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S U M M A R Y
We introduce a dynamic linear model in which the observation equations are perturbed by a
form that has constant (over time), non-random coefficients and may represent the disturbing
gravity field under investigation. Because of its non-random behaviour, their form cannot be
determined using Friedland’s generalization of the Kalman filter. However, after putting it in
dual form (‘Bayes filter’), Friedland’s approach can be further generalized to also cover the
present case. This (apparently new) filter version is then employed to estimate the disturbing
gravity vector from airborne INS/GPS data, following the ideas of Jekeli & Kwon (1999) for the
combined analysis. Thus, the filter acts on the integration of INS and GPS acceleration vectors
where the discrepancies are simultaneously modelled in terms of random system ‘biases’,
i.e. self-calibration, and the local non-random disturbing gravity vector. We do not introduce
a second filter step (‘cascaded filter’), owing to problems with neglected correlations in a
two-step procedure.

The new results are eventually compared with those of a related algorithm that may
be interpreted as Kalman filtering with ‘partial regularization’, effectively using a stochastic
gravity field representation. Improvements of between 10 per cent (‘down’ direction) and
60 per cent (north direction) were achieved, which we attribute in large part to the use of the
disturbing gravity vector as a non-stochastic quantity.

Key words: generalized Kalman/Bayes filtering, INS/GPS integration, non-random gravity
field representation, vector gravimetry.

I N T R O D U C T I O N

The integrated INS/GPS system has been investigated as a tool for vector gravimetry for more than 10 years (see, e.g. Eissfeller & Spietz
1989; Knickmeyer 1990). Recent results have been reported by Salychev & Schwarz (1995), Wei & Schwarz (1995) and Jekeli & Kwon
(1999) among others. The respective approaches are mostly based on some form of Kalman-type filter, ‘centralized’ or ‘cascaded’ according
to Wei & Schwarz (1990), using self-calibration techniques with random system ‘biases’ along with a random or non-random representation
of the disturbing gravity vector. For more details, see Salychev & Schaffrin (1992), Salychev & Schwarz (1995), Schaffrin (1995) or Jekeli &
Kwon (2000). Some simplified comparisons have been undertaken by Hammada (1996) who, in particular, looked into the ‘wave algorithm’
without system noise, and into a rather unspecific form of low-pass filtering based on finite impulse response (FIR) design.

The ‘wave algorithm’ uses a non-random gravity field representation; however, by not allowing any system noise in the model, these
effects will show up later in the form of inexplicable jumps in the solution for the disturbing gravity vector. We, therefore, keep the system
noise and introduce a functional model for the disturbing gravity field as a linear combination of certain spatial base functions. The degree of
this expansion should depend on the extension of the area under investigation and the expected roughness/smoothness of the gravity field. If
necessary, an adaptive technique similar to that considered by Wang et al. (1995) could be introduced as well.

We also decided to employ a centralized filter since the step procedures (‘cascaded filters’) regularly run into problems with the neglected
correlations (see the remarks by Knickmeyer 1990, p. 53). In any case, we apply this filter at the level of INS and GPS accelerations, in the
same way as Jekeli & Kwon (1999) and without the preprocessing recommended by Knickmeyer (1990, p. 51) for ‘INS/GPS synthesis’.

This approach leads to a dynamic linear model with additional constant (over time) and non-random parameters in the observation and
state equations. Such a model can no longer be treated by simply updating the ordinary Kalman filter in accordance with Friedland (1969). It
is, however, possible to adopt Friedland’s ideas to modify the dual form, commonly known as a ‘Bayes filter’. After the general description
of our mathematical model in the next section, we shall present the new filter algorithm in Section 2, followed by a discussion in Section 3 of
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how it is best applied in vector gravimetry with the integrated INS/GPS system. In Section 4, finally, we present a number of numerical results
that will allow us to conclude the relative superiority of the new approach in many typical situations, measured by the respective standard
deviations. We attribute this improvement mainly to the fact that the disturbing gravity vector is here modelled as non-stochastic quantity, and
less to the rigorous way of our error/bias propagation.

1 T H E D Y N A M I C L I N E A R M O D E L W I T H A D D I T I O N A L N O N - R A N D O M ,
C O N S T A N T P A R A M E T E R S

In order to introduce our notation, we begin with the standard form of the dynamic linear model as in Schaffrin (1995), for instance, which
for the interval from t = tk−1 to t = tk consists of the following three parts:

yk = Ak xk + ek ‘observation equations at t = tk’, (1.1a)

xk = φk−1xk−1 + uk ‘state equations between tk−1 and tk’, (1.1b)

x̃ k−1 = xk−1 + e0
k−1 ‘initial condition at t = tk−1’, (1.1c)

where the mean vector and the variance-covariance matrix of the random error vectors are specified as follows:


ek

uk

e0
k−1


∼





0

0

0


,




�k 0 0

0 �k 0

0 0 �0
k−1




. (1.1d)

We further do not allow any correlation over time. The dynamic linear model represents a linearized and discretized form of an initial-value
problem for a set of ordinary differential equations whose parameters have simultaneously been observed indirectly, providing us with an
(incremental) observation vector yk at all time epochs t = tk which depends linearly on the (incremental) state vectors xk through the coefficient
matrices Ak , while ek denotes the respective observational noise vector. In contrast, uk denotes the so-called ‘system (description) noise’ vector
for any t = tk with the transition matrix φk−1 describing the essential relation between xk−1 and xk . In addition, we consider the information
x̃ k−1 about our state vector xk−1 at time epoch t = tk−1 to be contaminated by some (independent) random noise e0

k−1 as well.
In this model the least-squares solution (LESS) is known to yield the best inhomogeneously linear prediction (inhom-BLIP) of xk through

the Kalman filter algorithm

Kk := (
�k + φk−1�

0
k−1φ

T
k−1

)
AT

k

[
�k + Ak

(
�k + φk−1�

0
k−1φ

T
k−1

)
AT

k

]−1
, (1.2a)

x�k := φk−1 x̃ k−1, zk := yk − Ak x�k (‘innovation’), (1.2b)

x̃ k := x�k + Kk · zk, E{x̃ k − xk} = 0 (‘weakly unbiased’), (1.2c)

