equation tech-

nique becomes critical in inverse problems that require multiple

forward modelling calculations for many different geoelectrical

models.

A novel approach to 3-D EM modelling based on linear-

ization of the integral equations for scattered EM fields has

been developed recently (Zhdanov & Fang 1996a, 1997). Within

this method, called the quasi-linear (QL) approximation, the

anomalous currents are assumed to be proportional to the back-

ground (normal) field, Eb, through an electrical reflectivity

tensor, l̂. This tensor is determined by solving a minimization

problem based on an integral equation for the scattering currents.

The electrical reflectivity tensor has been shown (Zhdanov &

Fang 1996a) to be slowly varying, and therefore this mini-

mization problem can be computed on a much coarser grid

than the field itself, thereby significantly speeding up the calcu-

lations. Hence, this problem is much less time consuming than

the full IE method, while still providing satisfactory accuracy.

Moreover, the introduction of the electrical reflectivity tensor

allows the transformation of the original non-linear inverse

problem, with respect to the anomalous conductivity, to a series

of linear inverse problems (Zhdanov & Fang 1996b). Thus,

the QL approximation can be a very useful tool for 3-D EM

inversion (Zhdanov & Fang 1999).

One problem, however, with the QL approximation is the fact

that the electrical reflectivity tensor depends on the illuminating

(background) field. In other words, for each new position of

the transmitter we have to recalculate the tensor coefficient l̂.
This slows down the calculations for multitransmitter arrays,

which are used in many geophysical applications, such as

airborne EM, cross-well tomography and well logging. Thus,

3-D inversion of such data becomes impractical. We have,

therefore, developed a new approach to the QL approximation
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based on the localized electrical reflectivity tensor, which is

independent of the source position. This new approach is called

the localized quasi-linear (LQL) approximation, and com-

bines the ideas of the localized non-linear (LN) approximation

suggested by Habashy et al. (1993) and the original QL approxi-

mation. It extends to 3-D scenarios the principles of the modified

QL approximation that were applied by Zhou & Liu (2000)

to 2-D radar-diffraction tomography. Here we use the LQL

approximation for 3-D inversion of EM data in the quasi-static

domain.

2 BACKGROUND OF THE QUAS I -
L INEAR APPROXIMATION

For completeness, we begin our paper with the formulation of

the basic principles of the QL approximation. We consider a 3-D

geoelectric model with a background complex conductivity s̃b
and a local inhomogeneity D with arbitrary spatial variations of

complex conductivity s̃=s̃b+Ds̃. Complex conductivity includes

the effect of displacement currents: s̃=sxive, where s and e
are the electrical conductivity and the dielectric permittivity,

respectively.We assume that m=m0=4pr10x7 H mx1, where m0
is the free-space magnetic permeability. The model is excited by

an electromagnetic field that is generated by an arbitrary source.

This field is time harmonic as exivt. The electromagnetic fields

in this model can be presented as the sum of background and

anomalous fields:

E ¼ Eb þ Ea , H ¼ Hb þHa , (1)

where the background field is a field generated by the given

sources in the model with the background distribution of

conductivity s̃b, and the anomalous field is produced by the

anomalous conductivity distribution Ds̃.
It is well known that the anomalous field can be presented as

an integral over the anomalous currents in the inhomogeneous

domain D (Hohmann 1975; Weidelt 1975):

Ea rj
� �

¼
ððð

D

bGE rj Dr
� �

ja rð Þdo ¼ GE jað Þ , (2)

Ha rj
� �

¼
ððð

D

bGH rj Dr
� �

ja rð Þdo ¼ GH jað Þ , (3)

where bGE(rj |r) and bGH(rj |r) are the electric and magnetic Green’s

tensors defined for an unbounded conductive medium with the

background conductivity s̃b; GE and GH are the corresponding

Green’s linear operators, and anomalous current ja is determined

by the equation

ja ¼ *~pE ¼ *~p Eb þ Ea� �
: (4)

Using Green’s operators, one can calculate the electro-

magnetic field at any point rj, if the electric field is known

within the inhomogeneity:

E rj
� �

¼ GE *~pEð Þ þ Eb rj
� �

, (5)

H rj
� �

¼ GH *~pEð Þ þHb rj
� �

: (6)

Eq. (5) becomes the integral equation with respect to the

electric field E(r), if rjsD.

The quasi-linear approximation is based on the assumption

that the anomalous field Ea inside the inhomogeneous domain

is linearly proportional to the background field Eb through

some tensor l̂ (Zhdanov & Fang 1996a):

Ea rð Þ&lŒ rð ÞEb rð Þ : (7)

Substituting eq. (7) into eq. (4) and that result into eq. (5),

we obtain the QL approximation Ea
QL(r) for the anomalous

field:

Ea
QL rð Þ ¼ GE *~p IŒ þ lŒ rð Þ

� �
Eb� �

, (8)

where Î is the identity tensor.

