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Bent-ray traveltime tomography and migration without ray tracing
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S U M M A R Y
We present a new method of traveltime tomography. In this method, the traveltime between
source and receiver is described by an analytical function, which consists of a series expansion
of geometrical coordinates of the source and receiver locations. As the traveltime is derived
from the eikonal equation, the analytical function must also satisfy the eikonal equation.
This condition imposes a strong constraint on the uniqueness of the analytical function. The
coefficients of the series expansion are estimated by minimizing the misfit between the observed
and the analytical time function in a least-squares sense. Once the coefficients of the series
expansion are known, the eikonal equation, which turns out to also be in the form of a series
expansion, provides the velocity in the medium. Thus there are two analytical functions, one
defining the traveltime and the other defining the slowness, and they can be used for pre-stack
depth migration and velocity model definition. The feasibility of this approach is first tested
on a synthetic data set and then applied to a real data set. This new method of tomography and
pre-stack migration provides a significant gain in computation time compared with ray-tracing
techniques. The method can easily be extended to incorporate reflection data and has potential
for solving 3-D seismic reflection and global seismology inverse problems.
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I N T R O D U C T I O N

The goal of seismic tomography is to determine the large-scale ve-
locity structure of the subsurface of the Earth using traveltime mea-
surements made on the surface. The term tomography was first in-
troduced in medical imaging to describe image reconstruction from
an X-ray line integral (Tanabe 1971; Mersereau 1976; Kak 1979;
Louis & Natterer 1983). Dines & Lytle (1979) used the term com-
puterized geophysical tomography in analogy with X-ray tomogra-
phy to determine the velocity distribution between two boreholes
from first-arrival traveltimes and assuming a straight ray path be-
tween sources and receivers. The straight ray approximation enables
a fast implementation of inversion methods, similar to those used in
X-ray tomography (Gordon 1974; Censor 1983), but it does not ac-
count for the ray path dependence on velocity in the medium, which
leads to a non-linear relationship between the data and the model
parameters. The non-linearity can be taken into account to some
extent by using an iterative linearized inversion method. A com-
mon approach consists of starting from an initial velocity model
and iteratively updating this model in such a way that the travel-
time data fit the synthetic traveltimes. A review of traveltime tomo-
graphic methods is given by Worthington (1984) and a comparison
of various inversion techniques is discussed by Phillips & Fehler
(1991).

Ray-based tomography has been applied to various problems
(Bording et al. 1987), but a number of problems remain for re-
covering an accurate and unique image of the Earth from traveltime
tomography. Unlike medical imaging, where the measurements are
made from all directions of the body that is to be imaged, seis-
mic experiments illuminate the investigated medium from a max-
imum of three sides providing non-uniform and incomplete data
coverage. Consequently, fewer independent traveltime data than un-
known model parameters are available, leading to a non-unique so-
lution, i.e. several different velocity models fit the data (Carrion
1991). The non-uniqueness of the solution may be constrained by
using prior information on the model parameters (Jackson 1979).
Berryman (1990) used Fermat’s principle to constrain the solution.
Nevertheless, the computation of traveltime, either using ray-tracing
techniques or solving the eikonal equation with a numerical method
(Vidale 1990; Moser 1991), constitutes a time-consuming process
in traveltime tomography, particularly in three dimensions.

An alternative approach to ray-tracing tomography and numerical
methods was introduced by Bates et al. (1991) and was applied to
1-D tomographic inversion by Enright et al. (1992). This method
deals not with rays but with a functional description of the trav-
eltimes that must satisfy theoretical relationships derived from
Fermat’s principle. Which means that both non-linearity and
non-uniqueness are addressed implicitly by this method. In this
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paper, we extend this approach to solve a 2-D traveltime tomography
problem. In this new method, the traveltime between two points is
defined by an analytical function in the form of a series expansion of
source and receiver locations. The unknown coefficients of the se-
ries expansion are estimated by minimizing the difference between
the observed traveltimes and the traveltimes calculated with the an-
alytical function. After estimation of the unknown coefficient, the
eikonal equation, derived from the traveltime function, is used to
compute the inverse of the square of the velocity. Furthermore, the
analytical traveltime function can be used to compute traveltimes
between two points for implementing pre-stack depth migration. In
the next few sections, we present the theory behind the new method,
and then test the feasibility of the method on a synthetic example
before applying it to a real data set.

T H E T R AV E L T I M E F U N C T I O N

The seismic traveltime between a source S and a receiver R, denoted
by T (R, S), is related to the slowness s(P) at the point P along the
ray path by the integral

T (R, S) =
∫

L(s)

s(P) dl, (1)

where L(s) is the ray path between the source and the receiver, and
dl is the arc length along the ray. The traveltime is a solution of the
eikonal equation given by

∇P T (P, S ) · ∇P T (P, S ) = s2(P), (2)

where ∇P is the gradient operator at P.
The traveltime T (R, S) can either be computed using a ray-tracing

method from eq. (1) or a numerical method from eq. (2) (e.g. Vidale
1990). Here, we assume that T (R, S) can be defined by an analytical
function. However, this function must satisfy a number of invariant
properties. For example, the first condition requires the traveltime
function to vanish for a common source and receiver location S, i.e.