�0
k := MSPE {x̃ k} = D{x̃ k − xk} = (I − Kk Ak) · (�k + φk−1�

0
k−1φ

T
k−1

)
. (1.2d)

The updated vector x̃ k along with its Mean Square Prediction Error (MSPE) matrix �0
k will be used as initial condition for the subsequent

interval from t = tk to t = tk+1. The above algorithm is most suitable in cases where, for all tk , the number nk of observation equations stays
consistently below the number of random effects in the ‘state vector’ xk . In all other cases, we may rather use its dual form which is sometimes
called the ‘Bayes filter’, namely

�0
k :=

[
AT

k �−1
k Ak + (

�k + φk−1�
0
k−1φ

T
k−1

)−1
]−1

, (1.3a)

Kk := �0
k AT

k �−1
k , (1.3b)

x�k := φk−1 x̃ k−1, zk := yk − Ak x�k (‘innovation’), (1.3c)

x̃ k := x�k + Kk · zk, E{x̃ k − xk} = 0. (1.3d)

Of course, from a theoretical point of view, the solutions of both algorithms should not differ. Any numerical differences that may occur
nonetheless, may thus be attributed to accumulated rounding errors.

Now let us introduce the extended dynamic linear model that allows for a time-invariant, but stochastic perturbation of the observation
equations, and thus for a better absorption of any unmodelled gravity disturbances:

yk = [Ak Xk] ·
[

xk

bk

]
+ ek, (1.4a)

[
xk

bk

]
=

[
φk−1 0

0 I

][
xk−1

bk−1

]
+

[
I

0

]
uk, (1.4b)

[
x̃ k

b̃(k−1)

]
=

[
xk−1

bk−1

]
+

[
e0

k−1

v0
k−1

]
, (1.4c)

C© 2002 RAS, GJI, 149, 64–75



66 B. Schaffrin and J. H. Kwon

with


ek

uk

e0
k−1

v0
k−1


∼







0

0

0

0


,




�k 0 0 0

0 �k 0 0

0 0 �0
xxk−1

�0
xbk−1

0 0 �0
bxk−1

�0
bbk−1





. (1.4d)

This model is indeed an extension of the previous dynamic linear model in so far as the respective inconsistencies that describe the discrepancy
between the model Ak xk and the measurements in yk were solely attributed to random noise in eqs (1.1a–c), whereas in eqs (1.4a–c) they may
be caused by so-called perturbations as well. We call these b0, b1, b2, . . . , bk−1, bk, . . . .

Note that, according to eq. (1.4b), we indeed have reduced their variability

b0 = b1 = b2 = · · · = b (‘time-independent’), (1.5)

but with time-dependent estimates b̃(k−1) that enter the prior condition (1.4c). From a structural point of view, the above model resembles the
original model as long as the variance-covariance matrix �0

bbk−1
= D{v0

k−1} = D{b̃(k−1) − b} is a finite matrix for all k ∈ N (with D denoting
‘dispersion’), and can thus be handled in a similar fashion. It is namely a similar fashion eventually resulting in a properly modified filter. It
is then straightforward to derive the formal least-squares solution in ‘Kalman form’:[
Kxk

Kbk

]
:=

[
�k + φk−1�

0
xxk−1

φT
k−1

... φk−1�
0
xbk−1

�0
bxk−1

φT
k−1

... �0
bbk−1

][
AT

k

XT
k

]
·
(

�k + [Ak Xk]

[
�k + φk−1�

0
xxk−1

φT
k−1

... φk−1�
0
xbk−1

�0
bxk−1

φT
k−1

... �0
bbk−1

][
AT

k

XT
k

])−1

, (1.6a)

[
x�k

b
�(k)

]
:=

[
φk−1 x̃ k−1

b̃(k−1)

]
, zk := yk − [Ak Xk]

[
x�k

b
�(k)

]
= yk − Ak x�k − Xkb̃(k−1), (1.6b)

[
x̃ k

b̃(k)

]
:=

[
x�k

b̃(k−1)

]
+

[
Kxk

Kbk

]
· zk, E

{[
x̃ k − xk

b̃(k) − b

]}
=

[
0

0

]
, (1.6c)

[
�0

xxk
�0

xbk

�0
bxk

�0
bbk

]
:= MSPE

{[
x̃ k

b̃(k)

]}
= D

{[
x̃ k − xk

b̃(k) − b

]}
=

([
I 0

0 I

]
−

[
Kxk Ak

... Kxk Xk

Kbk Ak

... Kbk Xk

])[
�k + φk−1�

0
xxk−1

φT
k−1

... φk−1�
0
xbk−1

�0
bxk−1

φT
k−1

... �0
bbk−1

]
.

