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S U M M A R Y
We present a finite-difference modelling technique for 2-D elastic wave propagation in a
medium containing a large number of small cracks. The cracks are characterized by an explicit
boundary condition. The embedding medium can be heterogeneous. The boundaries of the
cracks are not represented in the finite-difference mesh, but the cracks are incorporated as
distributed point sources. This enables one to use grid cells that are considerably larger than
the crack sizes. We compare our method with an accurate integral representation of the solution
and conclude that the finite-difference technique is accurate and computationally fast.

Key words: cracks, effective medium theory, finite-difference methods, wave propagation.

1 I N T R O D U C T I O N

Modelling wave propagation in media containing inclusions smaller
than the wavelength of the probing wavefield is of considerable
interest in several areas, for instance, in seismology and in non-
destructive evaluation. In seismology, variations in the subsurface
of the Earth are present on many scales: from scales much larger than
the typical seismic wavelength down to scales that are much smaller.
Heterogeneities that are much smaller than the seismic wavelength
cannot be distinguished individually using seismic waves, but nev-
ertheless can have a significant effect on the amplitude and phase
of the transmitted wavefield. O’Doherty & Anstey (1971) demon-
strated this in a classic paper for the case of plane-layered subsurface
models.

In the long-wavelength limit, a homogeneous embedding con-
taining small-scale heterogeneities effectively behaves as a homo-
geneous medium, in which small-scale heterogeneities manifest
themselves through apparent anisotropy and/or attenuation and dis-
persion. Most methods concerning wave propagation in media with
embedded inclusions are based on this concept of an effective
medium. An excellent overview is given by Hudson & Knopoff
(1989).

Alternatively, methods have been developed that focus on the
calculation of transmitted wavefields by solving a boundary-value
problem. Many of these methods are limited to plane-layered mod-
els; see, for instance, Burridge & Chang (1989), who studied pulse
propagation through a 1-D multilayered medium. For the scalar case
of a large number of cracks embedded in a homogeneous medium,
integral-equation techniques have been developed by Muijres et al.
(1998).

All methods referred to in the above are not applicable to the case
of cracks in the direct vicinity of a boundary or embedded in a hetero-

geneous medium. Nevertheless, these situations might arise when
studying, for instance, wave propagation through a cracked reservoir
in a layered-earth model or when investigating the propagation of
boundary waves in tunnel walls containing cracks. Finite-difference
techniques are well suited for solving wave propagation problems in
heterogeneous media. The presence of cracks in this type of method
is accounted for by incorporating explicit boundary conditions at
the crack location (see, for instance, Coates & Schoenberg 1995;
Carcione 1996) or by using zero velocities and small densities in
just a few grid points to mimic the crack (Saenger et al. 1999).
This implies that each crack boundary has to be incorporated in the
finite-difference (FD) mesh, requiring a prohibitive number of grid
points in the case of a large number of small-scale cracks.

In a previous paper (Van Baren et al. 2001), an FD technique has
been developed for the computation of wave propagation of scalar,
2-D waves in a heterogeneous medium containing a large number
of small-scale cracks. Instead of imposing explicit boundary condi-
tions at the crack boundaries, this method accounts for the presence
of the cracks by introducing secondary point sources, the strength
of which is computed using perturbation theory. In order to repre-
sent the point sources properly on a coarse FD grid, an asymptotic
method is used, based on the integral representation of the scat-
tered wavefield of a small crack. In the present paper, we extend this
method to the more realistic case of scattering of 2-D elastic waves
by a compliant crack. The method is based on the asymptotic form
of the elastic wavefield scattered by a small compliant crack and
the use of the elastic FD operator to this field in order to find the
appropriate distribution of the crack over the grid points.

An important assumption upon which our method is based is
the fact that interaction between individual cracks is neglected. For
higher crack densities, this assumption is no longer valid and higher-
order scattering processes have to be taken into account.
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Figure 1. Each crack is represented by a line segment. It can be charac-
terized by the position of its centre, xm = (xm , zm ), its half-width am and
the angle ϕm with the horizontal. The z-coordinate indicates depth and the
x-coordinate refers to the horizontal position. The unit vector normal to the
crack is defined as nm

α = (cos ϕm , sin ϕm ).