The electrical reflectivity tensor is found by solving the

minimization problem over the corresponding domain D of the

anomalous conductivity distribution:

lŒ rj
� �

Eb rj
� �

�GE *~p IŒ þ lŒ rð Þ
� �

Eb� ��� ��
L2 Dð Þ¼ min : (9)

3 LOCAL IZED QUAS I - L INEAR
APPROXIMAT ION

Let us analyse again eqs (7) and (8) of the QL approximation.

Following Habashy et al. (1993) and Torres-Verdin & Habashy

(1994), we can take into account that the Green’s tensorbGE(rj |r) exhibits either a singularity or a peak at the point

where rj=r. Therefore, one can expect that the dominant

contribution to the integral GE(Ds̃lE
b) in eq. (8) is from some

vicinity of the point rj=r. Assuming also that Eb(rj) is slowly

varying within the domain D, one can rewrite eq. (8) as

Ea
QL rj

� �
&GE *~p IŒ þ lŒ rð Þ

� �� �
Eb rj

� �
, (10)

where

GE *~p IŒ þ lŒ rð Þ
� �� �

¼
ð
D

bGE rj Dr
� �

*~p rð Þ IŒ þ lŒ rð Þ
� �

do : (11)

Comparing eqs (7) and (10), we find that inside the domain D,

Ea
QL rj

� �
¼ lŒ rj

� �
Eb rj

� �
&GE *~p IŒ þ lŒ rð Þ

� �� �
Eb rj

� �
, (12)

where rjsD, and the electrical reflectivity tensor can be deter-

mined from the solution of a minimization problem similar to

eq. (9):

lŒ rj
� �

Eb rj
� �

�GE *~p IŒ þ lŒ rð Þ
� �� �

Eb rj
� ��� ��

L2 Dð Þ¼ min : (13)

Taking into account that

lŒ rj
� �

Eb rj
� �

�GE *~p IŒ þ lŒ rð Þ
� �� �

Eb rj
� ��� ��

L2 Dð Þ

ƒ lŒ rj
� �

�GE *~p IŒ þ lŒ rð Þ
� �� ��� ��

L2 Dð Þ Ebrj
��� ��

L2 Dð Þ , (14)

we can replace the minimization problem (13) with the analogous

problem

lŒ rj
� �

�GE *~p IŒ þ lŒ rð Þ
� �� ��� ��

L2 Dð Þ¼ min : (15)

The solution of eq. (15) gives us a localized electrical

reflectivity tensor l̂L(r), which is obviously source-independent.

We will call eq. (8), with l̂L(r) determined according to eq. (15),

a localized quasi-linear (LQL) approximation:

Ea
LQL rj

� �
¼ GE *~p IŒ þ lŒ L rð Þ

� �
Eb rð Þ

� �
: (16)

In a similar way we can find a localized quasi-linear

approximation for the magnetic field:

Ha
LQL rj

� �
¼ GH *~p IŒ þ lŒ L rð Þ

� �
Eb rð Þ

� �
: (17)
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The LQL approximation has a similar background to the

localized non-linear (LN) approximation (Habashy et al. 1993;

Torres-Verdin & Habashy 1994), but there are some important

differences. The LN approximation also replaces the total field

inside the inhomogeneity with a product of the background

field and the depolarization tensor b̂(r):
ELN rð Þ&b̂ rð ÞEb rð Þ : (18)

However, the depolarization tensor is defined explicitly through

an integral of the anomalous conductivity. In contrast, for the

LQL approximation the electrical reflectivity tensor is deter-

mined as the solution of the minimization problem, eq. (15).

Note also that the electrical reflectivity tensor has been shown

to be slowly varying in the spatial domain (Zhdanov & Fang

1996a), and therefore it is possible to speed up the calculation

(15) by using a much coarser grid than that used for the EM

field itself. However, this is not necessary, and we do not

employ a coarser grid in this work.

Another important difference between the LQL approxi-

mation and the LN approximation is that in our method we can

choose different types of reflectivity tensor. For example, we

can introduce scalar or diagonal reflectivity tensors.

In the case of a scalar reflectivity tensor, l̂L=lLÎ (Zhdanov
& Fang 1996a),

Ea rð Þ&jL rð ÞEb rð Þ : (19)

Substituting eq. (19) into eq. (16), we obtain a scalar LQL

approximation Ea
LQL(r) for the anomalous field:

Ea
LQL rj

� �
¼ GE *~p 1þ jL rð Þð ÞEb� �

, (20)

where the scalar reflectivity coefficient lL(r) is determined by

the solution of the optimization problem

jL rj
� �

IŒ �GE *~p 1þ jL rð Þð Þð Þ
�� ��

L2 Dð Þ¼ min : (21)

In the special case of a diagonal reflectivity tensor

lŒ L ¼ diag ºL ¼

jx 0 0

0 jy 0

0 0 jz

2
6664

3
7775 , (22)

where lL is a reflectivity vector,

ºL ¼

jx

jy

jz

2
6664

3
7775 , (23)

we thus have

Ea rð Þ& diag ºL rð ÞEb rð Þ : (24)

