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S U M M A R Y
Global energy balances provide a useful framework for assessing the operation of numerical
geodynamo models. We apply a spectral decomposition to the magnetic and kinetic energy
equations to assess how the magnetic field is regenerated by convection in these models.
Specific analysis of the Kuang and Bloxham model indicates that dynamo action relies on
the combined effects of buoyant upwelling and shear in the zonal flow. The part of the flow
that contributes most to the generation of the dipole field is associated with a narrow range
of local magnetic Reynolds number around Rm ≈ O(1). Shear in the zonal flow converts the
dipole field into a strong toroidal field. The equilibration of field generation is revealed in
the time-dependent exchanges of kinetic and magnetic energies. We also assess the turbulent
cascade of energy to small scales. Transfer of kinetic energy to small scales is represented by
a turbulent viscosity, which varies substantially with the length scale of the motion. This result
implies that models for turbulent viscosity should depend on the wavenumber of the motion.
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1 I N T R O D U C T I O N

The geomagnetic field is sustained by fluid motion in the Earth’s
liquid iron core. Convection is the most likely cause of the fluid
motion, though many aspects of the process are poorly understood.
Important advances in recent years have been achieved using nu-
merical models of convection-driven dynamos in spherical shells
(Jones et al. 1995; Glatzmaier & Roberts 1995, 1996; Kuang &
Bloxham 1997; Busse et al. 1998; Kageyama & Sato 1998; Olson
et al. 1999). Many of these calculations predict dipole fields that
are comparable in strength to the Earth’s field. Even the non-dipole
part of the predicted field exhibits similarities with the observed
field (Kuang & Bloxham 1997; Christensen et al. 1998). However,
comparisons with the field at the Earth’s surface are not sufficient
to elicit internal details about the generation mechanisms.

Comparison of recent geodynamo models reveals that different
styles of field generation are possible. These differences are at-
tributed to the choice of parameter values or the assumptions used
in the numerical calculation. For example, some studies favour the
use of stress-free boundary conditions to minimize the effects of
viscosity (Kuang & Bloxham 1997), whereas others have attempted
to reduce the effects of inertia to Earth-like values (Glatzmaier &
Roberts 1996). All models are still very far from realistic simula-
tions of the geodynamo, so approximations of one form or another
are inevitable. However, it is not presently clear how conditions in
the core are best approximated. In some instances it has been possi-
ble to demonstrate explicitly the effect of different assumptions on
the operation of the geodynamo (Kuang & Bloxham 1997), although
the underlying cause of changes in the solution are not well under-

stood. Without a good physical understanding of the changes in the
solution, it is difficult to appraise different modelling strategies.

Systematic surveys of the accessible range of parameter val-
ues have begun to categorize different style of dynamo action
(Christensen et al. 1999; Grote et al. 2000a). The diagnostics used
to distinguish these results typically include the relative strength of
the dipole field or the time-averaged spectra of kinetic and mag-
netic energies. While these diagnostics are useful for distinguishing
numerical models, they do not reveal the origin of the differences.
More detailed investigations of the internal dynamics have focused
on the force balance (Kuang 1999) and the energy balance (Olson
et al. 1999) in the core. The study of Kuang (1999) was primarily
concerned with the role of viscous stresses near the core–mantle
boundary, whereas Olson et al. (1999) examined the spatial correla-
tion between the buoyancy flux and ohmic dissipation in assessing
the mechanisms responsible for equilibrating the generation of the
magnetic field.

Analysis of the energetics of the geodynamo models provides a
powerful means of probing the internal dynamics of these models.
Global energy balances can be used to assess the rate at which energy
is supplied to the geodynamo by a flux of heat and light elements at
the boundaries. Quantifying the conversion of this energy supply to
kinetic and magnetic energies characterizes the style of convection
and dynamo action. Viscous and ohmic dissipation ultimately con-
vert the input energy to heat. More detailed insights emerge from
a spectral decomposition of the energy balances. Conversion of en-
ergy from one form to another can be tracked over all spatial scales
in the calculation as a function of time. We can identify the parts of
the flow that sustain the dipole field or assess the cascade of kinetic
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and magnetic energies to small scales. Time averages are particu-
larly helpful in identifying the existence of mean states, whereas
fluctuations about the mean state are important for characterizing
instabilities that lead to phenomena such as magnetic reversals.

Here we assess the energetics of geodynamo simulations using
the Kuang–Bloxham model (Kuang & Bloxham 1997, 1999). We
describe the global balances for magnetic and kinetic energy, and
derive general expressions for the spectral decomposition of these
energy balances. Temporal and spatial variations in the energy bal-
ances reveal a surprisingly simple behaviour. To a first approxima-
tion the gravitational energy released by buoyant fluid at most spatial
scales in the model is balanced by ohmic and viscous losses at the
same scales. Small imbalances are the result of energy transfers
between different spatial scales. We show that transfers of energy
between scales are crucial for the operation of the geodynamo. We
focus specifically on the transfer of energy to the dipole field from
smaller scale motions. We also examine the cascade of energy from
large scales to small with the aim of assessing the scale dependence
of turbulent diffusivities.

2 G L O B A L E N E R G Y B A L A N C E S

Global balances for the kinetic and magnetic energy in the core are
obtained by integrating over the volume of the core the equations for
magnetic induction and local momentum conservation (e.g. Backus
1975; Hewitt et al. 1975). These global energy balances are well
known, so the goal of this section is to ensure consistency between
the form of the energy balances and the approximations used in the
geodynamo model. We summarize the main results below and defer
the spectral decomposition to the next section.

2.1 Dimensional equations

The global energy balances are derived from the local equations
for magnetic induction and momentum conservation. The induction
equation is obtained from Maxwell’s equations for a moving conduc-
tor under the usual assumption that the velocity v of the conductor
is small compared with the speed of light (e.g. Braginsky & Roberts
1995). The electrical conductivity σ of the conductor is assumed to
be constant and the magnetic permeability is assumed to have the
value of free space. An electric current density J in the conductor
produces the magnetic field B and causes a Lorentz force L on the
material.

The model of Kuang and Bloxham uses a Boussinesq approxi-
mation of the local momentum equation. The motion of a fluid with
constant density ρ is described in a frame of reference that rotates
with constant angular velocity �. Convection is driven by thermal
buoyancy which results from an imposed temperature gradient h at
the inner radius of the shell. The resulting variation in density is
defined by

�ρ = −ρα� (1)

where α is the coefficient of thermal expansion and � is the deviation
from a purely conductive temperature profile T0(r ). All of the model
calculations used in this study assume that the boundaries of the
outer core are impermeable and undeformable. Viscous stress-free
boundary conditions are also imposed in the calculations.

