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S U M M A R Y
The height datum problem is present in the geodetic literature since the times of Pizzetti, when it
was realized that as only differences of the gravity potential can be derived from measurements,
there was still one global parameter to be settled in order to determine a global model.

Several more realistic formulations of the problem have been introduced into the geodetic
literature. After reviewing them, an ultimate formulation is attempted where only local data are
given stemming from levelling, gravimetry, classical geodetic network observations, combined
with global GPS-like observations. The problem of contemporaneous height datum/geodetic
datum determination is shown to be solvable, in ellipsoidal approximation, only if the classical
tide gauge and network orientation information is taken into account, specially if the local
datum does not refer to very large areas, e.g. of continental size.

In fact we will show that when this classical information is missing for the datum problem
referring to a fairly small area, it becomes, for instance, impossible to distinguish between a
‘vertical’ shift of the local ellipsoid and a change of the potential of the geoid, i.e. the choice
of a slightly different gravity equipotential surface.
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1 I N T R O D U C T I O N

Let us accept the definition of the geoid G as some specific equipo-
tential surface of the actual gravity potential W of the Earth,
G ≡ {P | W (P) = W0}, such that it is lying, on average, close
to the physical surface of the ocean (maximum absolute difference
of the order of a few metres) when this is depurated from short
periodic and tidal motions.

For the sake of simplicity we also assume a model of a rigid
earth uniformly rotating around an axis fixed in space as well as
with respect to its body and we stipulate that all the observations
are reduced for the solid tidal effects, apart from the constant (the
so-called Honkasalo) term.

G can then be univocally identified either by specifying an a priori
value W0, such that the stated conditions are satisfied, or by claiming
that the equipotential surface at hand is the one that passes through a
point P̄ physically placed close to the sea surface (e.g. a tide gauge).
In this first instance we don’t know a priori any point of G and a
good choice is W0 = U0, where U0 is the potential of the normal
field U (P), used as our basic approximation of the actual gravity
potential, when P lies on its defining ellipsoid.

This in turn can typically be done by fixing first the semimajor
axis a, the angular velocity ω and the mass of the earth multiplied by
Newton’s constant, µ = k M , as it can be very accurately estimated
from satellite tracking. From the above quantities one can compute
the constant (cf. Heiskanen & Moritz 1990)

m0 = ω2a3

µ
. (1)

At this point if one adds the spherical coefficient J2, again fairly
well known from its large effects on satellite dynamics, one has

access to the eccentricity of the ellipsoid, e =
√

a2−b2

a2 , which can
be computed by solving the exact equation

J2 = e2
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 (2)

stemming from a lengthy computation based on the explicit formulas
of the normal field (e.g. cf. Heiskanen & Moritz 1990). From eq. (2)
one finally has the famous explicit formula (adapted to the above
quantities)

U0 = µ

a

(
1

e
arctan

e√
1 − e2

+ 1

3
m0

)
, (3)

and W0 = U0 is thus derived form our choice of a, ω, µ, J2. In this
approach the difficulty is that, since we don’t know the coordinates
of any physical point lying on G, we cannot claim that we are di-
rectly able to derive the values of WP all over the surface, because
the quantity physically accessible by measurements is the so-called
geopotential number
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CP = WP̄ − WP , (4)

computed along lines drawn on the Earth’s surface, starting from
some point P̄ used as origin of the height system i.e. defining the
specific height datum. To some extent equivalent to (4) would be
giving the orthometric heights HP related to CP by the well-known
formula

HP = CP

ḡ
(5)

where ḡ is the mean value of the gravity along the plumbline from the
surface point P down to the geoid (cf. Heiskanen & Moritz 1990,
formula 4.48). So in this case we would be left with the need of
estimating the difference

δW = W0 − WP̄

from some additional information, what is nowadays creating a pos-
sible confusion in the geodetic literature. For that reason we prefer
to go along the second approach and define the geoid as the equipo-
tential surface through a given point P̄ which is also the origin
of the height system. This is indeed equivalent to the previous ap-
proach and presupposes that now W0 = WP̄ �= U0. Accordingly W0

becomes one of the parameters that at the end of our process has to
be estimated. The good point in this approach is that it forces the
geodesists to think more in relative terms, realizing that when they
are computing a high resolution geoid they are in fact determining
a piece of one of a family of equipotential surfaces which are all
lying close to the sea surface, in a distance of a few metres from one
to the other. It is also important to state that all these surfaces are
practically parallel to one another, since the distance between them
is given by Brun’s relation

d = δW

γ
(6)

so that

Max

∣∣∣∣ δd

d

∣∣∣∣ = Max

∣∣∣∣ δγγ
∣∣∣∣ ∼ 5 · 10−3,

i.e. for two surfaces in a distance of ∼2 m, the maximum distance
variation (from pole to equator) is 1 cm.