2 R E P R E S E N T A T I O N O F T H E F I E L D
I N T E R M S O F S E C O N D A R Y S O U R C E S

We consider 2-D elastic wave propagation in an isotropic, heteroge-
neous medium containing a large number of small-scale, compliant
cracks. The centre of the mth crack is denoted by xm = (xm, zm).
This is illustrated in Fig. 1. The unit vector normal to the crack is
nm = (cos φm, sin φm). Two-dimensional elastic wave propagation is
described by the equation of motion:

∂βταβ − ρ∂2
t uα = −sα, (1)

and the constitutive equation (Hooke’s law)

ταβ = cαβξη∂ξ uη, (2)

in which

∂β = partial derivative with respect to xβ [m−1],

∂t = partial derivative with respect to t [s−1],

uα = particle displacement [m],

ταβ = stress [N m−2],

sα = volume density of body force [N m−3].

The Greek indices take the values 1 and 3; the summation convention
of repeated subscripts is used implicitly. The material properties of
the medium are characterized by its mass density ρ and its stiffness
tensor cαβξη. We consider an isotropic solid, and in that case the
stiffness tensor reduces to

cαβξη = λδαβδξη + µ(δαξ δβη + δαηδβξ ), (3)

in which λ and µ are the Lamé coefficients of the material and δαβ

is the Kronecker delta. Each compliant crack is characterized by the
boundary condition

nm
β ταβ (x, z) = 0, (x, z) ∈ crack m, (4)

where nm
β is the normal vector to the crack. In principle, there are

several ways of solving the boundary value problem (1)–(4). For a
homogeneous embedding (ρ, λ and µ constant), integral-equation
techniques can be used (see, for instance, Van den Berg 1982). For
the case of a heterogeneous embedding, however, these techniques
may be impractical because they require an accurate representation
of the Green function (in particular, close to the singular point).
Finite-difference techniques do not require this accurate represen-

tation of the Green function and are, in general, well suited for the
case of a heterogeneous embedding. Finite-difference methods, on
the other hand, require many grid points in order to account for the
explicit boundary condition (4) on the cracks. In the present paper,
we reformulate the scattering problem in such a way that it can be
incorporated in an FD code without explicitly modelling the crack
boundaries. This approach is especially designed for cracks that are
much smaller than the typical FD grid spacing.

In order to facilitate the derivation, we consider the frequency-
domain form of the field quantities, indicated by ˆ(·). Later, we trans-
form all of the resulting expressions back to the time domain. From
the frequency-domain counterparts of eqs (1) and (2), we can elim-
inate the stress tensor and obtain

L̂αγ ûγ = −ŝα, (5)

where the wave operator L̂αγ is defined by

L̂αγ = ∂βcαβξγ ∂ξ + ρω2δαγ . (6)

Now, we decompose the total field into the incident and scattered
field:

ûγ = ûinc
γ + ûsc

γ , (7)

τ̂αβ = τ̂ inc
αβ + τ̂ sc

αβ . (8)

By definition, the incident field, which would be present in the ab-
sence of the cracks, satisfies the equation

L̂αγ ûinc
γ = −ŝα. (9)

The scattered field satisfies the source-free wave equation away from
the cracks:

L̂αγ ûsc
γ = 0, (10)

and the boundary condition

nm
β τ̂ sc

αβ (x, z) = −nm
β τ̂ inc

αβ (x, z), (x, z) ∈ crack m. (11)

The scattered field satisfies the following integral representation
(Van den Berg 1982):

ûsc
γ (x) =

∑
m

∫
x′∈crackm

nm
β τ̂G

γ νβ (x; x′)�̂m
ν (x′) dx′, (12)

in which �̂m
ν is the particle displacement jump across the mth crack

and τ̂G
γ νβ is the Green stress tensor, defined by

τ̂G
γ νβ = cνβξη∂ξ ûG

γ η. (13)

The function ûG
γ η is the elastic Green displacement tensor of the

embedding medium. It satisfies the elastodynamic wave equation
for a point source, i.e.

L̂αγ ûG
γ η = −δ(x − xm)δαη, (14)

where δ is the Dirac delta distribution and δαη is the Kronecker
delta. This study is restricted to small-scale cracks, i.e. the size of
the cracks is small compared with the scale on which the wavefield
varies. If the cracks are small enough, we can neglect the variation
of the Green stress tensor during the integration over each crack,
leading to

ûsc
γ (x) =

∑
m

nm
β τ̂G

γ νβ (x; xm)

∫
x ′∈crackm

�̂m
ν (x ′) dx ′, (15)

where xm is the coordinate vector of the crack centre and x ′ is the
coordinate along the crack. Applying the wave operator L̂αγ , given
by eq. (6), to both sides of eq. (15), yields
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L̂αγ ûsc
γ = −

∑
m

gm
αν

∫
x ′∈crackm

�̂m
ν (x ′) dx ′, (16)

where the tensor gm
αν follows from eqs (13) and (15) as

gm
αν = −L̂αγ nm

β cνβξη∂ξ ûG
γ η(x, xm). (17)