Substituting eq. (24) into eq. (16), we obtain a diagonal LQL

approximation Ea
LQL(r) for the anomalous field:

Ea
LQL rj

� �
¼ GE *~p IŒ þ diag ºL rð Þ

� �
Eb� �

, (25)

where the reflectivity vector lL(r) is determined by the solution

of an optimization problem

diag ºL rj
� �

�GE *~p IŒ þ diag ºL rð Þ
� �� ��� ��

L2 Dð Þ¼ min : (26)

3.1 Selection of the different types of electrical
reflectivity tensor

The choice of electrical reflectivity tensor is related to the

physics of the problem, and the accuracy and speed required in

the computations.

The assumption of a scalar reflectivity tensor implies that the

anomalous electric field, Ea, inside the anomaly is parallel to

the background field, Eb. This is because all three components

of the anomalous field are related to the corresponding com-

ponent of the background field through the same coefficient of

proportionality, l. This assumption can be valid in some special

cases, such as when a thin horizontal plate-like conductor

is excited by the EM field of a horizontal loop at the surface.

However, it is clearly not always valid. A more accurate

computation of the anomalous EM field is achieved using the

diagonal reflectivity tensor. In this case each component of

the anomalous field is only related to the corresponding com-

ponent of the background field, but now the coefficients of

proportionality can be different. Thus the total anomalous field

is not necessarily parallel to the background field. Finally, there

are cases when a full reflectivity tensor is required in order to

accurately describe the induction process. An example would

be the anomalous EM fields induced in a thin vertical plate-

like conductor excited by the field of a horizontal loop at the

surface.

In fully 3-D cases, the physical considerations listed above

show that more complex reflectivity tensors will give a more

accurate approximation. As long as only forward modelling is

considered, the differences in calculation times are negligible.

However, since our goal is to use the LQL approximation in a

3-D inversion scheme, further analysis is required. This analysis

follows in the inversion section.

3.2 Numerical examples of the LQL approximation

In this section we compare the anomalous magnetic field com-

puted using the LQL approximation with the values obtained

from the full IE method, and other approximations (Born,

QL). The IE responses are calculated using the sysem program

(Xiong 1992).

First, we analyse the results of a numerical calculation

for Model 1, presented in Fig. 1. It consists of a homogeneous

half-space with a resistivity of 100 V m and a conductive

rectangular inclusion with a resistivity of 1 V m. The model is

excited by a 10 mr10 m rectangular transmitter loop, which

carries a current of 1 A and is 50 m to the left of the model.

This specific model is taken from the paper by Zhdanov &

Fang (1996a), where they compared the responses of full IE, the

Born approximation, the QL approximation with a diagonal

reflectivity tensor and the QL approximation with a scalar

reflectivity tensor. Here, we reproduce their results for full IE,

the Born approximation and the scalar QL approximation,

and compare them with the results for the scalar LQL approxi-

mation. The responses are computed for receivers located along

the Y-axis on the surface and at a frequency of 100 Hz. Fig. 2

shows the comparison for the real and imaginary parts of the

anomalous magnetic field. One can see that the QL and LQL

approximations produce results close to the full IE solution,

while the Born approximation produces a curve that has the

correct shape but an incorrect magnitude. There are small

amplitude differences observed between the full IE solution and
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the QL and LQL approximations, and negligible differences

between the two approximations. The differences between the

two approximate solutions and the full IE solution (observed

mainly in the real part of the response near the centre of the

profile) arise from the fact that the normal field in the model is

asymmetrical. This results in the same type of asymmetry in the

IE solution, but is not properly accounted for in the approxi-

mate solutions (they both use a scalar reflectivity tensor and

assume the anomalous field to be parallel to the background

field). The differences between the QL and LQL approxi-

mations are caused by the fact that the value of the normal

electric field inside the anomalous domain is not included in the

minimization problem solved in the LQL scheme.

The second model we have used in these tests is more similar

to a model where the LQL approximation is likely to be used.

Model 2 is shown in Fig. 3. It consists of a homogeneous half-

space with a resistivity of 500Vm and a conductive rectangular

inclusion with a resistivity of 20 V m. A helicopter-borne EM

survey is simulated on a profile along the Y-axis passing above

the centre of the body at a height of 30 m above the ground.

A vertical coplanar coil pair with 8 m horizontal separation is

used to measure the Hzz response at 56 kHz. The responses,

calculated using the full IE method and the Born, QL and LQL

approximations are shown in Fig. 4. The Born approximation

yields a response that is very different from the full IE solution,

whereas all the other responses are close in amplitude. Fig. 5

shows the same results, but in this case we have omitted the

Born approximation results, so that we can compare the other

responses more accurately. We also added the responses of

the diagonal and tensor LQL approximations. The scalar LQL

approximation agrees well with the full IE solution, and only at

the points of the profile where the response from the anomaly

displays a maximum does it become slightly worse than the scalar

QL approximation. This is a direct consequence of localizing

the QL approximation. The reason is that, at these points of the

profile, the normal field inside the anomaly shows (relatively)

significant variations. In particular, it is much larger on the side

of the body facing the transmitter than on the opposite side.