T (S, S) = 0. (3)

The reciprocity condition states that the traveltime is invariant when
the source and receiver locations are interchanged,

T (R, S) = T (S, R). (4)

The eikonal equation defined by eq. (2) must remain valid for a
common source and receiver point P, i.e.

∇P T (P, P) · ∇P T (P, P) = s2(P), (5)

where ∇P T (P, P) = ∇P T (P, S)|S=P .
It should be noted that the left-hand side of eq. (2) is a function

of two points, the source location S and the observation point P,
whereas the right-hand side of eq. (2), which contains the slowness
at the observation point P, is only a function of P. Therefore, taking
the gradient with respect to S of the eikonal equation (2) yields

∇S[∇P T (P, S) · ∇P T (P, S)] = 0. (6)

Eq. (6) imposes a uniqueness constraint on the value of slowness at P,
which is independent of any source point S and receiver locations.
For a common source–receiver point P, eq. (6) gives a boundary
condition of the form

∇S[∇P T (P, P) · ∇P T (P, P)] = 0. (7)

Eqs (6) and (7) are valid for any point P and S, and provide a strong
constraint on the analytical function.

Figure 1. Geometrical parameters for 2-D tomography. The source–
receiver pair (S, R) is uniquely defined by four parameters: X and Z po-
sitions of the mid-point M, the orientation θ with respect to the X-axis, and
the source–receiver distance d(R, S ).

A distinction can be made between two sets of equations; those
related to data and those independent of data. We call the first set of
eqs (3), (4), (6) and (7) hard constraints on the analytical function
as they are independent of data, and the second set of eqs (1), (2)
and (5) soft constraints as they are dependent of data T.

Traveltime as a series expansion

The formulation of the 2-D problem requires a choice of para-
metrization that best satisfies the ‘hard’ constraints. The following
parameters define the source S(X S, ZS) and receiver R(X R, Z R)
locations uniquely in the 2-D space (Fig. 1). The source–receiver
mid-point, M(X M , Z M ), can be defined as

X M = X S + X R

2
and Z M = ZS + Z R

2
, (8)

the source–receiver distance (d) is defined as

d =[
(X R − X S)2 + (Z R − ZS)2

]1/2
, (9)

and the angle θ [−π/2, π/2] as

θ = arcsin

(
Z R − ZS

d

)
. (10)

The traveltime function can then be written as a series expansion
of these four parameters (X M , Z M , d, θ ) as

T (R, S) =
L∑

l=0

M∑
m=0

N∑
n=−N

P∑
p=0

Clmnp Pl (X M )Pm(Z M ) exp(i2nθ )d p,

(11)

where Clmnp are the unknown complex coefficients of the series ex-
pansion, Pl is the lth-order Chebyshev polynomial (Arfken 1985),
and L , M, N , P are the number of coefficients associated with each
term of the series expansion. The term related to the symbol L con-
trols lateral variations of velocity and that to the symbol M controls
the smoothness of the velocity variation with depth. Chebyshev poly-
nomials are used in place of a power-series expansion as they are
orthogonal in the interval [−1, +1]. Any other basis function can

C© 2002 RAS, GJI, 149, 633–645



Bent-ray traveltime tomography 635

be used to define the traveltime function. The boundary condition
on traveltime for a common source and receiver location, i.e. d = 0
(eq. 3) yields

L∑
l=0

M∑
m=0

N∑
n=−N

Clmn0 Pl (X M )Pm(Z M ) exp(i2nθ ) = 0, (12)

and consequently

Clmn0 = 0. (13)

The condition of traveltime reciprocity (eq. 4) is satisfied explic-
itly by the traveltime series expansion, since the angle θ remains
unchanged by swapping over the source and receiver locations.

The eikonal equation

The expression for the eikonal equation at a unique point P (eq. 5)
takes the form (Appendix A)

∇P T (P, P) · ∇P T (P, P)

=
[

L∑
l=0

M∑
m=0

N∑
n=−N

Clmn1 Pl (X P )Pm(Z P ) exp(i2nθ )

]2

= s2(P).

(14)

The condition given by the eikonal equation on the invariance of
the slowness at P (eq. 7) imposes eq. (14) to be independent of θ .
In order to satisfy this condition, the coefficients related to θ must
vanish, i.e.

Clmn1 = 0, ∀n 
= 0. (15)

Incorporating the condition (15) into eq. (14), we obtain

∇P T (P, P) · ∇P T (P, P) =
[

L∑
l=0

M∑
m=0

Clm01 Pl (X P )Pm(Z P )

]2

= s2(P). (16)

Since the slowness at any point P is always positive, we can say that

s(P) =
L∑

l=0

M∑
m=0

Clm01 Pl (X P )Pm(Z P ). (17)

The real value of the slowness is ensured by imposing the following
condition on the coefficients Clm01:

Im (Clm01) = 0 and Re (Clm01) = Rlm ∀l, m. (18)

Eq. (17) defines the slowness at any point P in the medium as a
2-D series expansion of its coordinates (X P , Z P ). If the coefficients
Clmnp are known, eq. (17) can be used to reconstruct the slowness
in the medium. By incorporating the conditions (13), (15) and (18)
into the traveltime eq. (11), the traveltime function can be written
as

T (R, S ) =
L∑

l=0

M∑
m=0

Rlm Pl (X M )Pm(Z M ) d

+
L∑

l=0

M∑
m=0

N∑
n=−N

P∑
p=2

Clmnp Pl (X M)Pm(Z M) exp(i2nθ) d p.