We express the global energy balances as integrals over the vol-
ume of the liquid outer core, which we denote by V and let dS be the
outward surface normal. With the preceding assumptions, the global
magnetic energy equation can be expressed in the form (Bullard &
Gellman 1954)

∫
V

∂

∂t

(
B2

2µ

)
dV = 1

µ

∫
V

B · ∇ × (v × B) dV −
∫

V

J 2

σ
dV

−
∫

S

η(J × B) · dS (2)

where η = 1/σµ is the magnetic diffusivity. The surface integral in
(2) can be rearranged using the identity J × B/σ = E × B, though
the form given in (2) is more convenient for our purposes. The global
equation for kinetic energy is∫

V

∂

∂t

(
ρv2

2

)
dV =

∫
V

v · L dV −
∫

V

ρα�v · g dV

−
∫

V

2ρνė2 dV (3)

where the gravitational acceleration g is a linear function of radius
r in the constant density fluid and the strain-rate tensor ė is related
to the fluid velocity by Landau & Lifshitz (1987)

ė = 1

2
[∇v + (∇v)T ]. (4)

2.2 Non-dimensional equations

Kuang & Bloxham (1999) express the governing equations in non-
dimensional form using the outer radius ro of the core as the
length scale. The magnetic diffusion time r 2

0 /η is the timescale
and the temperature scale is hro. The magnetic field is scaled by
B = (2�ρµη)1/2 and the electric current is scaled by B/(µro). It
follows that the non-dimensional energy is measured in terms of
2�ρηr 3

o and the rate of change of energy is scaled by 2�ρη2ro.
The non-dimensional version of the magnetic energy equation in
(2) becomes

1

2

∫
V

∂B2

∂t
dV =

∫
V

B · ∇ × (v × B) dV −
∫

V

HηJ2 dV

−
∫

S

Hη(J × B) · dS (5)

while the kinetic energy equation in (3) becomes

Ro

2

∫
V

∂v2

∂t
dV =

∫
V

v · L dV + Ra

∫
V

�v · r dV

− 2E

∫
V

Hν ė2 dV (6)

where

Ro = η

2�r 2
o

(7)

is the magnetic Rossby number,

Ra = αg(ro)hr 2
o

2�η
(8)

is the Rayleigh number,

E = ν

2�r 2
o

(9)

is the Ekman number. The terms Hη and Hν are complicated op-
erators that enhance magnetic diffusion and viscosity relative to
the nominal values used in the definition of the timescale and E ,
respectively. Enhanced diffusion is normally applied as a scale-
dependent diffusivity in the spectral domain, which means that the
spatial representation has the form of a convolution integral. As a
result, numerical evaluation of (5) and (6) using the geodynamo
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model is performed most easily in the spectral domain. We defer the
spectral decomposition of (5) and (6) to the next section and con-
clude by giving a brief physical interpretation of these global energy
balances.

2.3 Interpretation

Eqs (5) and (6) identify the sources and sinks of magnetic and kinetic
energy in the geodynamo. Dynamo action is described by the first
volume integral on the right-hand side of (5), whereas the loss of
magnetic energy occurs through ohmic dissipation in the interior of
the liquid outer core and through the Poynting flux of energy across
the boundaries of the outer core. Most of the magnetic energy flux
from the outer core is converted to heat by ohmic losses in the inner
core and the conducting part of the mantle. In the Kuang–Bloxham
model, the conducting part of the mantle is confined to a thin layer
at the base of the mantle, corresponding roughly to D′′.

The kinetic energy equation in (6) indicates that kinetic energy is
maintained by a radial flux of buoyant fluid through the outer core.
This energy source defines the rate at which gravitational energy is
released by cold downwelling and hot upwelling. Losses of kinetic
energy result from viscous dissipation, whereas the work done by
Lorentz forces can be either positive or negative. We expect the
work done by Lorentz forces to be negative on average because it
must account for the transfer of kinetic energy to magnetic energy
through dynamo action.

In order to clarify the connection between the kinetic and mag-
netic energy equations, we re-express the source term for magnetic
energy in the form∫

V

B · ∇ × (v × B) dV =
∫

V

B · (ė · B) dV (10)

where we make use of the boundary condition v ·dS = 0. The right-
hand side may be interpreted as the rate at which the magnetic field
is amplified by strain of the conducting fluid. For comparison, the
work done by Lorentz forces can be manipulated into the form∫

V

v · L dV = −
∫

V

B · (ė · B) dV +
∫

S

v · M · dS (11)

where the Maxwell stress tensor M is defined (in dimensionless
form) by

Mi j = Bi Bj − (1/2)B2δi j (12)

and δi j is the Kronecker delta. The magnetic source term in (10)
appears in (11) with the opposite sign. This means that the energy
supplied to the magnetic field is drawn from the kinetic energy. The
surface integral in (11) represents the work done on the fluid core by
Maxwell stresses at its boundaries. These stresses transfer kinetic
energy (and angular momentum) between the fluid outer core and
the surrounding solid inner core and mantle. Because the changes
in the kinetic energy of the inner core and mantle vanish when
averaged over a suitably long interval of time, we expect the work
done by Maxwell stresses on the outer core to have no influence on
the long-term energetics of the geodynamo.

Fig. 1 illustrates the time-averaged flow of energy through the
geodynamo. Gravitational energy (in the form of buoyant fluid at
the boundaries of the outer core) is converted to kinetic energy by
convection. Some of this kinetic energy is converted to magnetic
energy by dynamo action, while the rest is converted to heat by
viscous friction. Magnetic energy is also converted to heat by ohmic
losses. The volume integral of J2 in (5) accounts for ohmic losses
in the interior the fluid outer core, whereas the surface integral (in

Figure 1. Schematic illustration of the time-averaged flow of energy
through the geodynamo. Energy is supplied to the geodynamo by the release
of gravitational energy G due to buoyant fluid at the boundaries. Convection
converts the gravitational energy to kinetic energy (K.E.), which is trans-
formed to magnetic energy (M.E.) by dynamo action. Viscous and ohmic
losses convert K.E. and M.E. to heat.

the time-averaged equation) is equal to the ohmic losses that occur
inside the solid inner core and conducting part of the mantle. We
subsequently refer to these two terms collectively as the ohmic losses
in the geodynamo.

The arrows between the kinetic and magnetic energies in Fig. 1
indicate that energy can flow in either direction. While a net transfer
of energy from kinetic to magnetic is needed to maintain the mag-
netic field, there can be persistent transfers of energy from magnetic
to kinetic. Dynamic processes that draw energy from the magnetic
field play an important role in equilibrating the magnetic field. For
example, magnetic instabilities may limit the growth of the field
by converting magnetic energy into kinetic energy. Alternatively,
strong Lorentz forces can restrict the conversion of kinetic energy
into magnetic energy. Both of these processes are evident in the
energetics of the geodynamo model.

3 S P E C T R A L D E C O M P O S I T I O N

Decomposition of the kinetic and magnetic energy equations into
spectral components reveals how energy is converted from one form
to another at different spatial scales. A spectral decomposition of
the energy equations in (5) and (6) is also the only practical way of
handling hyperdiffusion. We evaluate the spectral components of v
and B using expansions in vector spherical harmonics.
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The expansion for B takes the form

B =
M∑

m=0

L∑
l=1

(
BP

lm + BT
lm

) + c.c. (13)

where superscripts P and T denote the poloidal and toroidal parts of
the vector field at degree l and order m. Truncation of the expansion
is imposed at l = L and m = M and we use c.c. to indicate the
complex conjugate. The poloidal and toroidal components of the
expansion are defined by

BP
lm = ∇ × ∇ × [blm(r, t)Ylm(θ, φ)r̂] (14)

BT
lm = ∇ × [ jlm(r, t)Ylm(θ, φ)r̂] (15)

where Ylm(θ, φ) are the orthonormal spherical harmonic functions
and the coefficients blm(r, t) and jlm(r, t) describe the radial and
temporal dependence of these fields. The expansion for v has iden-
tical form, where the coefficients of vP

lm and vT
lm are vlm(r, t) and

ωlm(r, t), respectively.
Vector spherical harmonics satisfy orthogonality relations (e.g.