Since the Green tensor is, by definition, the solution of the elastic
wave equation for a point source, eq. (14), we can express the tensor
gm

αν directly in terms of dipole-like point sources in the following
way:

gm
αν = nm

β cνβξα∂ξ δ(x − xm), (18)

and therefore we can interpret gm
αν as the point-source tensor. From

eqs (16) and (18), we see that the explicit boundary conditions at
the cracks now have been replaced by secondary point sources at
the crack locations. Of course, in order to compute the secondary
source strengths �̂m

ν at the cracks, the boundary conditions still
have to be imposed. An integral-equation formulation for the source
strengths can be obtained from eq. (12), letting the point of obser-
vation approach the cracks and applying the boundary condition
(4). However, this approach is impractical for heterogeneous me-
dia because computing the Green function can be computationally
very expensive. Therefore, we approach the problem in a different
way by approximating the source strengths �̂m

ν with the aid of per-
turbation theory and using an FD formulation for computing the
solution of eq. (16). Perturbation theory leads to an approximate
source strength (Van den Berg 1982) in terms of the stress tensor of
the incident field:∫

x ′∈crackm

�̂m
ν (x ′) dx ′ = P̂m

νβnm
α τ̂ inc

βα (xm). (19)

The derivation, as well as expressions for P̂m
νβ , are given in Ap-

pendix A. This approximation is based upon the following assump-
tions.

(1) Second- and higher-order scattering effects, i.e. the interac-
tions between the different cracks, are neglected.

(2) The crack size is small compared with the wavelength of the
incident wave. This implies that the incident wave is considered to be
locally plane at the location of the crack and that the source strength
�̂m

ν can be approximated by the leading-order term in a perturbation
series (see also De Hoop 1955a,b). We also neglect variations of the
embedding medium in the direct vicinity of the crack.

The first assumption is the most restrictive one in our case. In
principle, it can be relaxed by taking higher-order terms into account
in the Neumann-series expansion of �̂m

ν (see also Muijres et al.
1998). It is not straightforward, however, to discretize these higher-
order terms with sufficient accuracy when using the FD scheme.

The time-domain form of eq. (9), required for FD formulations,
is given by

Lαγ uinc
γ = −sα (20)

with the time-domain wave operator Lαγ given by

Lαγ = ∂βcαβξγ ∂ξ − ρ∂2
t δαγ . (21)

From eqs (16) and (19), we can now derive a similar equation for
the scattered field:

Lαγ usc
γ = −ssc

α (22)

with the secondary source term ssc
α given by

ssc
α =

∑
m

gm
αν Pm

νβnm
α τ inc

βα (xm, t). (23)

Expressions for Pm
νβ are given in Appendix A, see eqs (A20)

and (A21). Since the crack location xm does not coincide with
a grid point, the incident field at xm is computed using bilinear
interpolation.

The scattering problem can now be solved using the FD method.
First, the incident field is computed by solving eq. (20) for the (het-
erogeneous) embedding without accounting for the presence of the
cracks; secondly, the (first-order) scattered field is obtained by solv-
ing eqs (22) and (23) with a similar technique. In this way, the prob-
lem of accounting for the explicit boundary conditions on many
small cracks is avoided and replaced by the problem of accounting
for the presence of many small point sources on an FD grid. This is
discussed in the next section. In order to find a good representation
of the dipole point sources occurring on the right-hand side of eq.
(22), we need a representation of the wavefield in the direct vicinity
of each crack. This is discussed in Appendix B, where expressions
are also given for the discrete approximation of the collection of
point sources present in ssc

α of eq. (23).

3 F I N I T E - D I F F E R E N C E M E T H O D

We want to solve the elastic wave equation of the form

Lαγ uγ = −hα. (24)

At each time step we solve this equation for two fields. For the
incident field, we have

uγ = uinc
γ ,

hα = sα,
(25)

and for the scattered field, we use

uγ = usc
γ ,

hα = ssc
α .