Thus, the assumption made in the LQL theory concerning the

normal field in the anomaly does not represent reality quite as

accurately. On the other hand, the more accurate tensor forms

of the LQL approximation are increasingly closer to the full IE

solution.

4 3 -D INVERS ION SCHEME BASED ON
THE LQL APPROXIMATION

In this section we describe the 3-D inversion scheme we have

developed, based on the LQL approximation.
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Figure 1. Model 1: 3-D geoelectric model of a conductive anomaly in

a homogeneous half-space with rectangular loop excitation.
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Figure 2. Numerical comparison of the full IE solution, Born

approximation, scalar QL approximation, and scalar LQL approxi-

mation at frequency f=100 Hz for Model 1 (Fig. 1). Absolute values of

the real and imaginary parts of the anomalous magnetic field are

presented at receivers on the surface along the Y-axis.
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Figure 3. Model 2: 3-D geoelectric model of a conductive anomaly in

a homogeneous half-space with a simulated helicopter-borne survey

passing above it. Tx–Rx is a moving transmitter–receiver system.
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Following Zhdanov & Fang (1996b, 1999), we introduce a

new tensor function

bm rð Þ ¼ *~p rð Þ IŒ þ lŒ L rð Þ
� �

, (27)

which we call a modified material property tensor. Note that

this tensor function is independent of the transmitter position,

because l̂L does not depend on the background field. This is

the main difference between the localized QL inversion and the

original QL inversion (Zhdanov & Fang 1999). Eqs (16) and

(17) take the forms

Ea
LQL rj

� �
¼ GE bm rð ÞEb rð Þ

� �
(28)

and

Ha
LQL rj

� �
¼ GH bm rð ÞEb rð Þ

� �
: (29)

We assume now that the anomalous parts of the electric,

Ea(rj), and/or magnetic, Ha(rj), fields (generated by a trans-

mitter with one or several different positions) are measured in a

number of the observation points, rj. Using the LQL approxi-

mation for the observed fields, d, we arrive at the following

equation:

d ¼ Gd bm rð ÞEb rð Þ
� �

, (30)

which is linear with respect to the material property tensorbm(r). In this equation, d denotes the electric or the magnetic

field, E or H, and Gd denote operator GE or GH, respectively.

We can solve the linear equation (30) with respect to bm(r),

which is source-independent. Now, based on condition (15), we

can determine l̂(r) from the equation

lŒ L rð Þ ¼ GE bm rð Þð Þ : (31)

Knowing l̂L(r) and bm(r), similar to the QL inversion scheme,

we can find Ds̃(r) from eq. (27). Note that eq. (27) should hold

for any frequency, because the electrical reflectivity tensor and

the material property tensor are functions of frequency as well:

l̂L=l̂L(r, v), bm=bm(r, v). In reality, of course, it holds only

approximately. Therefore, the conductivity Ds̃(r) can be found

by using the least-squares method of solving eq. (27):

bm r, uð Þ � *~p rð Þ IŒ þ lŒ L r, uð Þ
� ��� ��

L2 uð Þ¼ min : (32)

This inversion scheme can be used for multisource tech-

niques, because lL and bm are source-independent. Similar

to Zhdanov & Fang (1996b) and Torres-Verdin & Habashy

(1995), it reduces the original non-linear inverse problem to

three linear inverse problems: the first one (the quasi-Born

inversion) for the parameter bm, another one for the parameter

l̂, and the third one (a correction of the result for quasi-Born

inversion) for the conductivity Ds̃.
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Figure 4. Numerical comparison of full IE solution (IE), Born

approximation (Born), scalar QL approximation (QLsc), and scalar

LQL approximation (LQLsc) at frequency f=56 kHz for Model 2

(Fig. 3). The real and imaginary parts of the vertical component of the

anomalous magnetic field are presented at receivers along the Y-axis at

a height of 30 m above the ground.
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Figure 5. Numerical comparison of full IE solution (IE), scalar QL

approximation (QLsc), scalar LQL approximation (LQLsc), diagonal

LQL approximation (LQLdg) and tensor LQL approximation (LQLtr),

at frequency f=56 kHz for Model 2 (Fig. 3). The real and imaginary

parts of the vertical component of the anomalous magnetic field are

presented at receivers along the Y-axis at a height of 30 m above the

ground.
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Note that the modified material property tensor bm has a

similar physical meaning to the anomalous currents, and it is

found through a quasi-Born-type, linear inversion. We can

rewrite eq. (30) using matrix notation:

d ¼ bGm : (33)

Here m is the vector-column of the modified material property

tensor bm, d is the vector-column of the field data, and the

matrix bG is the matrix of the linear operator defined by eq. (30).