Chandrasekhar 1961), which allow the total magnetic and kinetic
energies to be written as∫

V

B2

2
dV =

∑
m

∑
l

(∫
V

∣∣BP
lm

∣∣2 +
∣∣BT

lm

∣∣2
dV

)
(16)

∫
V

Rov2

2
dV =

∑
m

∑
l

(
Ro

∫
V

∣∣vP
lm

∣∣2 +
∣∣vT

lm

∣∣2
dV

)
(17)

where | | indicates the absolute value. Because each vector harmonic
in the expansion of B and v makes an independent contribution to
the total magnetic and kinetic energies, we can derive energy equa-
tions for each component of the magnetic and kinetic energy in (16)
and (17). Using the definitions given in (14) and (15), the toroidal
and poloidal parts of the magnetic energy may be expressed in terms
of the scalar coefficients blm and jlm as∫

V

∣∣BT
lm

∣∣2
dV = l(l + 1)

∫ ro

ri

| jlm |2 dr (18)

∫
V

∣∣BP
lm

∣∣2
dV = l(l + 1)

∫ ro

ri

l(l + 1)

r 2
|blm |2 + |∂r blm |2 dr (19)

where ri is the inner radius of the shell and ∂r denotes differentia-
tion with respect to r . Analogous expressions for the toroidal and
poloidal parts of the kinetic energy at l and m are written in terms
of the coefficients ωlm and vlm (see Appendix).

The spectral form of the energy equations are obtained by differ-
entiating (18) and (19) (and their counterparts for kinetic energy)
with respect to time. Consider the evolution of the toroidal magnetic
energy,

∂

∂t

∫
V

∣∣BT
lm

∣∣2
dV = l(l + 1)

∫ ro

ri

j∗
lm∂t jlm dr + c.c., (20)

where ∂t denotes differentiation with respect to time and ∗ indicates
the complex conjugate. An expression for ∂t jlm is derived from the
magnetic induction equation (e.g. Kuang & Bloxham 1999):

∂t jlm = −Hη(l)Dl jlm + r 2

l(l + 1)
f (1)
lm (21)

where the operator Dl is defined by

Dl =
(

l(l + 1)

r 2
− ∂2

r

)
(22)

and

f (1) = r̂ · ∇ × ∇ × (v × B). (23)

Using (21) in (20) yields

∂

∂t

∫
V

∣∣BT
lm

∣∣2
dV = −l(l + 1)Hη(l)

∫ ro

ri

j∗
lm Dl jlm dr

+
∫ ro

ri

r 2 j∗
lm f (1)

lm dr + c.c. . (24)

The first term on the right-hand side of (24) represents the ohmic
losses (including the losses that occur inside the inner core and
conducting part of the mantle) and the second term describes the
generation of magnetic energy due to fluid motion (see Appendix A
for details). The procedure outlined here uses the spectral equations
from the geodynamo model to ensure consistency with the energy
equations.

The equations for the poloidal part of the magnetic energy and
the components of the kinetic energy are derived in a completely
analogous fashion. We defer the derivation to Appendix A and give
below only the equation for the toroidal part of the kinetic energy
in order to identify several key points that are specific to the kinetic
energy equations. The rate of change of the toroidal kinetic energy
is given by

Ro
∂

∂t

∫
V

∣∣vT
lm

∣∣2
dV = −l(l + 1)Hν(l)

∫ ro

ri

Eω∗
lm Dlωlm dr

+
∫ ro

ri

r 2ω∗
lm f (3)

lm dr

+
∫ ro

ri

r 2ω∗
lm f (4)

lm dr + c.c., (25)

where f (3) = r̂ · ∇ × (J × B) and f (4) = r̂ · ∇ × (ẑ × v). The first
term on the right-hand side of (25) represents the viscous dissipa-
tion, while the second term quantifies the work done by the Lorentz
force. The third integral involves the Coriolis force, which is written
in non-dimensional form as ẑ × v. Because ẑ × v is orthogonal to
v, the Coriolis force does no work. However, the Coriolis force can
redistribute kinetic energy across the vector harmonic components
of v without making a net contribution. We have chosen to elimi-
nate the effects of the Coriolis force by summing over the spectral
components of the kinetic energy that are coupled by ẑ × v. The
nature of this coupling is revealed by expanding f (4) in spherical
harmonics. Coefficients f (4)

lm in (25) depend on the velocity scalars
ωlm and v(l±1)m (e.g. Kuang & Bloxham 1999), which means that
spectral components with common m and adjacent l are coupled to-
gether. An analogous expansion of the Coriolis force in the poloidal
equation yields a similar dependence between vlm and ω(l±1)m . We
eliminate the effects of coupling due to the Coriolis force by sum-
ming |vT

lm |2 and |vP
lm |2 over l for a given value of m. The resulting

spectrum of kinetic energy is then presented as a function of m.
We denote the components of this spectrum by Ro|vm |2, and obtain
the total kinetic energy by summing over m. The magnetic energy
spectrum |Bm |2 is also presented as a function of m.

Part of our motivation for presenting the spectra as a function
of m is due to the columnar structure of convection (e.g. Olson &
Glatzmaier 1995). Spherical harmonic components of the velocity
must be summed over l to construct the columnar pattern of flow
observed in the geodynamo model. We are also motivated by the
fact that transfers of energy between m are due solely to the non-
linear terms in the governing equations. These terms include the
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magnetic source term in the induction equation and the Lorentz
force in the momentum equation, which are collectively responsible
for transfers of energy between kinetic and magnetic forms (see
Fig. 1). We gain useful insights into the nature of these transfers
when the spectra are presented as functions of m. However, there
are several disadvantages with our approach. First, derivatives in
the spectral equations (such as Dl in eq. 22) depend on l rather
than m, so it is more natural to define a horizontal length scale in
terms of l. Second, the effects of hyperdiffusion are represented as
functions of l, which means that our spectra of ohmic and viscous
dissipation include spectral components with a range of values for
the magnetic diffusivity and viscosity. We address these problems in
the next section, where we present specific results from the Kuang–
Bloxham model.

4 TE M P O R A L A N D S P A T I A L
VA R I A T I O N S

Time-averaged spectra from a representative calculation of Kuang
& Bloxham (1999) are shown in Fig. 2 (Table 1 lists the parameter
values used in the simulation). We present spectra for the kinetic and
magnetic energies, as well as the viscous and ohmic dissipation. The
kinetic and magnetic energy spectra are comparable in magnitude
and overall shape. Both spectra have large m = 0 terms which reflect
a large zonal circulation and a strong zonal (toroidal) magnetic field.

Figure 2. Time-averaged spectra of (a) kinetic energy and viscous dissipa-
tion, and (b) magnetic energy and ohmic dissipation as a function of angular
order m. Both the energy and power are expressed in dimensionless form
(see text for definitions).

Table 1. Dimensionless parameters.

Parameter Symbol Value

Rossby number Ro 2 × 10−5

Ekman number E 2 × 10−5

Rayleigh number Ra 1.5 × 104

Hyperviscosity Hν 1 + 0.05l2

Hyperdiffusion Hη 1 + 0.06l2

The higher order components are smaller and vary systematically
with changes in m. The rates of decay of the two energy spectra are
nearly equal once m exceeds m = 5.