(1.6d)

Alternatively, its ‘Bayes form’ reads:[
�0

xxk
�0

xbk

�0
bxk

�0
bbk

]
:=


[

AT
k �−1

k Ak

... AT
k �−1

k Xk

XT
k �−1

k Ak

... XT
k �−1

k Xk

]
+

[
�k + φk−1�

0
xxk−1

φT
k−1

... φk−1�
0
xbk−1

�0
bxk−1

φT
k−1

... �0
bbk−1

]−1



−1

, (1.7a)

[
Kxk

Kbk

]
:=

[
�0

xxk
�0

xbk

�0
bxk

�0
bbk

][
AT

k

XT
k

]
�−1

k , (1.7b)

[
x�k

b
�(k)

]
:=

[
φk−1 x̃ k−1

b̃(k−1)

]
, zk := yk − [Ak Xk]

[
x�k

b
�(k)

]
= yk − Ak x�k − Xkb̃(k−1), (1.7c)

[
x̃ k

b̃(k)

]
:=

[
x�k

b̃(k−1)

]
+

[
Kxk

Kbk

]
· zk, E

{[
x̃ k − xk

b̃(k) − b

]}
=

[
0

0

]
. (1.7d)

In the next section, we shall modify these formulae in such a way that the results are produced as updates to the original solution (1.3a–d) that
belongs to the simple dynamic linear model. The algorithm thus ought to be designed recursively so that the case of non-random perturbations
β, where

b → β = E
{
β̂ (1)

} = E
{
β̂ (2)

} = · · · , (
�0

bb

)−1 =: Q0
bb → Q0

ββ = 0, (1.8)

replaces the condition (1.5), is also covered. Here, the hat refers to estimates of the vector β whose components have received infinite variance
now and will no longer impact the solution by possibly incorrect prior information on these perturbations (as would be the case with random
perturbations b with finite variance).

2 A N A L G O R I T H M F O R T H E B A Y E S F I L T E R I N F R I E D L A N D F O R M

We first show how, according to Friedland (1969), the modified formulae of the Kalman filter, eqs (1.6a–d), can be given an update form on
the basis of the ordinary Kalman filter, eqs (1.2a–d), and why they may fail in the case of non-random perturbations as described through
eq. (1.8).
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For this, let us just consider the first interval with k = 1 in which case formula (1.6a) would, due to �xb0 = 0 = �T
bx0

, read:[
Kx1

Kb1

]
=

[(
�1 + φ0�

0
xx0

φT
0

)
AT

1

�0
bb0

XT
1

]
·[�1 + A1

(
�1 + φ0�

0
xx0

φT
0

)
AT

1 + X1�
0
bb0

XT
1

]−1
, (2.1)

thus requiring �0
bb0

to be a finite matrix.
Alternatively we may, however, use

Kx1 = K1

{
I − X1�

0
bb0

XT
1

[
�1 + A1

(
�1 + φ0�

0
xx0

φT
0

)
AT

1 + X1�
0
bb0

XT
1

]−1
}

= K1

(
I − X1 Kb1

)
(2.2a)

with K1 as in eq. (1.2a) and

Kb1 =
{

Q0
bb + XT

1

[
�1 + A1

(
�1 + φ0�

0
xx0

φT
0

)
AT

1

]−1
X1

}−1

XT
1

[
�1 + A1

(
�1 + φ0�

0
xx0

φT
0

)
AT

1

]−1
(2.2b)

instead, which would also be computable as Kβ1 when Q0
bb → 0 as in eq. (1.8) if we can only assume that X1 is of full rank and, therefore, all

perturbations are readily estimable.
In the next step, formulae (1.6b–c) would lead to

b̃(1) = b̃(0) + Kb1

(
y1 − A1φ0 x̃0 − X1b̃(0)

)
, (2.3a)

x̃1 = φ0 x̃0 + Kx1

(
y1 − A1φ0 x̃0 − X1b̃(0)

)= [x�1 + K1(y1 − A1x�1)] − K1 X1b̃(0) − K1 X1

[
Kb1

(
y1 − A1φ0 x̃0 − X1b̃(0)

)]
= x̄1 − K1 X1b̃(0) − K1 X1

(
b̃(1) − b̃(0)

)= x̄1 − K1 X1b̃(1), (2.3b)

in general, and to

β̂ (1) = β̂ (0) + Kβ1

(
y1 − A1φ0 x̃0 − X1β̂

(0)
) = Kβ1 ( y1 − A1x�1), (2.4a)

x̃1 = x̄1 − K1 X1β̂
(1), (2.4b)

in the case of Q0
bb → 0, where

x̄1 := x�1 + K1( y1 − A1x�1) (2.5)

represents the classical Kalman filter solution, without any perturbations, as in eq. (1.2c) or eq. (1.3d).
If we now, however, turn to formula (1.6c) we obtain[

�0
xx1

�0
xb1

�0
bx1

�0
bb1

]
=

[
I − Kx1 A1

... −Kx1 X1

−Kb1 A1

... I − Kb1 X1

][
�1 + φ0�

0
xx0

φT
0

... 0

0
... �0

bb0

]
, (2.6)

and consequently, with �̄0
1 taken from eq. (1.2d), the representations

�0
xx1

= (
I − K1 A1 + K1 X1 Kb1 A1

)(
�1 + φ0�

0
xx0

φT
0

) = �̄0
1 + K1 X1

{
Q0

bb + XT
1

[
�1 + A1

(
�1 + φ0�

0
xx0

φT
0

)
AT

1

]−1
X1

}−1

XT
1 K T

1 , (2.7a)

�0
xb1

= −K1 X1

(
I − Kb1 X1

)
�0

bb0
= −(

�1 + φ0�
0
xx0

φT
0

)
AT

1 K T
b1

= (
�0

bx1

)T
, (2.7b)