(19)

The substitution of the slowness eq. (17) into eq. (19) gives the
traveltime equation as

T (R, S) = s(M) d

+
L∑

l=0

M∑
m=0

N∑
n=−N

P∑
p=2

Clmnp Pl (X M )Pm(Z M ) exp(i2nθ ) d p.

(20)

Thus the traveltime between a source S and a receiver R is the sum of
the traveltime through a medium at constant slowness, the slowness
of the mid-point s(M), plus a power-Fourier series of geometrical
coordinates of the source and the receiver. The first term corre-
sponds to a straight ray path approximation, and the second term
can be thought as a correction to this approximation incorporating
ray bending in a heterogeneous medium.

The constraint equations

Condition (6), stating the independence of the eikonal equation
with respect to the source location, yields two partial derivative
equations

∂T (P, S )

∂ X P

∂

∂ X S

[
∂T (P, S )

∂ X P

]
+ ∂T (P, S )

∂ Z P

∂

∂ X S

[
∂T (P, S )

∂ Z P

]
= 0,

(21a)

and

∂T (P, S )

∂ X P

∂

∂ ZS

[
∂T (P, S )

∂ X P

]
+ ∂T (P, S )

∂ Z P

∂

∂ ZS

[
∂T (P, S )

∂ Z P

]
= 0.

(21b)

The equation of constraint (21) define a feasibility domain, inde-
pendent of the data, in which the traveltime function is a solution of
the eikonal equation and therefore complies with the ray theory. The
traveltime function defined by eq. (20) does not satisfy these two
partial derivative equations explicitly. However, in order for the un-
known coefficients of the series expansion to satisfy the constraints
(21a) and (21b), these equations are generated for a chosen set of S
and P points, and are solved numerically.

T O M O G R A P H Y

The misfit function

The unknown coefficients of the series expansion are estimated such
that the analytical traveltime function fits the data and satisfies the
constraint equations. This is achieved by minimizing a misfit func-
tion that accounts for the difference between the observed and the
calculated traveltimes as well as the difference between the con-
straint equations and the a priori information, for example, infor-
mation on the velocity from a sonic log. Such a priori information
is treated as data. To simplify the notation, we write m as a vector
containing the unknown coefficients of the series expansion, i.e.

m = (Clmnp)T. (22)

We assume that both data and modelling errors follow a Gaussian
distribution, and use a probabilistic definition of the misfit function,
where an a posteriori probability density function on the model
parameters PDF (m) can be written as

PDF (m) = constant × exp

[
−1

2

{
[Dcal(m) − Dobs]

TC−1
D

× [Dcal(m) − Dobs] + fc(m)TC−1
fc fc(m)

}]
. (23)
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The vector Dcal(m) contains Nt traveltimes Tcal defined by eq. (19),
and Ns slownesses scal defined by eq. (17), where

Dcal(m) = [Tcal(m), scal(m)]T. (24)

The data vector Dobs contains the data, Nt observed traveltimes Tobs,
and Ns known slowness values sobs, where

Dobs = (Tobs, sobs)
T. (25)

The vector fc(m) contains N f c constraint equations (21) defining
the invariance of the eikonal equation with respect to the source
location.

fc(m) = {∇S[∇P Tcal(m) · ∇P Tcal(m)]}T. (26)

Maximizing the a posteriori probability density function amounts
to minimizing the argument of the exponential, that is to say mini-
mizing the misfit function Q(m) defined by

Q(m) = {
[Dcal(m) − Dobs]

TC−1
D [Dcal(m) − Dobs]

+ fc(m)TC−1
fc fc(m)

}
. (27)

ND is the total number of data points, ND = Nt + Ns, and CD is
a data error covariance matrix. The diagonal terms of CD contain
the data variance, denoted by σ 2

t and σ 2
s and can be defined as

Cii
D = σ i2

t , ∀i = 1, Nt, Cii
D = σ i2

s , ∀i = Nt + 1, Ns, and Cii
D = 0, ∀i 
=

j . Cfc is a covariance matrix describing the parametrization errors
defined as Cii

f c = σ i2

f c, ∀i = 1, N f c and Cii
f c = 0, ∀i 
= j .

The initial model

Although the traveltime series expansion is a linear function of the
unknown coefficients, the constraint equations introduce non-linear
relationships between the coefficients and the data. Consequently,
the misfit function becomes non-quadratic; its minimum cannot be
reached in a single step, and an iterative optimization process has to
be implemented to find the minimum of the misfit Q(m). The initial
model parameters, denoted as m0 for iteration zero, are set to zero
except for the first coefficient C0

0001, which is defined as the average
slowness s̄, i.e.

C0
0001 = 1

Nt

Nt∑
i=1

T i
obs

di
= s̄, (28a)

and

C0
lmnp = 0, ∀(l, m, n, p) 
= (0, 0, 0, 1), (28b)

where di is the source–receiver distance and C0
lmnp are the initial

coefficients of the traveltime series expansion at iteration zero.