Once G has been somehow defined we must have a suitable math-
ematical representation for it and a sound mathematical theory ca-
pable of retrieving this surface, which we use e.g. as reference for an
orthometric height system, by some feasible numerical calculation
relating it to the realistically achievable observations.

The description of G is done by the so-called geoid undulation
N and we have to stress here that this is a function of both the point
P on the geoid and the reference ellipsoid E with respect to which
we compute it; N is in fact the height of P on E reckoned along the
line orthogonal to E, passing through P.

It seems more or less one of the ordinary miracles of geodesy
that the problem of determining the height datum and the ellipsoid
E from surface data (of any kind) can be split into two parts when
we reason in the so-called spherical approximation.

Nevertheless this approach is not anymore sufficient when we
come to the centimetre accuracy which is nowadays possible for
both the point positioning in space by GPS and other space tech-
niques and gravimetric geoid computations. In this paper we try to
clarify how these two facts are intermingled at an ellipsoidal ap-
proximation level, also taking into account that we have to face (and
solve) this problem every time we compute a high resolution geoid
and not only for global models, as it was devised in earlier formula-
tions. We shall conduct our derivations by ordinary approximation

Table 1. List of symbols used in the paper.

W (P) gravity potential at P
g(P) = |∇W (P)| modulus of gravity vector
U (P) normal field (Somigliana-Pizzetti)
γ (P) modulus of normal gravity vector at point

P in space
γe(Q) the same computed on the reference ellipsoid,

at Q
U0 normal potential on the reference ellipsoid
T (P) = W (P) − U (P) anomalous potential
P̄ origin of the height datum
G geoid i.e. equipotential surface through P̄
H orthometric height, with respect to G
h ellipsoidal height
N geoid undulation (vertical distance between

G and the given reference ellipsoid)
ζ height anomaly
	g free air gravity anomaly
S(ψ) Stokes’ function
δW = U0 − W (P̄) height datum parameter
ν ellipsoidal normal =

[cos ϕ cos λ, cos ϕ sin λ, sin ϕ]+

eϕ southward unit vector = − ∂ν

∂ϕ

eλ eastward unit vector 1
cos ϕ

∂ν

∂λ

techniques trying to keep an accuracy of at least 1 cm in positions
and at least 0.03 mGal in gravity. This defines what we mean by
approximation throughout the paper. To simplify the reading of the
paper all symbols used are listed in Table 1.

To conclude this section, let us claim that since following
Molodensky’s line of thought one can always write (cf. Heiskanen
& Moritz 1990§8.2)

N − ζ ∼= −10−6	gB · H̃ (7)

(N = geoid undulation in m, ζ = height anomaly in m, 	gB =
Bouguer gravity anomaly in mGal, H̃ = approximate orthomet-
ric height in m); we consider the determination of N as something
derived from the determination of the height anomaly ζ by solving
a suitable boundary value problem.

2 T H E H E I G H T D A T U M P R O B L E M :
E V O L U T I O N O F T H E C O N C E P T A N D
I T S P R E S E N T - D A Y U N D E R S T A N D I N G

It seems to the authors that the evolution of the definition of the
height datum problem can be characterized by the following steps:

(a) global, single BVP, spherical approximation, single height
datum problem,

(b) global, single BVP, spherical approximation, multiple height
datum problem,

(c) global, single BVP, ellipsoidal approximation, multiple
height datum-geodetic spherical approximation,

(d) global mixed BVP, spherical approximation, multiple height
datum problem,

(e) local single BVP, spherical approximation, multiple height
datum problem, and finally what we shall present here could be
defined as,

(f) local, single BVP, ellipsoidal approximation, dual height da-
tum, geodetic datum problem.

Let us quickly analyse the definition of these different problems:
(a) goes back to Pizzetti, according to (Heiskanen & Moritz 1990,

C© 2002 RAS, GJI, 149, 768–775
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Figure 1. E0 is the reference ellipsoid, P the point where we want the height
anomaly ζ, Q the point on the same normal defined by eqs (8) and (9). While
P is sweeping the earth’s surface, Q describes the so-called telluroid.