Similarly, we can obtain from eq. (31)

lŒ ¼ bGEm , (34)

where l̂ is a block-diagonal matrix of reflectivity tensors and bGE

denotes a matrix of the linear operator defined by expression

(5) with the electric Green’s tensor.

The solution of the inverse problem is reduced to the

inversion of the linear system (33) with respect to m and then

to computing l̂ using eq. (34). After that, we find Ds̃ as a

least-squares solution of the optimization problem (32).

We use the regularized conjugate gradient (RCG) method to

solve the system of the linear eq. (30). The RCG algorithm is

described in the Appendix.

4.1 Scalar reflectivity tensor

In the case of a scalar reflectivity tensor, we introduce a scalar

parameter m(r):

m rð Þ ¼ *~p rð Þ 1þ jL rð Þ½ � : (35)

Eq. (30) simplifies to

d ¼ Gd m rð ÞEb rð Þ
� �

: (36)

A scalar reflectivity coefficient lL(r) is determined, based on the

condition (21),

jL rj
� �

IŒ �GE m rð Þð Þ
�� ��

L2 Dð Þ¼ min :

The electrical conductivity is found as the least-squares solution

of the minimization problem

m r, uð Þ � *~p rð Þ 1þ jL r, uð Þ½ �k kL2 uð Þ¼ min : (37)
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Figure 7. Observed (synthetic) and predicted (for resulting inverse model) data (anomalous magnetic field) for Model 3 (Fig. 8 top panel). Data for

900 Hz are shown.
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4.2 Diagonal reflectivity tensor

In the case of the diagonal reflectivity tensor, l̂L=diag lL, we
introduce a diagonal material property tensor

bm ¼ diagm ¼

mx 0 0

0 my 0

0 0 mz

2
6664

3
7775 , (38)

according to the equation

diagm rð Þ ¼ *~p rð Þ IŒ þ diag ºL rð Þ
� �

, (39)

where m is a material property vector:

m ¼

mx

my

mz

2
6664

3
7775 : (40)

Eq. (30) takes the form

d ¼ Gd diagm rð ÞEb rð Þ
� �

: (41)

The reflectivity vector lL(r) is determined, based on the

condition (26):

diag ºL rj
� �

�GE diagm rð Þð Þ
�� ��

L2 Dð Þ¼ min : (42)
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Figure 8. Successive resistivity cross-sections through the 3-D geoelectric model of a conductive, dipping dike in a homogeneous half-space

(top panel), and the corresponding LQL inversion result (bottom panel).
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And, finally, the electrical conductivity is found as the least-

squares solution of the minimization problem

diagm r, uð Þ � *~p rð Þ IŒ þ diag ºL r, uð Þ
� ��� ��

L2 uð Þ : (43)

4.3 Choice of the type of electrical reflectivity tensor
used in the LQL inversion scheme

As we demonstrated through numerical examples in the pre-

vious section, the LQL approximation is increasingly more

accurate, as we use more complex electrical reflectivity tensors

(scalar, diagonal and full tensors). The choice, however, of the

appropriate type of electrical reflectivity tensor in the LQL

inversion scheme requires further analysis.

First, we should take into account the trade-off between

accuracy and memory requirements. A scalar reflectivity tensor

means that we only need to invert for one parameter per cell of

the anomalous domain. This number is tripled when we use a

diagonal reflectivity tensor, and for a full reflectivity tensor, we

have nine times that number. This represents a considerable

increase in computation in most cases, since a major slowdown

in computation speed happens when the required memory

exceeds the physical memory of the computer.

Another limitation we encounter in the inversion process

is the limited number of EM field components that are usually

available. Helicopter-borne EM (HEM) surveys, for example,

normally employ two survey configurations: a horizontal

coplanar coil pair, which measures the Hzz component, and a

vertical coaxial coil pair, which measures the Hyy component.

Let us recall eq. (29) for the anomalous magnetic field. In

discretized form the above equation becomes

Hij ¼
XN
k¼1

!̂kjm̂kEik , (44)

where N is the number of cells in the anomalous domain, the

index i denotes the ith transmitter, and the index j denotes

the jth receiver. Using tensor notation, the a component of the

magnetic field (where a=x, y, z) is given by

Hij
a ¼

XN
k¼1

!kj
abm

k
bcE

ik
c ¼

XN
k¼1

�
!kj
axm

k
xxE

ik
x þ !kj

axm
k
xyE

ik
y

þ !kj
axm

k
xzE

ik
z þ !kj

aym
k
yxE

ik
x þ !kj

aym
k
yyE

ik
y þ !kj

aym
k
yzE

ik
z

þ !kj
azm

k
zxE

ik
x þ !kj

azm
k
zyE

ik
y þ !kj

azm
k
zzE

ik
z

�
: (45)

For a z-directed dipole transmitter,Caz=Czz=0 (by definition),

andEz=0 (no vertical component of the electric field is induced in

a 1-D earth). Thus

Hij
z ¼

XN
k¼1

�
!kj
zxm

k
xxE

ik
x þ !kj

zxm
k
xyE

ik
y þ !kj

zym
k
yxE

ik
x þ !kj

zym
k
yyE

ik
y

�
,

(46)

whichmeans that we can only resolve four (mxx,mxy,myx andmyy)

of the nine components of the material property tensor.