(26)

A staggered FD scheme (Madariaga 1976; Virieux 1986) is used
for the discretization of eq. (24). For the spatial discretization, grid
points (xi , z j ) are defined with xi = xmin + i�x and z j = zmin + j�z,
where (xmin, zmin) are the coordinates of the upper left-hand corner
of the grid. The displacement u1 is shifted by half the grid spacing
along the x-axis with respect to these grid points, and the vertical
displacement u3 is shifted by half the grid spacing along the z-axis:

ui, j,n
1 = u1

(
xmin + (

i + 1
2

)
�x, zmin + j�z, tn

)
, (27)

ui, j,n
3 = u3

(
xmin + i�x, zmin + (

j + 1
2

)
�z, tn

)
. (28)

Note that we have adopted a programmer’s viewpoint in these def-
initions by using i and j in the superscripts rather than i + 1

2 and
j + 1

2 . Time is discretized as tn = t0 + n�t . The quantities ρi j , λi j

and µi j are all defined at (xi , z j ). Below we will need ρ at (xi +
1
2 �x, z j ). This quantity is denoted by ρ

i, j
(1) and computed using linear

interpolation:

ρ
i, j
(1) = [

1
2 (1/ρi, j + 1/ρi+1, j )

]−1
. (29)

Likewise, we use

ρ
i, j
(3) = [

1
2 (1/ρi, j + 1/ρi, j+1)

]−1
, (30)

to obtain the density at (xi , z j + 1
2 �z). The quantity µ at the cen-

tre of a grid cell (xi + 1
2 �x, z j + 1

2 �z) is calculated by bilinear
interpolation:

µ
i, j
(1,3) = 1

4 [µi, j + µi+1, j + µi, j+1 + µi+1, j+1]. (31)
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Figure 2. The staggered grid used in the FD method.

A typical staggered grid cell is shown in Fig. 2.
The elastic wave equation can be written as

−ρ∂2
t u1 + ∂1[(λ + 2µ)∂1u1 + λ∂3u3] + ∂3[µ(∂1u3 + ∂3u1)] = −h1,

(32)

−ρ∂2
t u3 + ∂1[µ(∂1u3 + ∂3u1)] + ∂3[λ∂1u1 + (λ + 2µ)∂3u3] = −h3.

(33)

The spatial derivatives are computed using the following standard
central FD operators:

D−
x

[
ui, j,n

1

] = ui, j,n
1 − ui−1, j,n

1

�x
, (34)

Figure 3. Discrete point-source tensor gm;h
αν for one crack, computed using the staggered-grid FD operator. The crack is situated in the origin and is oriented

along the x-axis. The half-width of the crack, am , is given by am = 0.5 m. The grid spacing is 2 m. The area around the crack, necessary to represent it as a
distributed point source, is typically chosen as a square containing 7 × 7 grid cells.

D−
z

[
ui, j,n

1

] = ui, j,n
1 − ui, j−1,n

1

�z
, (35)

D+
x

[
ui, j,n

1

] = ui+1, j,n
1 − ui, j,n

1

�x
, (36)

D+
z

[
ui, j,n

1

] = ui, j+1,n
1 − ui, j,n

1

�z
, (37)

and similar definitions for ui, j,n
3 . These central differences D−

x and
D−

z result in second-order accurate approximations of the derivatives
of un

1 and un
3 at the points (xi , z j ).

For the temporal discretization, a standard second-order FD
scheme is used. The result is

ui, j,n+1
1 = 2ui, j,n

1 − ui, j,n−1
1 + (�t)2

ρ
i, j
(1)

{
D+

x

[
(λi, j + 2µi, j )D−

x

[
ui, j,n

1

]
+ λi, j D−

z

[
ui, j,n

3

]] + D−
z

[
µ

i, j
(1,3)

(
D+

x

[
ui, j,n

3

]
+ D+

z

[
ui, j,n

1

])] − hi, j,n
1

}
, (38)

and

ui, j,n+1
3 = 2ui, j,n

3 − ui, j,n−1
3 + (�t)2

ρ
i, j
(3)

{
D+

z

[
λi, j D−

x

[
ui, j,n

1

]
+ (λi, j + 2µi, j ) D−

z

[
ui, j,n

3

]] + D−
x

[
µ

i, j
(1,3)

(
D+

x

[
ui, j,n

3

]
+ D+

z

[
ui, j,n

1

])] − hi, j,n
3

}
. (39)

For the computation of the scattered field, we have to distribute
the point sources ssc

α , given by eq. (23), over the grid points of the
FD grid. This is discussed in Appendix B. We need a numerical
representation of the point source that gives an accurate solution
with the given second-order FD scheme. Following the approach of
Van Baren et al. (2001), an accurate numerical approximation to the
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Figure 4. Horizontal and vertical components of the scattered displacement field observed in x = (0, −100). FD refers to our FD method and IR to the
accurate integral-representation method. The field is normalized with respect to the incident field.

point source is constructed by applying the FD operator to the ex-
act point-source solution. Instead of the exact solution, we use the
asymptotic approximation to the scattered field given in eq. (15)
which is valid close to the crack. Application of the numerical oper-

Figure 5. Same as in Fig. 4, but now observed in x = (70.7, −70.7).

ator to this solution produces a numerical source term that is spread
out over the grid points. Its amplitude decreases rapidly away from
the position of the original point source. An example of a crack,
represented by a distributed point source, is shown in Fig. 3. With
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Figure 6. Same as in Fig. 4, but now observed in x = (100, 0).

this observation, we can simplify the expressions for the numeri-
cal source term by using approximations that are valid close to the
crack.