§2.19). It stems from the fact that in the linearization of the basic
BVP of physical geodesy we can define the telluroid point Q only
through the equation

U (Q) = W̃ (P) (8)

where

W̃ (P) = U0 − C(P) = U0 − [W (P̄) − W (P)] = W (P) − δW

(9)

is the only quantity, as opposed to W (P), which can be derived from
real observations.

Note that (cf. Fig. 1) P and Q have to lie on the same normal to
the reference ellipsoid E0.

Linearization of eq. (9) leads to the more general relation of
Brun’s type

h P − hQ = ζ = T − δW

γ
. (10)

Using this in the linearized equation

	g = g(P) − γ (Q) ∼= −∂T

∂h
+ ∂γ

∂h
ζ

we get, in spherical approximation, the boundary relation

−∂T

∂r
− 2

r
T = 	g − 2δW

r
, (11)

which has indeed to be considered as a BVP for the Laplace equation,
since 	T = 0 in the outer space.

Let us apply eq. (11) to a sphere of radius R. We recall that for any
harmonic function u(P) developed in a series of spherical harmonics
converging on and outside a sphere of radius R, the first harmonic
coefficient

u00 = 1

4π

∫
u(R, σ ) dσ

coincides also with µ = k M , where M is the total mass (internal to
the sphere) generating k. So if we stipulate that the normal potential
U has the same mass (i.e. the same µ value) as W, we find that the
anomalous potential T is expected to have a vanishing coefficient
T00. We see then from eq. (11) that one has

δW = R

2
	g0 = R

8π

∫
	g dσ, (12)

which can be arranged into the classical Stokes formula to supply
(cf. Heiskanen & Moritz 1990)

N = R

γ · 4π

∫
	g[S(ψ) − 1/2] dσ. (13)

At that time the possibility of a true global computation of the
geoid was still in the realm of theory, yet it is interesting to ob-
serve that in principle no additive information was needed to solve
the problem, which might appear curious since we have suppressed
one information, namely W0, from the given data. Nevertheless
we must realize that the additional information substituting W0 is
µ = k M and it appears into the problem when we claim that sub-
sequently one has T00 = 0, which is in fact the relation determining
δW .

The approach in Item (b) goes back to the late seventies/early
eighties and authors such as Colombo (1980); Rummel & Teunissen
(1981); Heck (1989); Xu (1990); Xu & Rummel (1991); Rapp &
Balasubramania (1992) and Balasubramania (1994) among others
have worked on the problem. Common to all these authors is the
idea that the modification (as in eq. 11) of the standard geodetic
BVP should be applied to as many areas {Ai } i = 1, 2, . . . , n, as
there are origins {P̄ i } of different height datums. When ∪i Ai covers
the whole earth surface and by using the characteristic functions

χAi (P) =
{

1 P ∈ Ai

0 P /∈ Ai

one can then write, in spherical approximation,


	T = 0

−∂T

∂r
− 2

r
T

∣∣∣∣
S

= 	g − 2
r

∑
δWiχAi (P)

, (14)

with (cf. eq. 9)

δWi = W (P̄ i ) − U0.

Working again at the level of Stokes approximation and on a
sphere of radius R, we can write the solution of eq. (14) as

T (P) = T̃ (P) − 2

R

∑
i

δWi SAi (P) (15)

where

T̃ (P) = 1

4π

∫
S(ψP Q)	g(Q) dσQ

SAi (P) = 1

4π

∫
Ai

S(ψP Q) dσQ,

let us note here explicitly that indeed SAi (P) �= 0 even when P /∈ Ai .
Now assume that in each area Ai we have a number of (possibly

permanent) stations of space geodesy, e.g. permanent GPS stations,

Pis ∈ Ai s = 1, . . . , ni , i = 1, . . . , n. (16)

All the space geodetic observations can be analysed together,
as the International GPS Service does for the international GPS
network, providing geometric positions of the stations in a unified
geodetic datum. Therefore, in particular, at these points we know
the ellipsoidal heights in a consistent geocentric geodetic datum. At
the same points we know as well the approximate heights h(Qis),
derived from W̃ (Pis) = U (Qis).

In addition, as in eq. (10), the relation

h(Pis) − h(Qis) = ζ (Qis) = 1

γ
T (Qis) − 1

γ
δWi (17)

has to hold.
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Let us note that what is done here in terms of h P = hQ +ζP could
be repeated with the other decomposition h P = NP + HP .