For a y-directed dipole transmitter located in the air, Ez=0

(no vertical component of the electric field is induced in the

earth, because of the very high resistivity contrast at the air–earth

interface). Thus

Hij
y ¼

XN
k¼1

�
!kj
yxm

k
xxE

ik
x þ !kj

yxm
k
xyE

ik
y þ !kj

yym
k
yxE

ik
x

þ !kj
yym

k
yyE

ik
y þ !kj

yzm
k
zxE

ik
x þ !kj

yzm
k
zyE

ik
y

�
, (47)

which means that we can only resolve six (mxx, mxy, myx,

myy, mzx, mzy) of the nine components of the material property

tensor.
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Figure 9. Observed (synthetic) and predicted (for resulting inverse model) data (anomalous magnetic field) for Model 4 (Fig. 10 top panel). Data for

900 Hz are shown.
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The above analysis shows that in most situations we can-

not recover the full material property tensor (and hence, the

reflectivity tensor either). Also considering the computer memory

issues we discussed above, as well as the fact that using a full

tensor renders the inverse problem underdetermined, we con-

clude that for all practical purposes the use of scalar reflectivity

and material property tensors in the inverse problem solution is

sufficient.

Use of a more complex tensor could be justified when data

from new-generation, multicomponent geophysical equipment

becomes available in the future.

5 3 -D INVERS ION OF SYNTHET IC
HEL ICOPTER -BORNE DATA BASED ON
THE LQL APPROXIMAT ION

One of the most important possible applications of the LQL

inversion technique is the interpretation of frequency-domain

HEM data. This type of airborne survey is used extensively in

mineral exploration. We employed the integral equation code

sysem (Xiong 1992) to simulate such a survey over a conductive

(20 V m) dipping dike located in a resistive (500 V m) half-

space. Five survey lines were flown over the target at an altitude

of 30 m and at a distance of 25 m from each other. A schematic

plan view of the survey is shown in Fig. 6.

The moving transmitter–receiver system was a pair of vertical

magnetic dipoles (simulating a horizontal coplanar coil pair),

and a pair of horizontal magnetic dipoles (simulating a vertical

coaxial coil pair), with 8 m horizontal separation. The yy (coaxial)

and zz (coplanar) components of the anomalous magnetic field

were measured every 15 m along the lines (70 observation points

in each line). Two frequencies were used: 900 Hz and 7.2 kHz.

We added 5 per cent random noise to the anomalous mag-

netic field and then inverted it using the LQL inversion method

with a scalar reflectivity tensor and a focusing inverse imaging

(see the Appendix). The inverted area, centred around the body,

was 150 mr150 mr150 m, and was divided into 12r12r12

cells. Fig. 7 shows the comparison of observed (synthetic) and

predicted (for the resulting inverse model) data for the central

profile passing above the centre of the dike. The predicted data

fit the observed data very well (the inversion was stopped as

soon as the misfit reached the 5 per cent noise level).

Fig. 8 shows successive resistivity cross-sections through the

true model (top panel) and the inverted volume (bottom panel).

Both the location and the depth of the dike are determined very

well. Its dip is also remarkably well defined. We can even distin-

guish some of the details of its shape. Its resistivity, however, is

overestimated. These results demonstrate the stability of the

method in the presence of noise (results of inversion of noise-

free data are very similar but not shown here). Moreover,

the method is very fast, with the 3-D inversion for 350 total

different transmitter–receiver pairs, two frequencies and two

components, requiring approximately 1 hr of CPU time on an

Ultra Sparc 10 station at 440 MHz.

The second model we have used in this study consists of a

resistive (1000 Vm) and a conductive (10 Vm) body embedded

in a host of resistivity 100 V m. We simulated the same

helicopter-borne EM survey as above.

The synthetic data were again contaminated with 5 per cent

random noise and then inverted using the LQL inversion

method. Fig. 9 shows the comparison of observed (synthetic)

and predicted (for the resulting inverse model) data for the

central profile. The predicted data fit the observed data very

well (within the 5 per cent noise level). The 3-D images of

the true model and the inversion result are shown in Fig. 10.

We can clearly locate the two anomalies. The resistive body

is located at the correct position, while the conductive body is

imaged a little deeper than it should be. The resistivity contrasts
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Figure 10. Model 4: 3-D geoelectric model of one conductive and one

resistive rectangular inclusion in a homogeneous half-space (top panel),

and 3-D image of the LQL inversion result (bottom panel).
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of both anomalies with the background are underestimated.

The results are not perfect but, considering the non-linearity of

the specific problem (conductive and resistive anomalies close to

each other), they are quite satisfactory. The CPU time required

was similar to that of the previous model.