�0
bb1

= (
I − Kb1 X1

)
�0

bb0
=

{
Q0

bb + XT
1

[
�1 + A1

(
�1 + φ0�

0
xx0

φT
0

)
AT

1

]−1
X1

}−1

, (2.7c)

where only the second identities can be used in the case that Q0
bb → 0, i.e. the case of non-random perturbations. These identities readily result

from the Bayes filter solution as given by eq. (1.7) which yields[
�0

xx1
�0

xb1

�0
bx1

�0
bb1

]
=

[
AT

1 �−1
1 A1 + (

�1 + φ0�
0
xx0

φT
0

)−1 ... AT
1 �−1

1 X1

XT
1 �−1

1 A1

... XT
1 �−1

1 X1 + Q0
bb

]−1

, (2.8)

and thus, with �̄0
1 now taken from eq. (1.3a) and K1 from eq. (1.3b),

�0
xx1

= �̄0
1 + �̄0

1 AT
1 �−1

1 X1

[
Q0

bb + XT
1

(
�−1

1 − �−1
1 A1�̄

0
1 AT

1 �−1
1

)
X1

]−1
XT

1 �−1
1 A1�̄

0
1

= �̄0
1 + K1 X1

[
Q0

bb + XT
1 �−1

1 (I − A1 K1)X1

]−1
XT

1 K T
1 , (2.9a)

�0
bx1

= −�̄0
1 AT

1 �−1
1 X1

[
Q0

bb + XT
1

(
�−1

1 − �−1
1 A1�̄

0
1 AT

1 �−1
1

)
X1

]−1 = −K1 X1

[
Q0

bb + XT
1 �−1

1 (I − A1 K1)X1

]−1 = (
�0

bx1

)T
, (2.9b)

�0
bb1

= [
Q0

bb + XT
1 �−1

1 (I − A1 K1)X1

]−1
. (2.9c)

Note that the formulae (2.9a–c) become identical to eqs (2.7a–c) after some manipulations, using the relation

�−1
1 (I − A1 K1) = [

�1 + A1

(
�1 + φ0�

0
xx0

φT
0

)
AT

1

]−1
. (2.10)

After exploiting formula (1.7b), we further obtain
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Kx1 = (
�0

xx1
AT

1 + �0
xb1

XT
1

)
�−1

1 , (2.11a)

Kb1 = (
�0

bx1
AT

1 + �0
bb1

XT
1

)
�−1

1 , (2.11b)

which can be used in eqs (2.3a–b) in order to obtain the solutions x̃1 and b̃(1).
All the above formulae remain valid even if Q0

bb → 0, assuming full column rank of X1. We would then use

Kx1 = (
�0

xx1
AT

1 + �0
xβ1

XT
1

)
�−1

1 , (2.12a)

Kβ1 = (
�0

βx1
AT

1 + �0
ββ1

XT
1

)
�−1

1 , (2.12b)

followed by (2.4a–b) to obtain x̃1 and β̂ (1). Should X1 not be of full rank, we may use a generalized inverse [XT
1 �−1

1 (I − A1 K1)X1]−, e.g.
the ‘pseudo-inverse’, instead. The matrices �0

ββ1
, �0

xβ1
= (�0

βx1
)T and Kβ1 will no longer be unique, and also β̂ (1) will depend on the chosen

generalized-inverse that, however, will not affect x̃1 and �0
xx1

owing to the invariance of X1�
0
ββ1

XT
1 , X1�

0
βx1

, and thus X1 Kβ1 .
For the next interval from t1 to t2, the formulae will obviously become more involved since we cannot assume that the off-diagonal block

matrix �0
xβ1

= (�0
bx1

)T still vanishes. Nevertheless, the above remarks are equally valid in suggesting the use of the ‘Bayes filter’ eqs (1.7a–d)
in order to come up with formulae in Friedland form that hold true even for the case of non-random perturbations when Q0

bb → 0. We shall,
therefore, show the relevant derivations for this interval before designing the general algorithm.

Starting with eq. (1.7a), we now have to find the individual subblocks of the matrix[
�0

xx2
�0

xb2

�0
bx2

�0
bb2

]
=


[

AT
2

XT
2

]
�−1

2 [A2 X2] +
[
�2 + φ1�

0
xx1

φT
1

... φ1�
0
xb1

�0
bx1

φT
1

... �0
bb1

]−1



−1

. (2.13)

By using the relation

�0
xx1

− �0
xb1

(
�0

bb1

)−1
�0

bx1
=�̄0

1 =
[

AT
1 �−1

1 A1 + (
�1 + φ0�

0
xx0

φT
0

)−1
]−1

(2.14)

from eqs (2.9a–c) and (1.3a), we can express the inner inverse of eq. (2.13) as[
�2 + φ1�

0
xx1

φT
1

... φ1�
0
xb1

�0
bx1

φT
1

... �0
bb1

]−1

=
[

0 0

0
(
�0

bb1

)−1

]
+

[
−I(

�0
bb1

)−1
�0

bx1

](
�2 + φ1�̄

0
1φ

T
1

)−1
[
−I

... �0
xb1

(
�0

bb1

)−1
]

=
[ (

�2 + φ1�̄
0
1φ

T
1

)−1 ... −(
�2 + φ1�̄

0
1φ

T
1

)−1
K1 X1

−XT
1 K T

1

(
�2 + φ1�̄

0
1φ

T
1

)−1 ...
(
�0

bb1

)−1 + XT
1 K T

1

(
�2 + φ1�̄

0
1φ

T
1

)−1
K1 X1

]
. (2.15)

Alternatively, we can directly tackle the outer inverse and find[
�0

xx2
�0

xb2

�0
bx2

�0
bb2

]
=

[
�2 + φ1�

0
xx1

φT
1

... φ1�
0
xb1

�0
bx1

φT
1

... �0
bb1

]
−

[
�2 + φ1�

0
xx1

φT
1

... φ1�
0
xb1

�0
bx1

φT
1

... �0
bb1

][
AT

2

XT
2

]
.