Model parametrization

As in any inversion, it is extremely important to choose appro-
priate model parameters, which in our case are the values of
L , M, N , P . There are two approaches to parametrizing models:
over parametrization or under parametrization. Over parametriza-
tion may lead to an unstable inversion algorithm, but this can be
avoided by the use a smoothing criteria (McCaughey & Singh 1997).
Under parametrization requires significant human input and hence is
very subjective. Here, we use a combination of these two approaches.
Depending upon the data coverage, we start with a small number of
parameters, and then increase them as inversion proceeds until the
algorithm becomes unstable and start diverging. Since the number
of parameters is small (only four in the 2-D case) and the algorithm

is efficient, we can easily explore optimum values of L , M, N , P
using a trial-and-error method.

Optimization

The minimum of the misfit function is obtained by implementing
an iterative Gauss–Newton method (Scales 1985). The inverse of
the Hessian matrix is computed using a singular-value decomposi-
tion (SVD) (Golub & Reinsch 1970; Press et al. 1992). The larger
eigenvalues are associated with the dominant features of the model
parameters, whereas the smaller eigenvalues are dominated by noise.
Numerical instabilities during inversion can be avoided by not in-
cluding the eigenvalues smaller than a cut-off value, λcut. The mini-
mum of the misfit is reached when the gradient of the misfit function
vanishes, i.e. when the increment 
mN tends to zero. The conver-
gence criteria are based on the value of 
mN compared with a
threshold. The final solution, denoted by m∗, is reached when the
increment 
mN becomes smaller than a threshold value that can be
determined numerically.

Slowness image reconstruction

Once the model parameters, i.e. the unknown coefficients of the se-
ries expansion, have been determined, the slowness distribution in
the investigated media can be easily obtained using eq. (17). Since
the Chebyshev polynomials in eq. (17) cannot represent sharp dis-
continuities, the final slowness model is always smooth. The degree
of smoothness will depend on the number of coefficients defining
the series expansion.

E R R O R A N D R E S O L U T I O N A N A LY S E S

No inversion is complete without having error and resolution in
the final model. Unlike in conventional tomography, where such
an analysis is carried on the final velocity model, the error and
resolution analyses need to be first performed on the coefficients
of the series expansion. Prior to performing the conventional er-
ror analysis, which requires the a posteriori probability function
(ppd) to be a Gaussian function, we first need to prove that the ppd
we obtain using our method is indeed a Gaussian. This requires
that provided the initial model m0 is a solution of the constraint
equations (i.e. if it is within the feasibility region defined by the
theoretical constraints), the a posteriori probability density func-
tion eq. (23) is a Gaussian, and therefore the algorithm converges
towards the maximum-likelihood solution. An initial model defined
by the average constant slowness computed from the traveltime data
lies within the feasibility domain and therefore ensures convergence
toward the global minimum of the misfit function. Eq. (B10) (see
Appendix B) confirms that the ppd is a Gaussian function, whereas
eqs (B13) and (B14) satisfy the condition required by the initial
model.

The result of the stochastic inversion provides statistical informa-
tion on the estimated model parameters by calculating the a poste-
riori covariance matrix, denoted by C∗, and given by

C∗ = (
GTC−1

D G + FT
0C

−1
fc F0

)−1 = 2H−1
∗ . (29)

From the a posteriori covariance matrix, of which a detailed calcula-
tion is given in Appendix B, uncertainties of slowness reconstruction
and traveltime calculation can be evaluated.
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P R E - S T A C K D E P T H M I G R AT I O N

The traveltime series expansion resulting from the tomographic in-
version can be used to compute of traveltimes and ray path be-
tween two points. We propose to use this result for implementing
a diffraction pre-stack migration without ray tracing. Kirchoff mi-
gration (Yilmaz 1987) requires intensive traveltime computation
of the diffracted wave between each subsurface scattering point
and each source and receiver. This operation, usually achieved by
shooting rays through the velocity model (Schneider 1978; Berryhill
1979), constitutes the most expensive step of the Kirchoff migra-
tion. However, a two-point traveltime computation can be accurately
and rapidly performed using the traveltime series expansion result-
ing from the tomographic inversion. The smooth and continuous
slowness model, defined by the slowness function, is particularly
appropriate to perform a pre-stack migration of seismic data. The
computation time required to compute traveltimes with the series
expansion depends on the number of coefficients composing the
series expansion. Another advantage of our method is that travel-
times can be computed at the time of migration, hence reducing the
memory requirement of input/output (I/O) operations.

Computation of the incidence angle of the ray

Limited-aperture data produces migration smiles that spread the
image of the actual scatterers. These artefacts can be reduced by
performing a limited aperture migration that requires computation
of the incidence angle of the ray on arriving and on leaving each
scattering point. Rays for which the incidence angle at the scattering
point exceed the extreme values controlled by the bounded slope are
rejected.

Let us consider a ray emanating from a source S to a point P
(Fig. 2). The gradient operator applied to the traveltime T (P, S )
gives the ray parameter at P, denoted by p, such as

∇P T (P, S ) = p = s(P)
dr

ds
, (30)

where s(P) is the slowness at P, dr is the tangent along the ray with
length ds. If dx and dz are the projections of dr along the X and Z
axes, dr = (dx, dz)T, the incidence angle θz , defined as the angle
between dr and the Z-axis such as dz = ds cos(θz), is given by

Figure 2. The incidence angle of the ray at P, θ z, defined as the angle
between the ray and the vertical axis, is computed from the ray parameter p
and the slowness s(P).