6 3 -D LQL INVERS ION OF HEM DATA
COLLECTED FOR MINERAL
EXPLORAT ION AT VO ISEY ’ S BAY ,
LABRADOR , CANADA

The Voisey’s Bay area in Labrador, Canada, is characterized

by high-conductivity Ni–Cu–Co sulphide deposits hosted by

resistive troctolite dikes (Naldrett et al. 1996). There are several

identified deposits as shown in Fig. 11. Several types of ground

and airborne geophysical surveys have been conducted in the

Voisey’s Bay area, including gravity, magnetic, magnetotelluric,

time-domain EM and HEM surveys. An HEM data set was

provided to us by INCO Exploration. It consists of several flight

lines that cover the entire area. The deposits on the eastern part

of the survey area, however, are too deep to be detected by the

HEM, which can only penetrate down to a depth of approxi-

mately 150 m. We have, therefore, chosen to invert the data

from the central part of the area (outlined in Fig. 11) that

corresponds to the location of the Ovoid deposit. This flat-

lying, high-conductance deposit is located under 20 m of over-

burden and comprises 70 per cent massive sulphide (Balch et al.

1998).

The data were collected with the standard Dighem HEM

system (Fraser 1972, 1979, 1981), which consists of a horizontal

coplanar and a vertical coaxial coil pair. Based on drilling

information incorporated in Fig. 11, and following a simple

1-D modelling of the data that are far away from any known

deposits, we have assumed a 1-D resistivity background con-

sisting of a 20 m deep, conductive overburden with a resistivity

of 10 Vm, and a lower half-space with a resistivity of 1900 Vm.

We used the coplanar (CP) and coaxial (CX) components from

the lowest available frequency (900 Hz), which is the least

sensitive to the presence of the conductive overburden. The

data were first interpolated along a uniform (in each direction)

grid and then transformed from ppm to anomalous field values.

The data comprise part of four flight lines, at a distance of 200 m

from each other. The inverted area was 700 mr600 mr160 m,

and was divided into 14r30r8 cells (Fig. 12).

After the described data processing, we inverted the data

using a scalar reflectivity tensor. Owing to the complexity of the

(a)

(b)

Figure 11. The Voisey’s Bay sulphide deposits with superimposed inverted area and data profiles (after Balch et al. 1998).

3-D localized quasi-linear inversion 515

# 2002 RAS, GJI 148, 506–519



target and its large size (meaning that most of the cells in the

inverted area are likely to have some anomalous conductivity),

we did not use focused imaging, but a simple minimum norm

stabilizer.

The LQL inversion was terminated when the misfit reached

3 per cent. The 3-D (simultaneous) inversion of 332 data points

(corresponding to 332 different transmitter–receiver positions)

required approximately 25 min of CPU time on an Ultra Sparc

10 station at 440 MHz (this computation time includes the

calculation of the electric Green’s tensor in the anomalous

domain; the actual minimization routine requires approxi-

mately 20 s). Fig. 13 shows the observed and predicted data

along the second and third profiles, where the largest anomalies

occur. The agreement is very good.

Fig. 14 shows the inversion results for the CP (middle

panel) and CX (bottom panel) components in the form

of successive cross-sections through the inverted volume. The

top panel of the figure shows the horizontal extent of the

sulphides in the inverted area, as can be inferred from Fig. 11.

The results of the LQL inversion are geologically reasonable

and in very good agreement with the existing information

concerning the Ovoid deposit. In particular, a large elongated

conductive body is located approximately at the centre of

the inverted area. The body is extended towards the SE

and the W–NW. The reliability of these results is enhanced
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by the fact that, despite small differences, inversion results

for the two different components, agree quite well with each

other. We should finally mention that our results agree

remarkably well with the image obtained by Oldenburg et al.

(1998) as a result of their 3-D gravity inversion over the same

area.

7 CONCLUS IONS

We have developed a localized quasi-linear approximation

that is source-independent. This LQL approximation provides

a practical solution to the problem of 3-D inversion of multi-

transmitter frequency-domain EM data. This is of utmost

importance for geophysical applications, such as airborne EM,

well logging and cross-well imaging.

We have also developed a 3-D inversion scheme based on

the LQL approximation. We have used this method to invert

synthetic data simulating an HEM survey over two different

models. The results are very good and demonstrate the stability

and efficiency of the method. We have also inverted HEM data

collected by INCO Exploration over the Voisey’s Bay deposit in

Canada. The results successfully delineate the massive sulphides

and show that the method can be used in complex geological

environments. More research is needed, however, in order to

establish the validity of the method in different geophysical

applications.
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APPENDIX A : REGULARIZED
SOLUT ION OF THE L INEAR INVERSE
PROBLEM FOR THE MATER IAL
PROPERTY TENSOR

The linear inverse problem (33) is ill-posed, i.e. the solution can

be non-unique and unstable. The conventional way of solving

ill-posed inverse problems according to regularization theory

(Tikhonov & Arsenin 1977; Zhdanov & Keller 1994) is based

on the minimization of the Tikhonov parametric functional

PaðmÞ ¼ �ðmÞ þ aSðmÞ ¼ min , (A1)

where the misfit functional is specified as

�ðmÞ ¼ bWd
bGm� d

� ���� ��� 2 , (A2)

the stabilizer is selected to be equal to

SðmÞ ¼ k bWmðm�maprÞk2 , (A3)

where a is the regularization parameter, and bWd and bWm are the

weighting matrices for the data and the elements of the material

property tensor (which we will call in this section the model

parameters). The minimization problem (A1) can be solved using

the regularized conjugate gradient (RCG) method (Zhdanov

1993, 2002).