The dissipation spectra follow the trends of the energy spectra in
Figs 2(a) and (b). More quantitative comparisons of the energy and
the dissipation yield estimates for the characteristic length scale Lm

of the velocity and magnetic fields at each m. An order of magnitude
estimate for the viscous dissipation is given by

�ν
m = νm |vm |2

L2
m

(26)

where |vm |2 is inferred from the time-averaged kinetic energy and νm

is the effective viscosity at order m. Similarly, the ohmic dissipation
is approximated by

�η
m = ηm |Bm |2

L2
m

(27)

where |Bm |2 is the time-averaged magnetic energy and ηm is the
effective diffusivity. Estimates of Lm may be recovered from either
(26) and (27) using the time-averaged dissipation spectra for �ν

m

and �η
m . The effects of hyperdiffusion are included in νm and ηm

by defining an average l for each value of m in the spectra. One
possible definition is based on the distribution of kinetic energy
over l at each m. Letting |vlm |2 be the components of the kinetic
energy that contribute to |vm |2, we define

l̄1(m) =
L∑

l=m

l|vlm |2
|vm |2 (28)

and evaluate the effective diffusivities using ηm = ηHη(l̄1) and νm =
νHν(l̄1). There are no significant differences if l̄1 defined in terms
of the magnetic energy instead of the kinetic energy because the
distributions of these two energies are very similar. However, other
definitions are possible, so we consider a second average l̄2 in which
the weighting is based on the spectral components of the ohmic
dissipation instead of the kinetic energy. In Fig. 3, we compare the
dissipation length scales Lm obtained using νm = νHν(l̄1) in (26)
with the values obtained using ηm = ηHη(l̄2) in (27). The differences
are relatively small, especially when compared with the azimuthal
Lφ = r̄/m, and the meridional Lθ = r̄/

√
l̄1(l̄1 + 1) length scales

at low m. The average radius in the two horizontal length scales is
given by r̄ = (r0 + ri )/2.

We expect Lm to represent the shortest length scale of the mo-
tion because it characterizes the effects of dissipation. Horizontal
length scales Lφ and Lθ are substantially longer than Lm at low
m, which suggests that dissipation is controlled mainly by radial
variations in the magnetic and velocity fields. Differences between
Lm , Lθ and Lφ reflect the structure of convective flow. Braginsky
& Meytlis (1990) have previously argued that large differences in
length scales are expected in the Earth’s core. Rotation produces
longer length scales in the direction of the rotation axis, while a
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Figure 3. Dissipation length scale Lm recovered from a comparison of the
kinetic (magnetic) energy and viscous (ohmic) dissipation spectra. Estimates
for the average l̄ are required to determine the effective diffusivity. Two
different definitions for l̄ yield two sets of values for Lm . The crosses gives
the result for Lm obtained using l̄1 in (26), while the solid circles are obtained
using l̄2 in (27). (See text for definition of l̄1 and l̄2.) Differences between
these two definitions of Lm are small enough to neglect. The horizontal length

scales are Lφ = r̄/m and Lθ = r̄/
√

l̄1(l̄1 + 1), where r̄ = (ro + ri )/2, are
shown for comparison.

strong toroidal field can result in longer length scales in an az-
imuthal direction. The shorter length scale typically develops in the
perpendicular direction, which corresponds to the radial direction
in cylindrical coordinates, according to the analysis of Braginsky &
Meytlis (1990). Outside of the polar regions of the core, we expect
the long length scales in the axial and azimuthal directions to be
manifest as large Lθ and Lφ . Thus the perpendicular direction cor-
responds to the radial direction in spherical geometries over a large
volume of the core. The nearly constant value of Lm in Fig. 3 means
that convection is most anisotropic at the largest scales, where the
effects of viscosity are weakest. Some of the anisotropy inferred
from Fig. 3 may also be attributed to the effects of hyperdiffusion
because current implementations apply the enhanced damping to
horizontal variations only (Grote et al. 2000b). Convergence of Lm ,
Lθ and Lφ at large m suggests that any contribution from hyperdif-
fusion is small once m becomes large. By comparison, we expect
rotation and the magnetic field to have less influence on the structure
of convection at large m as the viscous force becomes comparable to
Coriolis and Lorentz forces, so the structure of convection inferred
from Fig. 3 is compatible with the analysis of Braginsky & Meytlis
(1990).

The combined effects of viscous and ohmic dissipation are com-
pared with the gravitational energy release in Fig. 4. The time-
averaged components of the gravitational energy release are plotted
with positive values because they contribute to the kinetic energy at
each m, whereas the viscous and ohmic dissipation represent energy
sinks. The total dissipation spectrum mirrors the release of gravita-
tional energy at all m. The peak in the spectra at m = 3 coincides
with the dominant pattern of convective in the core. Fig. 5 shows

Figure 4. Time-averaged spectra of the gravitational energy release and the
dissipation (viscous and ohmic) as a function of angular order m. The peak
in the gravitational energy spectrum corresponds to the dominant pattern of
convection in the geodynamo model.

two snapshots of flow through the surface z = 0.4ro, which is par-
allel to the equator and slightly above the inner core (ri = 0.35ro).
Red indicates the motion of warm fluid rising in columns that align
with the rotation axis, while blue indicates the motion of cold, dense
fluid. For the time step shown in Fig. 5(a), the dominant pattern
of flow occurs at m = 2 and 3, whereas the dominant pattern at
a later time step (Fig. 5b) is characterized by m = 5. Visual in-
dications of the dominant pattern of flow are reflected quantita-
tively in the release of gravitational energy at these two time steps.
When the spectra are averaged over time, a sharp peak emerges at
m = 3.

To a first approximation, the time-averaged release of gravita-
tional energy at each m is balanced by the combined effects of vis-
cous and ohmic dissipation at the same spatial scale. We also find
that the gravitational energy release balances the viscous and ohmic
losses at each instant in time. Fig. 6 shows the temporal variability
of the gravitational energy release and the separate contributions of
ohmic and viscous dissipation (plotted again as negative values).
The combined losses due to ohmic and viscous dissipation differ in
absolute value from the rate of gravitational energy release by less
than 10 per cent at most time steps. The significance of this tempo-
ral balance may be assessed by adding the magnetic (5) and kinetic
(6) energy equations. Because the generation of magnetic energy by
induction is equal and opposite to the work done by Lorentz forces,
the balance between gravitational energy release and dissipation
implies that the rates of change of magnetic and kinetic energy in
(5) and (6) are small. Indeed the root mean square (RMS) of the
temporal variation in magnetic energy is about an order magnitude
smaller than the ohmic losses. The RMS variation in the kinetic
energy is even smaller, and most of this variation occurs in the large
zonal component (see Fig. 2a). Strictly speaking, variations in the
non-zonal kinetic energy are not included in the energy budget be-
cause the inertial term is dropped from the momentum equation in
the Kuang and Bloxham model when solving for the non-zonal part
of v. Only the inertia in the zonal flow is retained. Nevertheless, we
can still use the solution to estimate the change in the non-zonal
kinetic energy between time steps. The fact that it is negligible in
the overall energy budget is then compatible with the approximation
used in the model.
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Figure 5. Snapshots of flow through the surface z = 0.4ro, which is parallel to the equator and slightly above the inner core (ri = 0.35ro). Red corresponds
to the flow of hot upwelling fluid, while blue corresponds to the flow of cold downwelling fluid. The dominant pattern of convection at the time step in (a) is
associated with m = 2 and 3, while convection at a later time (b) has a strong m = 5 component. Time averages indicate that the dominant pattern of convection
occurs at m = 3. The white circle indicates the outline of the inner core at the equator.
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Figure 6. Temporal variation in the gravitational energy release and the
dissipation. The viscous and ohmic dissipation are comparable in magnitude.
The absolute value of the combined viscous and ohmic losses differs from
the gravitational energy release by less than 10 per cent at most time steps.

Close temporal and spatial correlation of the energy sources
and sinks implies a quasi-steady balance between buoyancy forces
and the retarding influences of viscous and magnetic forces. This
leading-order description of the dynamics is realized when buoyant
parcels of fluid rise slowly through a zonal magnetic field. From a
spectral point of view, each m component of the density variation
�ρ causes flow with the same order m when the (non-linear) iner-
tial effects in the momentum equation are small. The resulting flow
distorts the zonal magnetic field to produce a magnetic perturbation
and ohmic losses with the same m. While this idealized process
characterizes the energetics to a first approximation, it is unable to
sustain the zonal magnetic field. We show in the next section that
the energy required to sustain the axial dipole field (and hence the
zonal toroidal field through the ω effect) is supplied primarily by
fluid motion with m ≈ 5. Indeed transfers of energy between scales
(i.e. between m) are essential for the operation of the geodynamo.