�2 + [A2 X2]


�2 + φ1�

0
xx1

φT
1

... φ1�
0
xb1

�0
bx1

φT
1

... �0
bb1


[

AT
2

XT
2

]


−1

· [A2 X2]

[
�2 + φ1�

0
xx1

φT
1

... φ1�
0
xb1

�0
bx1

φT
1

... �0
bb1

]
(2.16)

with

�2 + [A2 X2]

[
�2 + φ1�

0
xx1

φT
1

... φ1�
0
xb1

�0
bx1

φT
1

... �0
bb1

][
AT

2

XT
2

]

=�2 + [A2 X2] ·
([

�2 + φ1�̄
0
1φ

T
1

... 0

0
... 0

]
+

[
φ1 K1 X1

−I

]
�0

bb1

[
XT

1 K T
1 φT

1

... −I
])[

AT
2

XT
2

]

=[
�2 + A2

(
�2 + φ1�̄

0
1φ

T
1

)
AT

2

] + (X2 − A2φ1 K1 X1)�0
bb1

(X2 − A2φ1 K1 X1)T. (2.17)

The respective subblocks are now readily obtained as

�0
bb2

= �0
bb1

− �0
bb1

(X2 − A2φ1 K1 X1)T · {[�2 + A2

(
�2 + φ1�̄

0
1φ

T
1

)
AT

2

] + (X2 − A2φ1 K1 X1)�0
bb1

(X2 − A2φ1 K1 X1)T
}−1

· (X2 − A2φ1 K1 X1)�0
bb1

=
{(

�0
bb1

)−1 + (X2 − A2φ1 K1 X1)T
[
�2 + A2

(
�2 + φ1�̄

0
1φ

T
1

)
AT

2

]−1
(X2 − A2φ1 K1 X1)

}−1

, (2.18a)

�0
xb2

= −φ1 K1 X1�
0
bb1

− [(
�2 + φ1�̄

0
1φ

T
1

)
AT

2 − φ1 K1 X1�
0
bb1

(X2 − A2φ1 K1 X1)T
]

·{[�2 + A2

(
�2 + φ1�̄

0
1φ

T
1

)
AT

2

] + (X2 − A2φ1 K1 X1)�0
bb1

(X2 − A2φ1 K1 X1)T
}−1 · (X2 − A2φ1 K1 X1)�0

bb1
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= −φ1 K1 X1 ·
{(

�0
bb1

)−1 + (X2 − A2φ1 K1 X1)T
[
�2 + A2

(
�2 + φ1�̄

0
1φ

T
1

)
AT

2

]−1
(X2 − A2φ1 K1 X1)

}−1

−(
�2 + φ1�̄

0
1φ

T
1

)
AT

2

[
�2 + A2

(
�2 + φ1�̄

0
1φ

T
1

)
AT

2

]−1
(X2 − A2φ1 K1 X1)

·
{(

�0
bb1

)−1 + (X2 − A2φ1 K1 X1)T
[
�2 + A2

(
�2 + φ1�̄

0
1φ

T
1

)
AT

2

]−1
(X2 − A2φ1 K1 X1)

}−1

= −[φ1 K1 X1 + K2(X2 − A2φ1 K1 X1)] · �0
bb2

= (
�0

bx2

)T
, (2.18b)

with

K2 := (
�2 + φ1�̄

0
1φ

T
1

)
AT

2

[
�2 + A2

(
�2 + φ1�̄

0
1φ

T
1

)
AT

2

]−1 = �̄0
2 AT

2 �−1
2 , (2.19a)

I − A2 K2 = �2

[
�2 + A2

(
�2 + φ1�̄

0
1φ

T
1

)
AT

2

]−1
, (2.19b)

and, after inverting both sides of eq. (2.13) and inserting eq. (2.15),

�̄0
2 =

[
AT

2 �−1
2 A2 + (

�2 + φ1�̄
0
1φ

T
1

)−1
]−1

= �0
xx2

− �0
xb2

(
�0

bb2

)−1
�0

bx2
(2.19c)

so that we finally obtain

�0
xx2

= �̄0
2 + �0

xb2

(
�0

bb2

)−1
�0

bx2
=�̄0

2 − �0
xb2

[φ1 K1 X1 + K2(X2 − A2φ1 K1 X1)]T . (2.18c)

In the next step, we apply eq. (1.7b) to obtain

Kb2 = (
�0

bx2
AT

2 + �0
bb2

XT
2

)
�−1

2 = �0
bb2

· {X2 − A2[φ1 K1 X1 + K2(X2 − A2φ1 K1 X1)]}T · �−1
2 , (2.20a)

Kx2 = (
�0

xx2
AT

2 + �0
xb2

XT
2

)
�−1

2 = �̄0
2 AT

2 �−1
2 + �0

xb2
{X2 − A2[φ1 K1 X1 + K2(X2 − A2φ1 K1 X1)]}T · �−1

2

= K2 − [φ1 K1 X1 + K2(X2 − A2φ1 K1 X1)] · Kb2 . (2.20b)

With x�2 := φ1 x̃1 and formulae (1.7c–d), we finally arrive at

b̃(2) = b̃(1) + Kb2

(
y2 − A2x�2 − X2b̃(1)

) = Kb2 (y2 − A2φ1 x̄1) + [
I − Kb2 (X2 − A2φ1 K1 X1)

]
b̃(1), (2.21a)

x̃2 = x�2 + Kx2

(
y2 − A2x�2 − X2b̃(1)