The algorithm of the RCG method can be summarized as

follows:

rn ¼ bGmn � d , ðaÞ

lann ¼ lanðmnÞ ¼ bG� bW2
drn þ an bW2

mðmn �maprÞ , ðbÞ

bann ¼ lann
�� ��2= lan�1

n�1

�� ��2 , ~lann ¼ lann þ bann ~l
an�1

n�1 , ~l
a0
0 ¼ la00 , ðcÞ

~kann ¼ ~lan�n lann
� �

= ~lanTn
bG� bW2

d
bGþ a bW2

m

� �
~lann

h i
, ðdÞ

mnþ1 ¼ mn � ~kann
~lann , ðeÞ

, (A4)

where rn, mn, an, ln
an, l̃n

an, k̃n
an and bn

an are, respectively, the vector

of residuals, the vector of model parameters, the regularization

parameter, the steepest ascent direction, the conjugate direction,

the step length and the conjugate coefficient at the nth iteration.

The iterative process (A4) is terminated when the misfit reaches

the desired level e0 (usually the level of noise in the data):

�ðmNÞ ¼ rNk k2ƒe0 : (A5)

The regularization parameter a describes the trade-off between
the best fitting and a reasonable stabilization. The basic principles

used for determining the regularization parameter a are discussed

by Tikhonov &Arsenin (1977) and Zhdanov &Keller (1994). It

can be selected from the progression of numbers

ak ¼ a0qk; k ¼ 0, 1, 2, . . . , n; 0 < q < 1 : (A6)
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For any number ak we can find an element mak
, minimizing

Pak(m), and calculate the misfit dbGmak
xdd2. The optimal value

of the parameter a is the number ak0, for which we have

kbGmak0 � dk2 ¼ d , (A7)

where d is the level of noise in the observed data. The equality

(A7) is called the misfit condition.

In our code we use the adaptive RCG method:

~lanþ1ðmnþ1Þ ¼ lanþ1ðmnþ1Þ þ bnþ1
~lanðmnÞ , (A8)

where an are the subsequent values of the regularization para-

meter. In order to avoid divergence, we begin an iteration from

a value of a0, which can be obtained as the ratio of the misfit

functional and stabilizer for an initial model, and then reduce

an according to eq. (A6) on each subsequent iteration and

continuously iterate until the misfit condition (A7) is reached.

The matrix of the reflectivity tensor ln is determined from the

matrix mn using eq. (34):

ºn ¼ GEmn : (A9)

The anomalous conductivity, Ds̃n, on the nth iteration can be

found from eq. (32) using the least-squares method (Zhdanov

& Fang 1996b).

Using a minimum norm stabilizer in the expression for

the parametric functional results in a smooth inversion

result. Imaging sharp geoelectrical boundaries, whenever this

is desirable, is made possible using a minimum support

functional, which results in a focused inversion model. The

method is described by Portniaguine & Zhdanov (1999). We

have used this method to produce sharp images with our LQL

inversion. Focusing is implemented through the variable weight-

ing matrix bWm in the RCG method (Zhdanov & Hursan 2000;

Zhdanov 2002).

The focusing technique requires setting of upper and lower

bounds for the inverted parameter. In our implementation the

determination of the upper and lower bounds for the inverted

parameter is slightly different from that of Portniaguine &

Zhdanov (1999). They assume that the upper and lower bounds

of the anomalous conductivity are known approximately. In

our case, since we are not inverting for the anomalous con-

ductivity Ds, but for the modified material property tensor bm,

the definition of these bounds is slightly more complicated.

Specifically, we determine these bounds using the relationbm=Ds (Î+l̂). Assuming that we know the upper and lower

bounds of Ds approximately, we have tabulated the approxi-

mate values of l̂ within the anomalous domain, by performing

a simple modelling study. This is done by calculating the

anomalous and background electric fields inside the anomalous

domain and using the relation Ea=l̂Eb. It has been shown

(Zhdanov & Fang 1996a) that the value of l inside the

anomalous domain varies very slowly, and it does not vary

greatly with frequency either. It is therefore sufficient to calculate

l only for a few models. Then, knowing (approximately) the

bounds of Ds and l̂, we find the corresponding bounds for bm
from the relation bm=Ds(Î+l̂).
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