4 VA L I D A T I O N O F T H E M E T H O D

In order to validate our finite-difference method, we apply it to a sin-
gle crack in a homogeneous embedding and compare its scattered
wavefield with the scattered field resulting from a direct evaluation
of the integral representation given in eq. (12) and transforming the
result to the time domain. The latter method is not based on the
discretization of the point-source tensor gm

αν and therefore is a good

Figure 7. Snapshot of the horizontal and vertical components of the scattered displacement field for a vertically incident compressional wave on a compliant
crack. The crack is parallel to the horizontal (x) axis and has a half-width am = 0.5 m.

validation test to check the accuracy of our method. For this com-
parison, we use an incident, plane, compressional wave propagating
along the vertical axis. The waveform is a Ricker wavelet (sec-
ond derivative of a Gaussian) with a dominant frequency of 45 Hz,
corresponding to ωc ≈ 280 rad s−1. The material parameters are
chosen as: ρ = 2.3 × 103 kg m−3, λ = 4.0 × 109 N m−2, µ = 5.2 ×
109 N m−2, which results in a compressional velocity cp =
2.5 km s−1 and a shear velocity cs = 1.5 km s−1. The compliant crack
is situated at the origin (0, 0), parallel to the horizontal axis and has
a half-width am = 0.5 m. For this choice of parameters, we have
ksam = 0.094 and kpam = 0.057. Therefore, both values are much
smaller than 1, which implies that the small-crack approximation
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Figure 8. Cross-well geometry used in the example. The middle reservoir
layer has a lower velocity than the upper and lower layers and consists of
2000 vertical cracks. The source is situated in the low-velocity layer.

Figure 9. Snapshots of the horizontal and vertical components of the incident displacement field, that would be present in the absence of the cracks, and the
displacement field scattered by the cracks. The model is shown in Fig. 8.

is valid. The grid spacings �x and �z are both chosen to be equal
to 2 m. In Figs 4–6, the horizontal and vertical components of the
scattered displacement field in different directions are compared for
both methods. The fit obtained is good, indicating that the discretiza-
tion of the point-source tensor gm

αν , represented by gm;h
αν , is accurate.

We have found that the discrete representation of the point-source
tensor breaks down if the crack itself coincides with a grid point.
This is a result of the singular behaviour of the point-source wave-
field. For simulations with many cracks, we therefore have to discard
cracks very close to grid points. In Fig. 7, we show snapshots of the
scattered displacement field around the crack as computed with our
method.

5 M O D E L S T U D Y F O R A
C R O S S - W E L L G E O M E T R Y

To illustrate the flexibility of our method, we simulate a cross-well
experiment. The model consists of a low-velocity layer, contain-
ing 2000 small vertical cracks, situated between two high-velocity
layers. The geometry of the experiment is shown in Fig. 8. The seis-
mic source consists of a vertical point force and is situated in the
low-velocity layer. In Fig. 9, we show snapshots of the horizontal
and vertical components of the incident and scattered field. From
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the incident-field snapshots, we observe that a significant part of the
wavefield is trapped within the low-velocity layer. The snapshots of
the scattered field reveal two aspects. First, we see a coherent trans-
mitted part. This is consistent with the concept of effective media
(see, for instance, Hudson & Knopoff 1989), where the overall ef-
fect of the cracks is accounted for by an effective medium. Secondly,
we observe that the backscattered field is much more complex, but
nevertheless remains trapped in the low-velocity layer.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented a finite-difference method for computing the scat-
tering of 2-D, elastic waves by many small-scale compliant cracks,
characterized by an explicit traction-free boundary condition. We
have solved the problem of representing a small crack on an FD
grid by deriving a suitable numerical source term. A further approx-
imation of this source term provided a simpler expression that can
be factored into a spatial and temporal part. This results in a sub-
stantial reduction of computing time, without an appreciable loss
of accuracy. The most important limitation is a restriction to first-
order scattering, which implies that interaction between cracks is
not taken into account. This restriction could be alleviated by taking
higher-order terms of the Neumann series into account. This exten-
sion, however, is not straightforward since it requires an accurate
discretization of the scattered wavefield close to each crack.

We have included examples to validate the method and study the
effect of the presence of 2000 small cracks in a low-velocity layer
on the transmitted and reflected field. The strength of these effects
depends on the number, size and orientation of the cracks.