) = x�2 + K2( y2 − A2x�2) − K2 X2b̃(1) − [φ1 K1 X1 + K2(X2 − A2φ1 K1 X1)]
(

b̃(2) − b̃(1)
)

= φ1

(
x̃1 + K1 X1b̃(1)

) + K2

[
y2 − A2φ1

(
x̃1 + K1 X1b̃(1)

)] − [K2 X2 + (I − K2 A2)φ1 K1 X1] b̃(2)

= [φ1 x̄1 + K2(y2 − A2φ1 x̄1)] − [φ1 K1 X1 + K2(X2 − A2φ1 K1 X1)] b̃(2). (2.21b)

The formulae (2.18)–(2.21) comprise the ‘Bayes filter in Friedland form’ which updates the results from t = t1 to t = t2 for the extended
dynamic linear model eqs (1.4a–d). Applying similar symbols as Friedland (1969), we may thus design the general update from t = tk−1 to
t = tk that works even when some of the matrices involved become singular (as in our application):

(i) �̄0
k :=

[
AT

k �−1
k Ak + (

�k + φk−1�̄
0
k−1φ

T
k−1

)−1
]−1

,

(ii) Kk := �̄0
k AT

k �−1
k ,

(iii) Uk := φk−1Vk−1,

(iv) Sk := Xk + AkUk,

(v) Vk := Uk − Kk Sk,

(vi) Nkk := ST
k �−1

k (I − Ak Kk)Sk, (2.22)

(vii)

{
�0

bbk
:= [ (

�0
bbk−1

)+ + Nkk

]+
(using pseudo-inverses),

�0
xbk

:= Vk�
0
bbk

, �0
xxk

:= �̄0
k + �0

xbk
V T

k ,

(viii) Kbk := �0
bbk

(Ak Vk + Xk)T�−1
k ,

(ix) x̄ k := φk−1 x̄ k−1 + Kk(yk − Akφk−1 x̄ k−1),

(x)

{
b̃(k) := Kbk (yk − Akφk−1 x̄ k−1) + (

I − Kbk Sk

)
b̃(k−1),

x̃ k := x̄ k + Vkb̃(k).

With increasing numbers of iteration, the singularity of �0
bbk

should normally disappear even if the participating matrices X1, . . . , Xk have
all less than full column rank. The uniqueness of both x̃ k and �0

xxk
will not be affected anyway.

Furthermore, the algorithm (2.22) is readily applicable to the case of non-random perturbations as in the application that will be presented
in the following section. In this case, we should only change some of the notations, namely �0

bbk
→�0

ββk
, �0

xbk
→�0

xβk
, Kbk → Kβk , b̃(k) → β̂ (k)

to indicate that we started with (�0
bb)−1 = Q0

bb →0.
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3 A I R B O R N E V E C T O R G R A V I M E T R Y W I T H A N I N T E G R A T E D I N S / G P S S Y S T E M

In this section, the application of the Bayes filter derived in the previous section to the INS/GPS airborne vector gravimetry is described. For
this purpose, the observation equation of the INS/GPS integrated system of the airborne gravimetry is derived first. Then, the problem in
the derived observation equation, namely, modelling of the gravity is addressed. Finally, how the problem can be avoided using the derived
algorithm will be explained.

The fundamental equation in airborne gravimetry, based on Newton’s law of motion under the existence of the gravity field, is given in
a non-rotating, freely falling coordinate frame (i-frame):

ẍi = ai + gi , (3.1)

where the superscript i refers to the i-frame; ẍi is the second time derivative of position, namely the kinematic acceleration; ai is the acceleration
due to an applied force, also known as the specific force; and gi is the gravitation. In INS/GPS vector gravimetry, the kinematic acceleration
ẍi can be derived from GPS 3-D positions, and the specific force ai can be measured by a triad of single-axis accelerometers.

Denoting the observed quantities with a tilde and the errors in the observations with δ, the fundamental equation can be expressed in
terms of observations:

˜̈xi − δẍi = ãi − δai + gi , (3.2)

where ˜̈xi is the observed acceleration derived from GPS; ãi is the specific force obtained by the INS; and δẍi , δai are the respective errors in
GPS and INS observed accelerations. Since the accelerometer measurements refer to the body frame (b-frame), it is necessary to express the
accelerometer error δai in terms of the sensor errors in the body frame and the orientation error according to the Coriolis law:

δai = Ci
bδab + ãi × ψ i , (3.3)

where the superscript b indicates the body (vehicle) frame, Ci
b is the transformation matrix from the body to the inertial frame, and ψ i is the

orientation error of the body in the inertial frame. Note that error eq. (3.3) is a linear approximation that neglects higher-order terms in δai

and ψ i .
For inertial measurement unit (IMU) errors, only some essential parameters such as biases, scale factor errors, and random noises are

considered. GPS-observed accelerations are assumed to have no systematic errors. Although this is not strictly true owing to increased noise
at high frequencies arising from the numerical differentiation, we assume that sufficient smoothing has already been applied to reduce the
high-frequency errors. The models for the IMU errors are given as:

δab = ba + diag (ab)κa + εa, (3.4)

δωb
ib = bg + diag

(
ωb

ib

)
κg + εg, (3.5)

δẍi = εG, (3.6)

where εg ∼ N (0, Dg), εa ∼ N (0, Da), εG ∼ N (0, DG) are zero-mean, Gaussian, white-noise processes with indicated dispersion matrices for
gyro (Dg), accelerometer (Da) and GPS observations (DG). In eq. (3.5), ωb

ib is the angular rate of the body frame with respect to the i-frame,
expressed in the b-frame. The dynamics for the biases, ba, bg and scale factors κa, κg are modelled as random constants over time:

ḃa = 0, κ̇a = 0, ḃg = 0, κ̇g = 0. (3.7)

With eq. (3.5), the dynamics of the orientation error are given by

ψ̇ i = −Ci
bδω

b
ib

= −Ci
bbg − Ci

b diag
(
ωb

ib

)
κg − Ci

bεg. (3.8)

Combining eqs (3.7) and (3.8), the system model expressed by a set of linear, first-order, differential equations in terms of the INS system
error parameters as well as orientation errors is obtained as:


ḃa

ḃg

κ̇a

κ̇g

ψ̇ i




=




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 −Ci
b 0 −Ci

b diag
(
ωb

ib

)
0







ba

bg

κa

κg

ψ i




+




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −Ci
b







0

0

0

0

εg




= Fx + Gw, (3.9)

which implicitly defines the state vector, x, the noise vector, w, and corresponding coefficient matrices, F and G.
The external observations are a combination of kinematic acceleration calculated from GPS positions and normal gravity. The corre-

sponding update to the specific force is, therefore, given by

y = ˜̈xi − ãi − γ̄ i , (3.10)

where γ̄ i denotes normal gravitation in the i-frame. From eqs (3.2)–(3.4), we also have
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y = −Ci
bba − Ci

b diag(ãb)κa − ãi × ψ i + δgi − Ci
bεa + δẍi , (3.11)

where

δgi = gi − γ̄ i (3.12)

is the gravity disturbance vector. Note that the first equation, (3.10), consists of actually observed (calculated) and sensed quantities (GPS and
INS accelerations), while the second equation, (3.11), is a model of this update in terms of the error parameters of the system.

As seen in eq. (3.9), the gravity disturbance vector δgi is not included as a parameter in the system because of its non-stochastic behaviour.
To take care of this, Jekeli & Kwon (1999) intentionally excluded the gravity disturbance vector from the observation model and declared the
residuals from the Kalman filter as gravity disturbance vector estimates. Although they obtained a good result, the approach still shows a lack
of the theoretical completeness (no model for the gravity field). For this matter, an ad hoc deterministic model for the gravity disturbance
vector is adopted in this study. It is the nth-order expansion of trigonometric functions, and no a priori information is assumed. In other words,
the j th component of the gravity disturbance vector is modelled as

δg j ≈
n∑

k=0

a jk cos
2πkt

T
+

n∑
k=0

b jk sin
2πkt

T
= a j0 + a j1 cos

2π t

T
+ a j2 cos

2π · 2t

T
+ · · · + a jn cos

2π · nt

T
+ b j1 sin

2π t

T

+ b j2 sin
2π · 2t

T
+ · · · + b jn sin

2π · nt

T
= X j · β j , (3.13)

where T is the period of the trigonometric functions, k is the wavenumber, and ak and bk are constant coefficients representing the amplitude
of the corresponding components of wavenumber k. The matrix X j consists of trigonometric functions dependent on time, t . The vector β j

consists of the coefficients of the trigonometric functions. With all three components combined, we have

δg = X · β, (3.14)

where

X
3×3(2n+1)

=




X1 0 0

0 X2 0

0 0 X3


,

X1
1×(2n+1)

= X2 = X3 =
[

1 cos
2π t

T
cos

2π t · 2

T
· · · sin

2π t

T
sin

2π t · 2

T
· · · sin

2π t · n

T

]
,

β
1×(6n+3)

=




β1

β2

β3


; β1 =




a10

a11

a12

...

a1n

b11

...

b1n




, β2 =




a20

a21

a22

...

a2n

b21

...

b2n




, β3 =




a30

a31

a32

...

a3n

b31

...

b3n




. (3.15)

Combining eq. (3.11) with eqs (3.14) and (3.15), one can finally obtain the observation equations that will enter the Bayes filtering algorithm
developed in the previous section:

y = Ax + Xβ + e, e := −Ci
bεa + δẍi , (3.16)

where the design matrix is A3×15 := [−Ci
b 0 −diag(ãi )Ci

b 0 [ã×]], and the last element [ã×] is a skew-symmetric matrix with elements
arranged to emulate the cross-product.

With the initial information on the parameters that can usually be obtained from manufacturer’s specification, with the system dynamics
equation (3.9) and the observation equation (3.16), one can conduct the gravity estimation using the above dual Kalman, respectively, Bayes
filtering algorithm. Clearly, one has to decide the maximum order n of the trigonometric expansion. Higher orders would generate more detail
in the gravity disturbance signal, but would require much more calculation time.

4 N U M E R I C A L T E S T R E S U L T S

In this section, the results from the developed dual Kalman (respectively, Bayes) filtering applied to real flight data are presented. The flight data
are provided by the University of Calgary collected on 1995 June 1 and made available by the Special Study Group 3.164 of the International
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Figure 1. Three flight trajectories for the test data of 1995 June.

Association of Geodesy. They include the coordinates of an airborne GPS antenna at 0.5 s intervals, and raw accelerometer and gyro data at a
data rate of 50 Hz. The total length of the profile was 250 km and the flying altitude was around 5.5 km above mean sea level. Average flying
speed was about 430 km h−1, so the corresponding spectral resolution for 60 s smoothing is about 3.5 km. There are three almost overlapping
tracks available in this test flight (Fig. 1). This provides a useful method of internal consistency checking. For details on the data description,
see Wei & Schwarz (1998).