Persistent transfers of energy between m are indicated by differ-
ences between the time-averaged spectra for gravitational energy
release and dissipation (see Fig. 7). We find that the release of grav-
itational energy exceeds the dissipation between m = 2 to m = 5,
whereas dissipation exceeds the gravitational energy release at lower
and higher values of m. In order to sustain this imbalance in the
time-averaged spectra, excess power from m = 2 to m = 5 must be
continually transferred to larger and smaller scales. Energy is trans-
ferred to the dipole field (m = 0) by fluid motion at m ≈ 5, whereas
excess dissipation at m > 5 is maintained by a turbulent cascade of
kinetic and magnetic energy. In the absence of strong inertial effects,
the transfer of energy to small scales is driven by Lorentz forces and
by induction effects that generate small-scale electric currents. We
investigate the generation of the dipole field in the next section
and quantify the turbulent transfers to small azimuthal scales in
Section 6.

5 G E N E R A T I O N O F T H E D I P O L E
F I E L D

Fluid motion v generates magnetic energy through the induction
term in (5). Spectral decomposition of the induction term indicates

Figure 7. Difference between the time-averaged gravitational energy re-
lease and the total dissipation as a function of m. Release of gravitational
energy exceeds the dissipation between m = 2 to 5, whereas dissipation
exceeds the gravitational energy release at lower and higher m.

how different parts of v and B regenerate the field. We are specifically
interested in the spectral components of v and B that contribute to
the axial dipole field. These terms are identified by exploiting the
orthogonality of the vector spherical harmonics. We calculate the
rate � at which energy is supplied to the axial dipole field using

�
(

BP
10

) ≡
∫

V

(
BP

10

)∗ · ∇ × (v × B) dV + c.c. (29)

and apply well-known selection rules (Bullard & Gellman 1954) to
evaluate the combinations of v and B that contribute to the poloidal
(l = 1, m = 0) part of ∇ × (v × B). The relevant components of v
and B share a common value of m, while the allowable values of l
for either v or B have a restricted range. Summing the contributions
from components of v and B with common m yields the spectral
decomposition of �(BP

10) in Fig. 8. Time averages of �(BP
10) identify

those components of the flow that consistently contribute to the axial

Figure 8. Power supplied to the dipole field as a function of the order m
of the fluid motion. Points represent the time average and the dashed line
indicates the RMS variation. The peak contribution to the dipole occurs at
m = 5 and 6, while the largest RMS variation at m = 3 coincides with the
peak in the gravitational energy release.
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dipole, while the RMS variations indicate the amplitude of fluctua-
tions caused by variations in the convective flow and by changes in
the configuration of the magnetic field.

Fig. 8 reveals that positive contributions to the dipole field arise
mainly from flow with m = 5 and 6. Positive contributions also arise
from higher order components of flow, although the vigour of con-
vection decreases at higher m, so these contributions are somewhat
smaller. On the other hand, long wavelength components of flow
(m < 3) draw energy away from the dipole field. In effect, the elec-
tric currents induced by flow at these scales must (on average) op-
pose the net electric current that maintains the dipole field. Thus the
energy supplied to the axial dipole by induction includes persistent
positive and negative contributions. The net rate at which energy is
supplied to the dipole must (on average) equal the rate of ohmic de-
cay. The RMS variations in the dipole generation are comparable to
or larger than the time averages, so large fluctuations in the dipole
amplitude are expected. Sustained intervals of smaller than aver-
age positive contributions from m = 5 and 6, combined with larger
than average negative contributions at m < 3, drive down the dipole
field, and may ultimately lead to a magnetic reversal. However, nu-
merical calculations extending over many magnetic diffusion times
show that large and sustained fluctuations in the dipole generation
are relatively infrequent. At the present time, no magnetic reversals
have occurred in the Kuang and Bloxham model using the parameter
values listed in Table 1.

Simple expectations about the generation of the dipole field by he-
lical flow in the outer core suggest that the dominant source of dipole
field might arise from the dominant pattern of upwelling. However,
comparison of the spectrum of gravitational energy release in Fig.
4 with the time-average dipole generation in Fig. 8 reveals that this
is not the case. The dominant pattern of upwelling occurs at m = 3,
whereas the peak contribution to the dipole occurs at m = 5 and 6.
The largest RMS fluctuation in �(BP

10) coincides with the dominant
pattern of convection, but when �(BP

10) is averaged over time the net
contribution from flow at m = 3 nearly vanishes. This means that
convection produces large inductive contributions to the dipole at
m = 3, but these contributions are positive as often as they are nega-
tive. By contrast, flow at m = 6 makes a more consistent contribution
to the dipole field in the sense that the time average is comparable
to the RMS fluctuation. This suggests that fluid motions at different
scales vary in their efficiency of dipole field generation. The scale
dependence of dipole generation should be reflected in the local
magnetic Reynolds number of the flow because this dimensionless
number characterizes the relative importance of magnetic induction
and diffusion. One definition of the local magnetic Reynolds number
is given by

Rm = |vm |Lm

ηm
, (30)

where |vm | is inferred from the kinetic energy spectrum, Lm is the
dissipation length scale defined by (27) and ηm = ηHη(l̄1) is the ef-
fective diffusivity. The dissipation length scale represents the short-
est length scale of the motion, so we would not expect Rm to be
less than the value defined in (30). On the other hand, the represen-
tative length scale for dipole generation should not be greater than
Lφ = ro/m, so an upper bound on Rm is obtained by replacing Lm

with Lφ in (30). (Note that we now use ro rather than r̄ in the defi-
nition of Lφ .) These two definitions of Rm provide limiting values
for evaluating the efficiency of dipole generation.

Our estimate for the efficiency of dipole generation accounts for
differences in the vigour of convection by dividing the time-averaged
value of �(BP

10) at each m by the corresponding spectral component

Figure 9. The efficiency of the dipole generation is defined by dividing the
rate of energy supply �(BP

10) by the rate of gravitational energy release at
each m. It represents the fraction of the gravitational energy release which
is diverted into the axial dipole field. The results are plotted as a function
of the magnetic Reynolds number Rm . The definition of Rm in (30) gives a
lower limit, while an upper limit is obtained by replacing Lm with Lφ . The
peak efficiency in dipole generation occurs near Rm ≈ 1.

of the gravitational energy release. The fraction of the gravitational
energy release that is converted into magnetic energy in the axial
dipole is plotted as a function of Rm in Fig. 9. We find that the ef-
ficiency of dipole generation is a sharply peaked function of Rm .
The maximum occurs at m = 6, which corresponds to Rm = 0.9 or
3.3, depending on the definition of Rm . Components of flow with
larger Rm (smaller m) make progressively smaller contributions to
the dipole. Similarly, there is little contribution to the dipole from
flow at shorter length scales once Rm < 0.1. Thus the flow that sus-
tains the dipole field is confined to a relatively narrow range around
Rm ≈ 1.

We interpret this result by considering the influence of buoyant
fluid rising through an initially zonal toroidal field (Parker 1955).
Planetary rotation causes the rising fluid to lift and twist the toroidal
field. If the local Rm of the upwelling is not too small, then a loop of
magnetic field is added to the poloidal field. The associated electric
current is directed perpendicular to the plane of the loop of field.
Twisting the magnetic field to align the electric current with the
mean zonal currents in the core reinforces the dipole field, whereas
the opposite orientation reduces the dipole field. Our analysis of
the geodynamo model indicates that a narrow range of Rm permits
persistent constructive orientations of the magnetic field. When the
local Rm is too small, the magnetic disturbance is insufficient to
create a loop of field with the required orientation. However, when
Rm is too large, the loop of field may be twisted through several rev-
olutions, producing constructive and destructive orientations with
equal likelihood. Continual regeneration of the dipole is attributed
mainly to flow with local Rm ≈ 1.