θz = arccos

[
1

s(P)

∂T (P, S)

∂ Z P

]
. (31)

The directions of the ray, on arriving and on leaving each subsur-
face point, are computed from the traveltime function and so that
unwanted rays can be eliminated when summing the diffracted en-
ergy. Incorporating aperture limitation aims to reduce artefacts and
thus to improve the result of the migration.

S Y N T H E T I C D AT A A N A LY S I S

A synthetic experiment was designed to investigate the feasibility
of our method. We consider a vertical seismic profile (VSP) config-
uration because a real data set was available to test our algorithm.
The VSP experiment (Fig. 3) consists of three sources located on
the surface at −2.0, 0.0 and 2.0 km. Receivers are arranged along a
borehole centred at 0.0 km that splits into a straight well and a bent
well around 3.2 km depth. The velocity model is defined by eight
layers, each bounded by planar interfaces. The top layer is a 150 m
thick water layer with a velocity of 1.5 km s−1. The second layer,
between 150 and 2000 m depth, is defined by a linearly increasing
velocity with depth from 1.8 to 2.5 km s−1. The next six layers are
defined by a constant velocity in each layer and bounded by hori-
zontal interfaces except for the seventh layer which has a dip of 7◦.
The synthetic data set constitutes of 284 traveltimes generated by
tracing rays through the velocity model. Out of 284 traveltimes, 102
traveltimes were computed for the source at −2.0 km and receivers
located in the well between 2857 and 3907 m depth, 82 traveltimes
for the source at 0.0 km and receivers from 2248 m down to a depth
of 3734 m, and 102 traveltimes for the source at 2.0 km and receivers
from 2897 m down to 3904 m depth. The ray coverage, marked by
straight white lines, clearly shows the narrow ray coverage.

We have assumed that the horizontal variation in velocity can
be sufficiently described by two parameters (L = 2) allowing for
a linear velocity variation. The variation of velocity with depth is
defined by eight parameters (M = 8), i.e. by a seventh-order series
expansion. Three parameters describe the angular dependence of
the traveltime (N = 3), and six parameters describe the traveltime
as a function of the source–receiver offset (P = 6). Altogether, 496
real coefficients define the traveltime series expansion eq. (20). As
the velocity in the water layer is assumed to be known, the slow-
ness function is computed at 102 different points regularly spaced
between the surface and 150 m depth. Note that the slowness func-
tion in eq. (17) defined by a subset of 16 coefficients. The ini-
tial average slowness computed from the observed traveltimes is
0.412 s km−1 (average velocity of 2.427 km s−1), and the initial
root mean square (rms) error between the observed and calculated
traveltimes is 50.368 ms.

The convergence was reached after five iterations. The travel-
time misfit was reduced to 2.382 ms and the constraints misfit to
0.018. Although the slowness function follows increasing velocity
down to 2.0 km depth, it does not match the velocity variations be-
low 2.0 km where additional constraints need to be applied on the
velocity model. We assume that the well log is available and use
the velocity profile along the borehole as a priori information to
constrain the inversion. 43 velocities were picked at regular spac-
ing along the log and included in the slowness term of the misfit
function. The convergence was achieved after five iterations and
the resulting velocity tomogram is shown in Fig. 4. The traveltime
misfit was reduced to 2.362 ms and the constraints misfit to 0.006.
The slowness misfit on the a priori information, defined as the rms
error between the calculated and the observed slownesses along the
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Figure 3. Synthetic velocity model and recording geometry. The velocity model is decomposed into eight layers. The velocity is constant in each layer except
in the second layer in which the velocity increases linearly with depth. The velocity log at 0.0 km is plotted on the right of the figure. The acquisition geometry
consists of three sources on the surface (black dots) and receivers in a borehole located at 0.0 km. The area between the white lines shows the ray coverage.

Figure 4. Velocity tomogram estimated with the a priori information on the velocity distribution. The smooth velocity tomogram matches more closely the
true velocity variations.
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Figure 5. Uncertainty on the velocity reconstruction. The velocity at the vertical of the borehole is well resolved by the zero offset data. Uncertainty is limited
to 150 m s−1 within the region covered by the rays and increases rapidly where data are not available.

log was reduced to 0.033 s km−1. Although the traveltime misfit re-
mains similar and small, the constraints misfit is noticeably reduced
by introducing the a priori information on the velocity. Inversion
produces a smooth continuous velocity model, which is comparable
to the original layered velocity model (Fig. 4).

The a posteriori covariance matrix enables the computation of
the uncertainty in the estimated velocity (Fig. 5). The data provide
a strong constraint on the velocity estimation at 0.0 km offset with
small uncertainty (less than 40 m s−1) along the borehole. Lateral
velocity variations have also been very well recovered even though
only the second-order series expansion was used to define lateral
velocity variations. The uncertainty are small in the region well
covered by the rays but become large outside of this region.