The extension of the present method to three spatial dimensions
is probably straightforward, provided the relevant perturbation ex-
pression is used for computing the secondary source strength from
the incident field.
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A P P E N D I X A : T H E S O U R C E
S T R E N G T H I N T H E C A S E
O F A C O M P L I A N T C R A C K

Without loss of generality, we assume the crack to be located at the
origin. The half-width am of the crack is denoted by a. In order to use
the results of Van den Berg (1982) directly, we use local coordinates
for each crack such that the normal nα , in local coordinates, is given
by ñα = (0, 1). In what follows, local quantities will be indicated
with a tilde. At the end, we rotate all quantities back to the global
coordinate system. The derivation can be found in more detail in
Van den Berg (1982).

First, �̃m
1 is approximated by a Chebyshev polynomial:

�̃m
1 (x) = d1

√
2k2

s

µia

√
a2 − x2 (−a < x < a). (A1)

Under the assumption that interaction between the cracks can be
neglected, the coefficient d1 satisfies the equation

−
√

2

2aπ

∫ a

−a

ñατ̃
inc
1α (x, 0)

√
a2 − x2 dx = Q̂odd

1 d1, (A2)

in which Q̂odd
1 is defined by (see Van den Berg 1982)

Q̂odd
1 = 2

k2
p

a2

∫ a

0

(a2 − x2)1/2

[
J1(kpx)H (1)

1 (kpx) + i

π

]
dx

+ 2
k2

s

a2

∫ a

0

(
a2

2
− x2

)2

x−2(a2 − x2)−1/2

×
[

J1(ks x)H (1)
1 (ks x) + i

π

]
dx + i

2

(
k2

s − k2
p

)
. (A3)

The Hankel function of the first kind and order one, H (1)
1 , is defined

by H (1)
1 = J1 + iY1. J1 and Y1 are the Bessel functions of the first and

second kind, of order one, respectively. Furthermore, we have kp =
ω/cp and ks = ω/cs (with angular frequency ω). The quantity Q̂odd

1
can be calculated using the following series expansions of the Bessel
functions (Watson 1944):

J 2
1 (x) =

∞∑
m=0

(−1)m (2m + 2)!

m![(m + 1)!]2 (m + 2)!

(
x

2

)2m+2

= x2

4
+ O(x4), (A4)

J1(x)Y1(x) = − 1

π
+ 1

π

∞∑
m=0

(−1)m (2m + 2)!

m![(m + 1)!]2 (m + 2)!

×
(

x

2

)2m+2[
2 log

(
x

2

)
+ 2�(2m + 3) − �(m + 3)

− 2�(m + 2) − �(m + 1)

]
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= − 1

π
+ x2

4π

[
2 log

(
x

2

)
+ �(3) − 2�(2) − �(1)

]

+ O(x4 log(x)) = − 1

π
+ x2

4π

[
2 log

(
x

2

)
+ 2γ − 1

2

]
+ O(x4 log(x)), (A5)

where � is the logarithmic derivative of the gamma function, given
by � = �′/�. Because kpa and ksa are assumed to be small, we
only take the first term of the summation into account. After tedious
calculations, we find that

Q̂odd
1 = ia2

{
k4

s

32

[
2 log

(
ksa

4

)
+ 2γ − 1

]

+ k4
p

32

[
2 log

(
kpa

4

)
+ 2γ

]
+ k2

s

2a2
− k2

p

2a2

}

+ πa2

(
k4

s

32
+ k4

p

32

)
. (A6)

The next step is to evaluate the integral on the left-hand side of
eq. (A2). It is given by

−
√

2

2aπ

∫ a

−a

ñατ̃
inc
1α (x, 0)

√
a2 − x2 dx = −añατ̃

inc
1α (0, 0)

2
√

2
, (A7)

where we have used the fact that the strip is small compared with
the dominant wavelength of the incident field. This allows us to
replace the incident field by its value at the centre of the crack.
If we substitute expressions (A6) and (A7) in eq. (A2), d1 can be
determined, and the source strength follows as∫ a

−a

�̃m
1 (x ′) dx ′ = d1

√
2k2

s

µia

∫ a

−a

√
a2 − x ′2 dx ′ = d1

√
2πak2

s

2µi

= −πa2k2
s ñατ̃

inc
1α (0, 0)

4µi Q̂odd
1

= P̃m
11ñατ̃

inc
1α (0, 0). (A8)

The approximation of
∫ a

−a
�̃m

3 (x ′) dx ′ can be found in a similar way.
Now, �̃m

3 (x) is approximated by a Chebyshev polynomial:

�̃m
3 (x) = c1

√
2k2

s

µia

√
a2 − x2 (−a < x < a). (A9)

The coefficient c1 satisfies the equation

−
√

2

2aπ

∫ a

−a

ñατ̃
inc
3α (x, 0)

√
a2 − x2 dx = Q̂even

1 c1, (A10)

in which Q̂even
1 is defined by (see Van den Berg 1982)

Q̂even
1 = 2

k2
p

a2

∫ a

0

(
a2

2

k2
s

k2
p

− x2

)2

x−2(a2 − x2)−1/2

×
[

J1(kpx)H (1)
1 (kpx) + i

π

]
dx + 2

k2
s

a2

∫ a

0

(a2 − x2)1/2

×
[

J1(ks x)H (1)
1 (ks x) + i

π

]
dx + i

2

(
k2

s − k2
p

)
. (A11)

The resulting source strength is∫ a

−a

�̃m
3 (x ′) dx ′ ≡ P̃m

33ñατ̃
inc
3α (0, 0). (A12)

So far, we have assumed that the crack was located at the origin.
The source strength of a strip located at an arbitrary location xm and
with half-width am can now be written as∫

x ′∈crackm

�̃m
ν (x ′) dx ′ = P̃m

νβ ñm
α τ̃ inc

βα (xm), (A13)

with P̃m
νβ defined by

P̃m
11 = k2

s π

4µ

{
k4

s

32

[
2 log

(
ksam

4

)
+ 2γ − 1

]

+ k4
p

32

[
2 log

(
kpam

4

)
+ 2γ

]

+ k2
s

2a2
m

− k2
p

2a2
m

− iπ

(
k4

s

32
+ k4

p

32

)}−1

, (A14)

P̃m
33 = k2

s π

4µ

{
k4

s

32

[
2 log

(
ksam

4

)
+ 2γ − 2

]

+ k4
p

32

[
2 log

(
kpam

4

)
+ 2γ + 1

]
+ k2

s

2a2
m

− k2
p

2a2
m

+
(

k2
s

4
− k2

p

4

)2[
2 log

(
kpam

4

)
+ 2γ + 1

2

]

− iπ

[(
k2

s

4
− k2

p

4

)2

+ k4
s

32
+ k4

p

32

]}−1

, (A15)

and

P̃m
13 = P̃m

31 = 0. (A16)

If we restrict ourselves to the leading-order terms in kpam and ksam ,
P̃m

11 and P̃m
33 can be expressed as

P̃m
11 = P̃m

33 ≈ a2
mπ

2µ

1

1 − (cs/cp)2
, (A17)

which implies that P̃m
νβ becomes real-valued and frequency-

independent. With the aid of the coordinate transformation

N m
11 = sin φm,

N m
13 = cos φm,

N m
31 = −cosφm,

N m
33 = sin φm,

(A18)

the quantities can be expressed in the global coordinates in the fol-
lowing way:∫

x ′∈crackm

�̂m
ν (x ′) dx ′ = P̂m

νβnm
α τ̂ inc

βα (xm), (A19)

with the global quantities expressed in the above local quantities by
the relations:

�̂m
ν = N m

νµ�̃µ,

nm
α = N m

αγ ñm
γ ,

P̂m
νβ = N m

να P̃m
αγ (N m)−1

γβ ,

τ̂ inc
βα = N m

βν τ̃
inc
νγ (N m)−1

γα.

(A20)

For small values of ksam and kpam (i.e. with the crack being small
with respect to the wavelength), P̃m

αγ is real-valued and frequency-
independent.

In order to compute the time-domain form, required for explicit
time-domain FD techniques, we now transform the above expres-
sions to the time domain. Since the frequency dependence of P̂m

νβ (ω)
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can be neglected for small values of the crack width am , see eqs (A16)
and (A17), we can transform eq. (A19) directly to the time domain
and obtain∫

x ′∈crackm

�m
ν (x ′) dx ′ = Pm

νβnm
α τ inc

βα (xm, t), (A21)

with Pm
νβ = P̂m

νβ given by eq. (A20).