Mechanisms capable of sustaining the dipole field are collectively
described as α-effects. The α-effect in the Kuang and Bloxham
model is due mainly to the influence of upwelling and downwelling
flow on the zonal toroidal magnetic field. This flow produces a
magnetic perturbation with the same angular order m as the flow, and
accounts for the close spectral correlation between the gravitational
energy release and the dissipation in the model. Our characterization

C© 2002 RAS, GJI, 149, 211–224



220 B. A. Buffett and J. Bloxham

Figure 10. Temporal variations in the rate �(BT
0 ) at which energy is sup-

plied to the toroidal field and the rate �(vT
0 ) at which energy is supplied to

the toroidal circulation by Lorentz forces. The correlation of the two rates
indicates the energy supplied to |BT

0 |2 is drawn from Ro|vT
0 |2. We infer that

the toroidal magnetic field is generated mainly by the effects of shear in the
zonal flow.

of the dynamo process is completed by describing the regeneration
of the toroidal field. Decomposition of the magnetic energy equation
indicates that the toroidal field is generated mainly from the dipole
field by shear in the zonal circulation. This process is commonly
referred to as the ω-effect.

Generation of the toroidal magnetic field at m = 0 is assessed by
summing the rate at which energy is supplied to spherical harmonic
components BT

l0. The source term for BT
l0 is calculated using

�
(

BT
l0

) =
∫

V

(
BT

l0

)∗ · ∇ × (v × B) dV + c.c. (31)

and we sum �(BT
l0) over l to obtain �(BT

0 ). A typical result for �(BT
0 )

as a function of time is shown in Fig. 10. The supply of magnetic
energy to the toroidal field is consistently positive, although there
are large fluctuations. The time dependence of �(BT

0 ) is closely
correlated with transfers of kinetic energy from the zonal flow by
Lorentz forces. (We use the notation �(vT

lm) to indicate the rate at
which energy is supplied by Lorentz forces to the vT

lm part of the
flow.) We calculate �(vT

lm) using

�
(

vT
l0

) =
∫

V

(
vT

l0

)∗ · (J × B) dV + c.c.. (32)

and sum over l to obtain �(vT
0 ). Comparison of �(vT

0 ) and �(BT
0 )

clearly shows that energy is transferred from the zonal flow into
the toroidal field. The average change in kinetic energy is persis-
tently negative and comparable to the average supply of energy to
the toroidal field. Fluctuations in the energy transfers are closely
coupled, leaving little doubt about the source of the energy for
the toroidal field. Physically, shear in the zonal circulation dis-
torts the dipole field (and smaller multipole components) to pro-
duce the zonal toroidal field. Electric currents associated with this
zonal toroidal field produce Lorentz forces which slow the zonal
circulation. This feedback on the zonal circulation equilibrates the
generation of toroidal field. The process is sometimes called ω-
quenching (Roberts & Soward 1992), and has long been used in
mean-field dynamo models (e.g. Malkus & Proctor 1975; Proctor
1977). The interplay between the ω-effect and ω-quenching appears

to cause oscillations in the toroidal motion, which are not overly
damped by viscous and ohmic losses.

6 E N E R G Y T R A N S F E R T O S M A L L
A Z I M U T H A L S C A L E S

We have previously shown that the energy supplied by buoyancy-
driven flow is balanced to a first approximation by dissipation at the
same azimuthal scale (see Fig. 4). However, small imbalances are
evident in the spectra (see Fig. 7). We find that dissipation exceeds
the energy supplied by local convection once m > 6. The relative size
of the imbalance actually increases systematically as m increases.
At m = 10, for example, the combined effects of ohmic and viscous
dissipation exceed the release of gravitational energy by a factor of
1.8. Once m increases to 15, the rate of energy loss exceeds the rate
of energy supply by a factor of 2.8. These results indicate that the
kinetic and magnetic energies at small azimuthal scales are too large
to be explained by local convection. Instead, kinetic and magnetic
energy must be transferred from small m to large m by non-linear
interactions. In the absence of strong inertial effects, the transfer of
energy to small azimuthal scales is driven by Lorentz forces J × B
and by magnetic induction ∇ × (v × B).

The reader may question whether these energy transfers are im-
portant because even where the relative imbalance is large the overall
magnitude is still quite small. Nevertheless, these energy transfers
are precisely the phenomena that turbulent diffusivities are intended
to represent. Realistic geodynamo models will inevitably require
some type of representation for subgrid processes, so we are moti-
vated to investigate these processes with the aim of improving the
representations used in current geodynamo models.

Transfer of energy to small azimuthal scales can draw energy
from either the large-scale velocity or magnetic fields. Indications
of energy transfer from the large-scale velocity field were already
evident in Fig. 10, where the source terms �(BT

0 ) and �(vT
0 ) are

plotted as functions of time. Although �(BT
0 ) and �(vT

0 ) are highly
correlated, small differences indicate that energy is not simply trans-
ferred from the zonal flow to the zonal magnetic field. For example,
poloidal components of magnetic field with m �= 0 are converted
into toroidal components with the same m by shear in the zonal flow.
As the toroidal component is amplified by the zonal flow, the com-
bination of poloidal and toroidal components at order m produces
a Lorentz force which opposes the shear in the zonal flow. Thus
kinetic energy is transferred from the zonal flow into magnetic en-
ergy at order m. The source term �(vT

0 ) in Fig. 10 includes all losses
of kinetic energy from the zonal flow due to Lorentz forces. This in-
cludes the large Lorentz force that result from J and B with m = 0,
as well as smaller contributions from fields with m > 0. The se-
lection rules used in calculating �(vT

0 ) require J and B to share a
common value of m. Explicit decomposition of �(vT

0 ) into spectral
components in m quantifies how kinetic energy in the zonal flow
is transferred into magnetic energy at different m. The transfer of
(zonal) kinetic energy to magnetic energy at small azimuthal scales
explains part of the excess magnetic energy inferred from Fig. 7.
The remainder comes from kinetic energy in other parts of the flow.

Similarly, the source term �(BT
0 ) is not restricted to the influence

of zonal flow on the dipole field, although this is certainly the largest
contribution. The selection rules used in calculating �(BT

0 ) require
v and B to share a common value of m. Once again, we can de-
compose the source term into spectral components according to this
common value of m. Large, positive contributions to �(BT

0 ) arise
from the m = 0 part of v and B. This reflects the influence of the
zonal shear on the dipole field. However, smaller contributions also
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arise from components of v and B with m > 0. In fact, all contribu-
tions from fields with m > 0 are persistently negative. This means
that magnetic energy is drawn from the toroidal field at m = 0 and
converted into kinetic energy at m > 0. Presumably, this transfer of
energy to small azimuthal scales occurs through magnetic instabili-
ties in the zonal field because the spectral components of �(BT

0 ) can
be correlated in time with increases in the corresponding spectral
components of kinetic energy. However, the precise nature of these
magnetic instabilities is not revealed using global energy balances.
By decomposing �(BT

0 ) into spectral components, we establish that
losses of magnetic energy from |BT

0 |2 are transferred primarily into
kinetic energy at m = 2, and that progressively smaller conversions
into kinetic energy occur as m increases. The peak at m = 2 is at
least compatible with the wavenumber of the most unstable modes
in many stability calculations (e.g. Hutcheson & Fearn 1996; Fearn
et al. 1997; McLean et al. 1999).