Diffraction pre-stack migration

Once the velocity has been determined, a Kirchhoff pre-stack depth
migration (Jackson 1995) was performed in a limited region (shown
by the box in Fig. 3), between −1.0 and 1.0 km offset, and 3.1 and
4.3 km depth. This region is discretized with 101 × 231 regularly
spaced subsurface points, and the traveltimes between each source
or receiver and each subsurface point are computed. Fig. 6 shows the
traveltimes between the source at 0.0 km and each point in the region.
Fig. 6(a) shows the traveltimes generated by tracing rays through the
true velocity model, and Fig. 6(b) the traveltimes computed from the
series expansion. The error, defined as the difference between the
series expansion computation and the ray-traced times, is plotted in
Fig. 6(c). It varies from −10 to 18 ms with an rms value of 5.778 ms.
The largest errors occur where the true model has interfaces (3.3, 3.5
and 4.0 km depth), which is expected as the continuous traveltime
is for the smooth velocity (Fig. 4).

Diffraction pre-stack migration of the synthetic data is performed
using the traveltimes computed with our method (Fig. 7a) and that
with tracing rays through the true velocity model (Fig. 7b). The
migration using our method was five times faster than using the
ray-tracing technique. Since the diffraction pre-stack migration was
performed without any aperture limitation, the migrated images con-
tain large smiles. The interfaces on the migrated image using our
method (Fig. 8a) is slightly weak and the second interface at 3.5
km depth is slightly shifted. Nevertheless, the slope of the deepest
interface is correctly imaged.

A P P L I C AT I O N T O F I E L D D AT A

The experimental geometry and the data type were the same as
discussed in the previous section. Part of the upgoing wavefield
is shown in Fig. 8. The data from the source at the −2.0 km offset
reveal the existence of a strong reflector around 2 s. The data from the
source at 0.0 km offset contain reflected energy at 1.3 s and around
1.8 s, but the data from the source at 2.0 km were contaminated by
noise.

Tomography

Fig. 3, our synthetic model, is the result of a traveltime inversion
using a ray-tracing method. The starting model for this method con-
sisted of flat layers with velocities determined using the direct arrival
traveltimes. An interactive perturbation method (Jackson & Pawlak
1994) was used for the inversion. Both transmitted and reflected trav-
eltimes were inverted to produce the velocity–depth model shown
in Fig. 3. The results of the inversion matches the main features of
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Figure 6. Traveltimes between the source at 0.0 km and 101 by 231 subsurface points located between −1.0 and 1.0 km offset, and 3.1 and 4.3 km depth.
Times calculated by (a) ray tracing through the true model, (b) times computed with the series expansion and (c) the error in traveltime computation.

the sonic log (Fig. 9). The rms residual of transmitted traveltimes
was 5.945 ms.

To perform the series expansion tomography, the velocity depth
model was defined by 496 real coefficients as previously discussed
for the synthetic experiment (L = 2, M = 8, N = 3, P = 6). 33 ve-
locities were picked along the well log at a regular spacing to con-
strain the velocity variation with depth. After five iterations, the
rms traveltime misfit achieved was 2.469 ms. The final velocity–

Figure 7. Diffraction pre-stack migration without aperture limitation. (a) Synthetic migrated image. (b) Migrated image processing times grid computed with
the series expansion. The series expansion migration is five times faster than ray-tracing migration.

depth model is shown in Fig. 9. As expected the inversion pro-
duced a smooth velocity variation with depth. The resultant veloc-
ity matches the general feature of the sonic log. However, the rapid
changes in velocity observed between 3.3 and 3.8 km depth are not
recovered.
The uncertainty in the velocity is shown in Fig. 10, which shows the
correlation between the ray coverage and the confidence on velocity
estimation. The velocity–depth model at 0.0 km offset is strongly
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Figure 8. Scattered seismic data. Shots from the sources at −2 km and at 0 km contain continuous reflected energy, while the data from the source at 2 km is
of poorest quality.

constrained by the zero-offset data and the a priori information on
velocity. Uncertainties are small. The standard deviation is less than
30 m s−1 along the borehole. Owing to the lack of data towards the
bottom of the model, the uncertainties become large as the coeffi-
cients defining the velocity variation with depth are not sufficiently
constrained by the data.

Figure 9. Velocity–depth model resulting from the series expansion tomography. The transmitted times are inverted with a priori information on the velocity
given by the well log. The estimated log (dashed line) matches the sonic log (solid line).

Migration

As in the synthetic data example, the migration was performed in
a region that covers −1.0 and 1.0 km offset, and 3.1 and 4.3 km
depth. As before, the area was discretized with 101 × 231 regularly
spaced points, and the traveltimes between each source–receiver
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Figure 10. Uncertainty in the velocity reconstruction. The standard deviation is coherent with the data. The more information, the less the uncertainty.

and each subsurface point were calculated using either the ray tracing
or the series expansion method. The resultant traveltimes computed
from each method were very similar. The rms difference between
the two traveltimes was 13.2 ms, which is about 1 per cent of the
maximum traveltime. The Kirchhoff migration of the field seismic
data was performed in the region defined previously by comput-
ing the traveltimes from the two methods. The migrated images are
shown in Fig. 11. The strong reflection recorded from the source
at −2.0 km is predominant on both migrated images, and is im-
aged at the same depth of 3.75 km. Both images show the same
features.