To analyse the differences between the new algorithm developed and the ‘conventional algorithm’, the gravity disturbance estimates
from these two algorithms are compared. In the (conventional) Kalman filter, the gravity disturbance is treated as a stochastic process and the
amplitudes of the trigonometric functions are included as part of the state vector x. The initial means and variances for the amplitudes are
set to zeros and 1 m2 s−4, respectively. All other state parameters related to the system errors are set identically in both filters. Note that the
term ‘conventional’ is used here in order to separate our new filter algorithm from regular Kalman filtering. It should not indicate that Kalman
filtering is the only (or even preferred) way to analyse INS/GPS gravity data.

Figs 2–4 show the gravity disturbance estimates for all three lines from those two filters. Obviously, the overall trends appear to be more
or less the same in both cases. This is plausible because the new algorithm corresponds to the conventional Kalman filter with infinite a
priori variances for the amplitude of gravity disturbances and the assigned a priori values of 1 m2 s−4 are relatively large with respect to the
magnitude of gravity disturbances. The main differences appear to be in the long-wavelength signal as shown in the horizontal components
of all three lines. At the beginning of line 3 (longitude greater than 244◦ in Fig. 4), however, anomalies in the medium frequencies appear.

Figure 2. Estimated gravity disturbance vector for line 1; north (top), east (middle), down (bottom). The dashed line is from the conventional Kalman filtering
and the solid line is from the new dual Kalman, respectively, Bayes filtering.
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Figure 3. Estimated gravity disturbance vector for line 2; north (top), east (middle), down (bottom). The dashed line is from the conventional Kalman filtering
and the solid line is from the new dual Kalman, respectively, Bayes filtering.

Apparently, this is considered as being the smeared effect of the turn of the vehicle, but detailed analysis is still under investigation. The
standard deviations between two estimates range from ±2 to ±16 mGal (Table 1).

To show the relative superiority of the developed algorithm, the estimates are compared with control data provided by NIMA (National
Imagery and Mapping Agency) for horizontal and by the University of Calgary for vertical components. Tables 2 and 3 show the standard
deviations with respect to the control data from the conventional and the new filter, respectively. Overall, significant improvements of

Figure 4. Estimated gravity disturbance vector for line 3; north (top), east (middle), down (bottom). The dashed line is from the conventional Kalman filtering
and the solid line is from the new dual Kalman, respectively, Bayes filtering.
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Table 1. Standard deviations of the dif-
ferences between the gravity disturbances
from the new and conventional Kalman filter
(mGal).

Line 1 Line 2 Line 3

North ±14.2 ±5.7 ±10.5
East ±5.2 ±4.9 ±15.8
Down ±2.6 ±2.2 ±13.0

Table 2. Standard deviations of the gravity
disturbances from the conventional Kalman
filter with respect to the control data (mGal).

Line 1 Line 2 Line 3

North ±24.1 ±12.5 ±18.0
East ±16.6 ±22.0 ±21.7
Down ±12.6 ±9.4 ±16.4

Table 3. Standard deviations of the gravity
disturbances from the new Bayes filter with
respect to the control data (mGal).

Line 1 Line 2 Line 3

North ±15.7 ±10.3 ±15.8
East ±13.1 ±19.0 ±17.1
Down ±11.3 ±9.8 ±6.2

10–60 per cent are achieved in the new filter except for the down component of line 2. Especially, the down component of line 3 (16.4 versus
6.2) and the north component of line 1 (24.1 versus 15.7) show a tremendous improvement. The former caused by improvements at the
beginning of the filtering as mentioned previously, and the latter caused by the better long-wavelength component in the new filter.

The reason for better results in the new dual Kalman (respectively, Bayes) filter lies in the non-stochastic modelling of the gravity
disturbance vector. In other words, the gravity disturbance has to be modelled as a stochastic process in the conventional Kalman filter. Then,
prior information has to be assigned for the initial mean and variances of the gravity disturbances. This prior information could be quite
misleading so that the filter estimates of the gravity disturbances end up in a wrong state space. As a matter of fact, the gravity field cannot
simply be modelled stochastically. Without proper prior information, therefore, it is natural to model the gravity field in a non-stochastic way,
which is done in this study.

It should be noted that the trigonometric expansion contains a singularity for the first ten epochs (see eq. 3.15). Therefore, one ought to
apply the pseudo-inverses as in (2.22 vii) until the singularity has disappeared. As a matter of fact, one can develop other basis function for
the gravity disturbances without such singularity. We chose, however, the trigonometric expansion for the gravity disturbance in this study
because it is very simple and easy to implement.

5 C O N C L U S I O N S A N D O U T L O O K

One of the motives for this study was to estimate gravity disturbances as non-random perturbations in the general structure of a dynamic
linear model. Starting from a dual Kalman-type algorithm, an efficient Bayes filter in Friedland form for the estimation of these non-random
perturbations has been developed and successfully applied to GPS/INS airborne vector gravimetry. The main advantage of the new algorithm
consists in allowing us to retain the non-random characteristics of the gravity disturbances while keeping the system noise in the model. In
addition, it is a one-step filter that does not create the correlation problem between the perturbation estimates and the system noise that is
indicative for the two-step filters.

Our application results from the new algorithm showed 10–60 per cent improvement compared with those from the extended dynamic
linear model that is based on a stochastic gravity field description. Therefore, using the new filter, we achieved theoretical soundness (non-
stochastic modelling of the gravity field) as well as numerical improvements although the gravity field was only represented by a low-order
trigonometric combination in this case.

While our emphasis here was on the development of the new filter algorithm, further improvements may be possible by using different
basis functions, particularly if considering the size of the area and the roughness of the gravity field there. However, this is left for future
investigations, such as studying the most suitable representations for a local or regional gravity field; spherical wavelets are certainly among
those candidates. In the end, we may well achieve results that are similar in accuracy to those recently reported by Bruton (2000) in his
dissertation.
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