Part of the imbalance between the energy sources and sinks at
small azimuthal scales is explained by transfers of kinetic and mag-
netic energy from m = 0. The remainder is attributed to small-scale
Lorentz forces and electric currents that result from interactions
between fields with m > 0. Quantifying these interactions provides
insight into the turbulent cascade of energy. Of particular interest
is the transport of energy to length scales below the resolution of
the calculations. Currently, all geodynamo simulations use turbulent
diffusivities to account for the influence of unresolved flow. Some
simulations (Glatzmaier & Roberts 1995, 1996; Kuang & Bloxham
1997, 1999) use turbulent diffusivities that depend on the spherical
harmonic degree l. Others adopt constant diffusivities (e.g. Chris-
tensen et al. 1998, 1999; Grote et al. 2000a). Questions about the
use of scale-dependent diffusivities often focus on the introduction
of spurious features in the predicted magnetic and velocity fields
(Zhang & Jones 1997; Grote et al. 2000a). In identifying spurious
features it is often tacitly assumed that constant diffusivities are
preferable to scale-dependent diffusivities. However, this assump-
tion cannot be justified when the influences of unresolved flow are
not known. By adopting constant diffusivities we assume that in-
teractions between the resolved and unresolved fields are indepen-
dent of the length scale of the resolved fields. This assumption can
be directly tested by quantifying the energy transfers between the
long-wavelength (m ≤ 10) and short-wavelength (m > 10) fields in
the model of Kuang & Bloxham (1999). We confine our attention to
the transfer of kinetic energy between long- and short-wavelength
fields with the aim of describing the influence of short-wavelength
fields in terms of a turbulent viscosity.

Estimates of turbulent viscosity reflect the transfer of kinetic
energy by Lorentz forces because inertial effects are expected to
be small in the Earth’s core. This is also the case in the geodynamo
model because the non-zonal inertial terms are not included in the
momentum equation. We calculate the effect of the Lorentz force
on the rate of change of kinetic energy in component vlm using

�(vlm) =
∫

V

(vlm)∗ · (J × B) dV + c.c. (33)

and sum over l to obtain �(vm), which is the rate of change of ki-
netic energy in vm due to the Lorentz force. Contributions to �(vm)
for components of flow with m ≤ 10 can be divided into two parts.
One part is calculated using components of J and B where both
fields have m ≤ 10. The second part includes components of J and B
where either or both of these fields have m > 10. We are specifically
interested in the second part because it would represent the influ-
ence of unresolved turbulence in a calculation truncated at m = 10.

We denote this part of �(vm) by Im and relate it to an effective
viscosity.

Viscous stresses dissipate kinetic energy at a rate which depends
on the viscosity νm of the fluid, the amplitude of the motion |vm | and
the characteristic length scale Lm . We have previously approximated
the viscous dissipation by

�ν
m = νm |vm |2

L2
m

, (34)

where νm = νHν(l̄1) is intended to represent the unmodelled influ-
ences of subgrid turbulence. Additional kinetic energy is lost from
the long-wavelength motion as a result of Lorentz forces. The part
of the energy loss associated with short-wavelength fields (namely
Im) can be characterized in terms of an effective turbulent viscosity
ν̃m , which is defined by

Im = ν̃m |vm |2
L2

m

. (35)

Estimates of ν̃m are recovered from (35) using the kinetic energy
spectrum to evaluate |vm |2 and the dissipation length scale Lm from
Fig. 3 (specifically the estimates indicated by crosses). The results
in Fig. 11 are compared with the effective viscosity νm used in the
geodynamo model.

Two conclusions may be drawn from Fig. 11. First, the effective
viscosity νm , which is intended to represent the effects of turbu-
lence in the geodynamo model, is substantially larger than the turbu-
lent viscosity calculated explicitly using the short-wavelength fields.
This means that fluid motions at long wavelengths (e.g. m ≤ 10) are
over damped in the calculation relative to the damping predicted by
the effects of the (resolved) short-wavelength fields. Second, the tur-
bulent viscosity is a strong function of m. The longest wavelengths
are much less affected by turbulence than shorter wavelengths in

Figure 11. Estimates of the turbulent viscosity ν̃m based on the transfer
of kinetic energy from long wavelengths (m ≤ 10) to short wavelengths
(m > 10) in the geodynamo model. For comparison, we show the effective
viscosity νm = νHν (l̄1) used in the geodynamo calculations. The increase in
νm with m is due to the use of hyperviscosity in the geodynamo model. A
much larger rate of increase is evident in the turbulent viscosity ν̃m , indicat-
ing a strong dependence on wavenumber.
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the range m ≤ 10. Thus hyperviscosity appears to have some ad-
vantages from a purely energetic point of view because it lowers
viscous damping at wavelengths where the effects of turbulent are
less efficient. However, these energetic issues do not address whether
hyperviscosity can be adequately represented by a simple function of
spherical harmonic degree. Alternative strategies for including hy-
perviscosity may include replacing ∇2 in the diffusion terms with
higher-order operators, such as ∇4 or ∇6 (Dantinne et al. 1998;
Busse 2000).

It is reasonable to ask whether the scale dependence of ν̃m is
a consequence of using hyperdiffusion in the geodynamo model.
The counter point is whether strong scale dependence in ν̃m can
arise from relatively modest hyperdiffusion in νm . Definitive an-
swers to these questions will have to await the analysis of numerical
models that do not use hyperdiffusion. However, we can appeal
to the global energy balance in Fig. 3 to speculate about the in-
fluence of hyperdiffusion on the energetics of the models. We ex-
pect hyperdiffusion to suppress the vigour of convection at small
scales. This means that gravitational energy release and the asso-
ciated ohmic and viscous dissipation decrease more rapidly with
m when hyperdiffusion is included. Calculations with constant dif-
fusivities would produce spectra of dissipation and energy (both
kinetic and magnetic) that are flatter than those shown in Fig. 2.
Increases in the relative amplitude of small-scale motion should en-
hance turbulent transport, but the structure of convection might not
change substantially if the momentum equation continues to repre-
sent a simple balance between buoyancy forces and the retarding
influence of viscous and magnetic forces. If we define local Ek-
man and magnetic Reynolds numbers from the numerical solution
and relate their values to m, then we expect hyperdiffusion to al-
ter the correspondence between the dimensionless numbers and m
without fundamentally changing the operation of the geodynamo.
Thus the inference of a strong scale dependence in ν̃ should not
be greatly affected by the use of hyperdiffusion in the geodynamo
model.

7 C O N C L U S I O N S

We use global energy balances to analyse the geodynamo model of
Kuang & Bloxham (1999). To a first approximation, we find that the
gravitational energy released by buoyant fluid at angular order m is
balanced by the combined effects of ohmic and viscous dissipation
at the same m. Small imbalances between the spectral components
of the gravitational energy release and the dissipation indicate that
energy is transferred between azimuthal scales. Generation of the
dipole field results mainly from fluid motion with m = 5 and 6. This
part of the flow corresponds to a relatively narrow range of magnetic
Reynolds number around Rm ≈O(1). Flow with larger values of Rm

(smaller m) also contribute to the dipole field, but these contributions
tend to cancel when averaged over time.

Transfer of energy to small azimuthal scales is the result of a tur-
bulent cascade of kinetic and magnetic energy. Part of this energy is
transferred from the large zonal fields, but the remainder is attributed
to Lorentz forces and electric currents that result from interactions
between fields with m > 0. We quantify the transfer of kinetic en-
ergy from large azimuthal scales (m ≤ 10) to small azimuthal scales
(m > 10) in terms of a turbulent viscosity. Estimates of the turbulent
viscosity increase dramatically with decreasing length scale. This
result supports the concept of hyperviscosity from an energetic point
of view, although it does not indicate how hyperviscosity should be
implemented in geodynamo models.