Figure 11. Diffraction pre-stack migration performed using (a) a ray-tracing method and (b) the series expansion method.

Limited aperture migration

Both traveltimes and the incidence angles of rays on arriving at
each subsurface point can be calculated with the series expansion,
enabling one to perform a limited aperture migration. The result
of the limited aperture migration with an aperture limitation of 15◦

is shown in Fig. 12 and the corresponding sonic log is shown on
the right-hand side of Fig. 12. The aperture-corrected migration
obtained using ray tracing is not available for comparison with
the series expansion migration. The strong positive amplitude at
3.3 km depth seems to correspond to a rapid increase of velocity at
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Figure 12. Diffraction pre-stack migration with an aperture limitation of 15◦. The correlation between the migrated section and the recorded log plotted on
the right, reveals that events are shifted up by 2 per cent compared with their expected locations given by the well log.

3.35 km. The succession of events appearing on the migrated sec-
tion would be correlated with velocity changes on the well log if the
log was shifted up by 50 m. This means that the migration velocity
is about 2 per cent higher than the true velocity. Consequently, the
migrated reflectors appear at a shallower depth than they actually
are.

C O N C L U S I O N S

(1) We have developed a new method for traveltime tomogra-
phy that does not require ray tracing but takes ray bending into
account.

(2) Our method provides a solution for slowness in a compact
analytical form, which can be used to define large-scale models,
such the velocity structure of the Earth.

(3) It also provides the traveltime function in an analytical form,
which we have used for pre-stack depth migration of seismic reflec-
tion data. Such an analytical function could also be used to compute
traveltimes between any source and receiver efficiently. For exam-
ple, we could imagine replacing the Jeffrey–Bullen table with such
an analytical function, which could be applicable for a 3-D Earth
model.
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A P P E N D I X A : E I K O N A L E Q U A T I O N
F R O M T H E T R A V E L T I M E
S E R I E S E X P A N S I O N

In this Appendix, we develop the expression of the eikonal eq. (5)
leading to the form given by eq. (14). The gradient of the travel-
time function computed at P, ∇P T , has its components in the 2-D
space

∇P T =
(

∂T

∂ X P
,

∂T

∂ Z P

)T

, (A1)

where the superscript T denotes the transpose. By substituting ∇P T
by its components into the eikonal equation formulated at a unique
point P, eq. (5), can be written as

∇P T (P, P) · ∇P T (P, P) =
(

∂T

∂ X P

)2

d=0

+
(

∂T

∂ Z P

)2

d=0

= s2(P),

(A2)

where d is the source–receiver distance (eq. 9). The calculation of
the partial derivatives of the traveltime function, eq. (11), is straight-
forward and yields for a null source–receiver distance(

∂T

∂ X P

)
d=0

=
L∑

l=0

M∑
m=0

N∑
n=−N

Clmn1 Pl (X P )Pm(Z P ) exp(i2nθ )

×
(

∂d

∂ X P

)
d=0

, (A3a)

and(
∂T

∂ Z P

)
d=0

=
L∑

l=0

M∑
m=0

N∑
n=−N

Clmn1 Pl (X P )Pm(Z P ) exp(i2nθ )

×
(

∂d

∂ Z P

)
d=0

. (A3b)

By substituting (A3a) and (A3b) into (A2) and considering that(
∂d

∂ X P

)2

+
(

∂d

∂ Z P

)2

= 1, (A5)

the eikonal equation (A2) becomes

∇P T (P, P) · ∇P T (P, P)

=
(

L∑
l=0

M∑
m=0

N∑
n=−N

Clmn1 Pl (X P )Pm(Z P ) exp(i2nθ )

)2

= s2(P).

(A6)

A P P E N D I X B : R E S O L U T I O N A N A L Y S I S
A F T E R I N V E R S I O N

A resolution analysis of the inversion result is developed in this
Appendix where we demonstrate that provided the starting model m0

is a solution of the constraint equations, the a posteriori probability
density function eq. (23) is Gaussian, so that the algorithm converges
towards the maximum-likelihood solution. This analysis provides an
expression for the a posteriori covariance matrix that can be used to
quantify uncertainties on model parameters and so on the velocity
reconstruction and the traveltime computation.

The a posteriori covariance matrix

For the case of a linear system, i.e. if the data are a linear function
of the model parameters, the a posteriori probability density func-
tion PDF (m) is a Gaussian function with a mean model m∗ and a
posteriori covariance matrix C∗,

PDF (m) = constant × exp

[
−1

2
(m − m∗)TC−1

∗ (m − m∗)

]
. (B1)

Although the analytical traveltime function is a linear function of
the model parameters, the theoretical relationships established by
the constraint equations between the model parameters are non-
linear. Thus, the a posteriori probability density function (B1) is
not Gaussian and the inversion algorithm may converge towards a
local minimum of the misfit function. Nevertheless, we demonstrate
that if the initial model satisfies the constraint equations, i.e. if it
is contained within the feasibility region defined by the theoretical
constraints, the a posteriori probability density function is Gaussian,
and therefore the algorithm converges towards the global minimum
of the misfit function.