A P P E N D I X B : A C C U R A T E
R E P R E S E N T A T I O N O F P O I N T
S O U R C E S ssc

α

We discuss the discrete representation of the point sources present
in ssc

α of eq. (23). Since we consider only single scattering, we can
treat each crack separately. First, we repeat eq. (22) for a single crack
m in the frequency domain:

L̂αγ ûsc
γ = −ŝsc

α , (B1)

with the source term ŝsc
α being given by

ŝsc
α = gm

αν

∫
x ′∈crackm

�̂m
ν (x ′) dx ′. (B2)

In the above equation, gm
αν is a dipole-type point source at the crack

location and is given by eq. (18). When we solve eq. (B1) with finite
differences, we replace the exact operator L̂αγ by the operator L̂h

after spatial discretization, which follows from eq. (6) as

L̂h
αγ = Qh

αγ + ρω2δαγ , (B3)

where Qh
αγ is the discrete spatial differentiation operator. Since we

evaluate it close to the crack, we can use the material parameters
close to the crack and obtain

Qh
11 = (λ + 2µ)Dh

xx + µDh
zz,

Qh
13 = (λ + µ)Dh

xz,

Qh
31 = (λ + µ)Dh

xz,

Qh
33 = (λ + 2µ)Dh

zz + µDh
xx ,

(B4)

where the second-order FD operators are given by

Dh
xx = D+

x D−
x ,

Dh
xz = D+

x D−
z , (B5)

Dh
zz = D+

z D−
z ,

and the first-order operators are defined in eqs (34)–(37). We express
the discretized form of the scattered-field eq. (B1) in the following
form:

L̂h
αγ ûsc

γ = −ŝsc;h
α . (B6)

We now want to construct the source distribution ŝsc;h
α resulting from

the single crack by substituting the field ûsc
γ close to the crack in

eq. (B6) and evaluating the result.
Close to the crack, the scattered field follows from eq. (15) as

ûsc
γ = nm

β τ̂G
γ νβ

∫
x ′∈crackm

�̂m
ν (x ′) dx ′. (B7)

If we now apply the discrete operator L̂h
αγ to both sides of eq. (B7),

we obtain

L̂h
αγ ûsc

γ = L̂h
αγ nm

β τ̂G
γ νβ

∫
x ′∈crackm

�̂m
ν (x ′) dx ′. (B8)

By inspection, we now find the discrete source term corresponding
to the single crack to be given by

ŝsc;h
α = −L̂h

αγ nm
β τ̂G

γ νβ

∫
x ′∈crackm

�̂m
ν (x ′) dx ′, (B9)

or, equivalently, by

ŝsc;h
α = gm;h

αν

∫
x ′∈crackm

�̂m
ν (x ′) dx ′, (B10)

where the discrete point-source tensor gm;h
αν can be expressed in terms

of the (known) FD operator and the Green tensor close to the crack:

gm;h
αν = −L̂h

αγ nm
β τ̂G

γ νβ . (B11)

An example of this discrete point-source tensor is shown in Fig.
3. Close to the crack, the distance r (=|x − x′|) is small com-
pared with the wavelength. This implies that we have kpr � 1 and
ksr � 1. Therefore, we can employ the leading-order term of the
small-argument approximation of the Hankel functions present in
τ̂G
γ νβ . We obtain

τ̂G
γ νβ (x; x′) ≈ 1

2πr

(
λ

λ + 2µ
Cγ νβ + [−Cγ νβ + 2Mγ νβ ]

+ µ

λ + 2µ
[Aγ νβ + Bγ νβ + Cγ νβ − 2Mγ νβ ]

)
, (B12)

in which

Aγ νβ = δβγ

(x ′
ν − xν)

r
,

Bγ νβ = δνγ

(x ′
β − xβ )

r
,

Cγ νβ = δνβ

(x ′
γ − xγ )

r
,

Mγ νβ = (x ′
ν − xν) (x ′

β − xβ ) (x ′
γ − xγ )

r 3
.

To obtain the discrete point-source tensor gm;h
αν , consider eq. (B11)

and replace τ̂G
γ νβ by its approximation close to the crack, given by

eq. (B12). Close to the crack, the contribution of the spatial differ-
entiation part (Qh

αγ ) of the operator L̂h
αγ is the largest owing to the

singularity of the Hankel function. Therefore, we replace L̂h
αγ by its

dominant spatial differentiation part, Qh
αγ , and obtain

gm;h
αν = −Qh

αγ nm
β τ̂G

γ νβ (B13)

with Q̂h
αγ given by eq. (B4). Since the near-field form of the Green

tensor is known explicitly, as well as the spatial part of the FD
operator, Qh

αγ , we can compute gm;h
αν explicitly, by applying Qh

αγ to
nm

β τ̂G
γ νβ .

We observe that the dominant part of gm;h
αν does not depend on

frequency. From eq. (B10), we now find that the time-domain form
of the source term for the scattered field, ssc;h

α , can be written as

ssc;h
α = gm;h

αν Pm
νβnm

α τ inc
βα (xm, t), (B14)

where we have also used eq. (A21). Since the crack location xm does
not coincide with a grid point, the incident field at xm is computed
using bilinear interpolation.
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