Comparison of the energy and dissipation spectra provides infor-
mation about the structure of convection in the model. We find evi-
dence for anisotropic flow with long length scales in the direction of
the rotation axis and the strong toroidal field, as suggested previously
by Braginsky & Meytlis (1990). Convection is most anisotropic at
the largest wavelengths, where viscous forces are small compared
with magnetic and Coriolis forces, although we cannot rule out a
contribution from the anisotropic application of hyperdiffusion in
the geodynamo model.

The methods we develop in this study provide global measures of
the internal dynamics of geodynamo models. Time averages identify
mean states, whereas temporal variations can establish causal con-
nections between different physical processes. As an example we
used the temporal variations in the generation of the toroidal mag-
netic field to show that the magnetic energy in this part of the field
is supplied by converting kinetic energy from the zonal circulation.
These tools are applicable to other geodynamo models and offer
new diagnostics for assessing the operation of numerical models.
More detailed comparisons of other geodynamo models will provide
a better understanding of the consequences of underlying assump-
tions and help to identify new strategies for improving geodynamo
models.
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A P P E N D I X A : S P E C T R A L FO R M
O F T H E E N E R G Y E Q U A T I O N S

Consistency between the energy calculations and the geodynamo
model is enforced when the form of the momentum and induction
equations in the geodynamo model is identical to that used in the
energy equations. Kuang and Bloxham (1999) obtain solutions to
the momentum and induction equations in terms of the coefficients
of the spherical harmonic expansions of v and B. The evolution
equations for these coefficients are given explicitly in Kuang &
Bloxham (1999). In this appendix we derive the energy equations
directly from the evolution equations for these coefficients.

Our starting point is the definition of the kinetic and magnetic
energy in terms of the scalar coefficients. The toroidal and poloidal
parts of the magnetic energy were given in (18) and (19). Analogous
expressions for the toroidal and poloidal parts of the kinetic energy
in terms of ωlm and vlm are

∫
V

Ro
∣∣vT

lm

∣∣2
dV = Rol(l + 1)

∫ ro

ri

|ωlm |2 dr, (A1)

∫
V

Ro
∣∣vP

lm

∣∣2
dV = Rol(l + 1)

∫ ro

ri

l(l + 1)

r 2
|vlm |2 + |∂rvlm |2 dr.

(A2)

Time derivatives of these expressions give the required energy
equations. However, before we can use the evolution equations from
Kuang and Bloxham, we must rearrange the poloidal terms into a
more convenient form. Beginning with the kinetic energy equation
we integrate the second term in (A2) by parts to obtain∫

V

Ro
∣∣vP

lm

∣∣2
dV = Rol(l + 1)

∫ ro

ri

v∗
lm Dlvlm dr

+ Rol(l + 1)v∗
lm∂rvlm

⌋ro

ri
(A3)

where Dl is defined in (22) and the second term vanishes because
vlm vanishes at the boundaries of the liquid core. Thus the time
derivatives of the toroidal and poloidal kinetic energy become

∂

∂t

∫
V

Ro
∣∣vT

lm

∣∣2
dV = Rol(l + 1)

∫ ro

ri

ω∗
lm∂tωlm dr + c.c. (A4)

∂

∂t

∫
V

Ro
∣∣vP

lm

∣∣2
dV = Rol(l + 1)

×
∫ ro

ri

l(l + 1)

r 2
v∗

lm∂t Dlvlm dr + c.c. (A5)

We now substitute for ∂tωlm and ∂t Dlvlm from Kuang & Bloxham
(1999). The toroidal scalar ωlm is governed by

Ro∂tωlm = −EHν Dlwlm + r 2

l(l + 1)
f (3)
lm − r 2

l(l + 1)
f (4)
lm (A6)

where

f (3) = r̂ · ∇ × (J × B) (A7)

and

f (4) = r̂ · ∇ × (ẑ × v). (A8)

The poloidal scalar vlm is governed by

Ro∂t Dlvlm = −EHν D2
l vlm + r 2

l(l + 1)
f (5)
lm − r 2

l(l + 1)
f (6)
lm + RaTlm,

(A9)

where

f (5) = r̂ · ∇ × ∇ × (J × B), (A10)

f (6) = r̂ · ∇ × ∇ × (ẑ × v), (A11)

and the scalar T is related to the temperature perturbation � by
T = r�. Introducing (A6) and (A9) into (A4) and (A5) completes
the derivation of the kinetic energy equations.

We conclude with the derivation of the equation for poloidal mag-
netic energy. (The toroidal part was developed in Section 3.) The
poloidal magnetic energy was given in (19) as∫

V

∣∣BP
lm

∣∣2
dV = l(l + 1)

∫ ro

ri

l(l + 1)

r 2
|blm |2 + |∂r blm |2 dr. (A12)

Integrating the second term by parts gives∫
V

∣∣BP
lm

∣∣2
dV = l(l + 1)

∫ ro

ri

blm Dlb
∗
lm dr + l(l + 1)blm∂rv

∗
lm

⌋ro

ri

(A13)
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so the rate of change of poloidal magnetic energy becomes

∂

∂t

∫
V

∣∣BP
lm

∣∣2
dV = l(l + 1)

∫ ro

ri

∂t blm Dlb
∗
lm dr

+ l(l + 1)∂t blm∂r b∗
lm

⌋ro

ri
+ c.c. (A14)

The scalar equation for ∂t blm from Kuang & Bloxham (1999) is

∂t blm = −Hη Dlblm + r 2

l(l + 1)
f (2)
lm , (A15)

where

f (2) = r̂ · ∇ × ∇ × (v × B). (A16)

Substituting (A15) in (A14) yields

∂

∂t

∫
V

∣∣BP
lm

∣∣2
dV = −Hηl(l + 1)

∫ ro

ri

|Dlblm |2 dr

− Hηl(l + 1)∂r b∗
lm Dlblm

⌋ro

ri
+

∫
r 2 Dlb

∗
lm f (2)

lm dr

+ r 2∂r b∗
lm f (2)

lm

⌋ro

ri
+ c.c. (A17)

The first term on the right-hand side represents the ohmic dissipation
due to the poloidal field in the interior of the liquid core, while
the second term is equal to the surface integral in (4). The next
two terms represent the effects of magnetic induction. Calculation
of the spectral components of f (2) is facilitated by converting the

expansions of v and B into generalized spherical harmonics in order
to make use of well-known expressions for the integral over the
product of three spherical harmonics (e.g. Dahlen & Tromp 1998).
The same approach is used for all of the other non-linear terms.

Finally, we note that the surface integral in (5) does not explicitly
appear in (20) for the magnetic energy in the toroidal part of the
field. It is straightforward to show that∫

S

HηJ × B · dS = −Hηl(l + 1) j∗
lm∂r jlm

⌋ro

ri
+ c.c. (A18)

and∫
V

Hη J 2 dV = 2Hηl(l + 1)

∫ ro

ri

l(l + 1)

r 2
| jlm |2 + |∂r jlm |2 dr

(A19)

when B and J refer to a single harmonic component of the toroidal
magnetic field. Integrating the second term of (A19) by parts and
combining the result with (A18) yields∫

V

Hη J 2 dV +
∫

S

HηJ × B · dS =
∫

r

Hηl(l + 1) j∗
lm Dl jlm dr + c.c.

(A20)

The term on the right-hand side of (A20) appears in the magnetic
energy equation in (24), where it was described as the ohmic dis-
sipation, including the losses that occur inside the inner core and
conducting part of the mantle.
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