Eq. (24) can be written as Dcal(m) = Gm, where G is a matrix
containing the geometrical terms of the series expansion. The lin-
earization of the constraint equations fc(m) around an initial model
m0 yields, neglecting higher-order terms,

fc(m) ≈ fc(m0) + F0(m − m0), (B2)

where the matrix F0 contains the partial derivatives of fc with res-
pect to the model parameters computed at m0, i.e.

Fi j
0 = ∂ f ci (m0)

∂m j
0

. (B3)

By chosing the initial model m0, such that it is a solution of the
constraint equations, which requires

fc(m0) = 0, (B4)

the misfit function Q(m) takes the following form:

Q(m) ≈ (Gm − Dobs)
TC−1

D (Gm − Dobs)

+ (m − m0)TFT
0C

−1
fc F0(m − m0). (B5)

At the maximum-likelihood solution m∗, the gradient of the misfit
g∗ vanishes, g∗ = ∇m Q(m∗) = 0, so that

GTC−1
D (Gm∗ − Dobs) + FT

0C
−1
fc F0(m∗ − m0) = 0. (B6)

Note that since the calculated data are linear functions of the model
m, the matrix G is independent of m. After some manipulations
(Tarantola 1987), the misfit function Q(m) can be written in the
form

Q(m) ≈ 1

2
(m − m∗)TH∗(m − m∗) − 1

2
mT

∗H∗m∗ + DT
obsC

−1
D Dobs

+ mT
0F

T
0C

−1
fc F0m0. (B7)
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where H∗ is the Hessian of the misfit function calculated at the
maximum-likelihood model m∗, with

H∗ = ∇m∇m Q(m∗) = 2
(
GTC−1

D G + FT
0C

−1
fc F0

)
. (B8)

The last three terms of the right-hand side of eq. (B7) are constant,
i.e. independent of m, except the first term, so that

Q(m) ≈ 1

2
(m − m∗)TH∗(m − m∗) + constant. (B9)

By replacing the misfit function, eq. (B9), in the probability density
function PDF (m), and moving the constant terms into a factor of
the exponential, we obtain

PDF (m) = constant × exp

[
−1

4
(m − m∗)TH∗(m − m∗)

]
. (B10)

Eq. (B10) shows that the a posteriori probability density func-
tion is also Gaussian with its centre at the maximum-likelihood
model m∗ and an a posteriori covariance matrix, denoted C∗, given
by

C∗ = (
GTC−1

D G + FT
0C

−1
fc F0

)−1 = 2H−1
∗ . (B11)

This result demonstrates that, provided the initial model satisfies
the constraint equations, the a posteriori probability density function
is Gaussian. This implies that the minimum of the misfit function is
at the maximum-likelihood solution m∗.

We now demonstrate that the initial model that is defined as the
average slowness s̄ in eq. (28) is a solution of the constraint equations
and therefore lies within the feasibility domain. The initial calculated
traveltime function Tcal(m0) reduces to a single term

T i
cal(m0) = C0

0001di = s̄di , (B12)

where di is the source–receiver distance for the ith calculated trav-
eltime. The eikonal equation, computed for the initial model m0,
takes the form

∇P T i
cal(m0) · ∇P T i

cal(m0) = s̄2, (B13)

and, consequently

∇S

[∇P T i
cal(m0) · ∇P T i

cal(m0)
] = 0, (B14)

which suggests that the initial model satisfies the condition for the
constraint equations and hence the probability density function is a
Gaussian.

Estimation of uncertainty

The a posteriori covariance matrix, which is twice the inverse of the
Hessian matrix (eq. B11), provides information on the uncertainty of
the model parameters. The physical meaning of the Hessian matrix
is given by the curvature of the misfit function. A high curvature
of the misfit function in the neighbourhood of its minimum implies
a large value for the Hessian matrix components, and therefore a
small covariance. The diagonal elements of the covariance matrix
contain the variance of the model parameters. As the variance of a
sum is the sum of the variance of each coefficient, the uncertainty
in the final slowness scal(P) will be the square root of the sum of the
variance of each term comprising the series expansion. If σscal(P) is
the uncertainty of the calculated slowness at P, then

σscal(P) =
[

L∑
l=0

M∑
m=0

σ 2
Clm01

Pl (X P ) Pm (Z P )

]1/2

, (B15)

where σClm01 is the standard deviation of the Clm01 coefficients of
the series expansion. The uncertainty in the estimated velocity is
defined as the ratio of the slowness uncertainty and the slowness
square. If vcal(P) is the calculated velocity at P, then the uncertainty
in the calculated velocity σvcal(P) is

σvcal(P) = σscal(P)

s2
cal(P)

. (B16)

Similarly, the uncertainty in the calculated traveltime between a
source S and a receiver R, σTcal(R,S), is given by

σTcal(R,S) =
[

L∑
l=0

M∑
m=0

σ 2
Clm01

Pl (X M )Pm(Z M ) d(R, S )

+
L∑

l=0

M∑
m=0

N∑
n=−N

P∑
p=2

σ 2
Clmnp

Pl (X M )Pm(Z M )

× exp (i2nθ ) d p(R, S)

]1/2

, (B17)

where σClmnp is the standard deviation of the Clmnp coefficient of the
series expansion.
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