Substituting eq. (15) into (17) yields a system of observation
equations

h(Pis) − h(Qis) = 1

γ
T̃ (Pis) − 2

Rγ

∑
k

δWk SAk (Pis) − 1

γ
δWi

(18)

which are typically more than the unknowns {δWi }, if ni > 1.
One is therefore led to apply a least-squares procedure to estimate

δWi , which has been done in a number of simulated studies. On
purely theoretical grounds it seems interesting to observe that if both
types of data h(Pis) and the gravity anomaly field 	g are affected
by some noise, then the correct estimation tool should include a
re-estimate of T too, falling in the framework of overdetermined
BVP’s. This has been considered in Migliaccio et al. (1989). It is
worth nothing that in addition to the observation eq. (18) one should
also add the condition (S(A) = surface measure of A)

T00 = 0 ⇒ 	g00 = 2

R

∑
i

δWi S(Ai ), (19)

which has to hold if µ = k M is assumed to be known.
Additionally, when considering a unified height datum over large

areas (e.g. North America or Europe) one should be aware that
probably significant distortions have been introduced to connect
partial levelling networks.

In the approach in Item (c), Sansò and Usai (1995) have reformu-
lated the problem globally as in (b), but adding the effects due to the
change of geodetic datum (reference ellipsoid) when we consider
different areas. Since we shall return to this item at the end of the
paragraph, we won’t dwell on it here.

The approach in (d), presented in Lehman (2000), is the only one,
for the moment, taking into account that typically geodetic data on
land and ocean differ significantly leading, for the globe, to the
formulation of mixed BVP’s, the so-called Altimetry Gravimetry
problems. The analysis is more directed to study the uniqueness of
the solution of the modified BVP’s so we shall not go into details
here apart from underlining that in the future, considering the global
problem in the form of mixed BVP is mandatory if we want to be
realistic.

The local approach to the height datum determination, (e), has
been proposed by Milbert (1995) and Forsberg (2000). This ap-
proach is undoubtedly appealing because it is reducing the problem
to the use of a realistic data set and also because it exploits the full
power of modern approaches to the geoid estimation, like the so-
called Least Squares Collocation Theory (cf. Heiskanen & Moritz
1990), i.e. the application of the principle of minimizing a mean
square estimation error in a class of estimators linear in the ob-
servations, represented as functionals of the unknown anomalous
potential T, which in turn is considered as a random field endowed
with an isotropic covariance function.

Let us accept that a statistical approach like collocation can pro-
vide a reasonable local solution of the BVP depending on the avail-
able data in many areas, Ai , generally not covering the whole Earth
surface, one can use the observation equations of gravity anomalies,
localized at points Pi j ,

	g(Pi j ) =
(

−∂T

∂r
− 2

r
T

)
Pi j

+ 2

r
δWi , Pi j ∈ Ai (20)

as well as the ‘vertical’ observations from GPS

ζ (Pis) = 1

γ
T (Pis) − 1

γ
δWi , Pis ∈ Ai . (21)

These equations can then be treated in the typical collocation
approach with T, corrected by a known global model for long wave-
lengths and by the residual terrain correction to account for short
wavelengths, as an unknown random field and δWi as unknown pa-
rameters. This approach has to be pursued even if data are given
in a single area, if, afterwards, we want to be able to compute the
transformation between the local geodetic datum and a geocentric
datum. Otherwise our height anomalies will all be known up to an
arbitrary (almost) constant bias.

We come now to a precise definition of the problem we want
to treat in this paper (Item f). For the sake of simplicity we shall
treat it with only two geodetic datums, one geocentric, based on
the ellipsoid E0, one local, based on an ellipsoid EL rototranslated
with respect to E0. Hereafter we shall use the indexes 0 and L for
quantities referring to E0 and EL respectively.

The data, given in a local area A, are:

(i) Gravimetric/leveling data{
W̃ (P) = U0 − C(P) ∀P ∈ A

g(P),
(22)

where gravimetry directly supplies g(P) and, combined with lev-
elling, C(P); to this we add the knowledge of a normal field U (P)
with the exact value of µ, of a global (truncated) model TM (P) and
a digital terrain model, enabling us to compute a residual terrain
potential TRT C and its functionals.

(ii) Classical geodetic networks data

{ϕL (P), λL (P)} (23)

propagated to any point P in A, as it is usually done in mapping
practice, and given in the local geodetic datum.

(iii) GPS data, which can be collected for a number of stations
Ps ∈ A in the vectors

r 0(Ps) ⇔ ϕ0(Ps), λ0(Ps), h0(Ps), (24)

we assume that the origin of the local height system, P̄ , is also
among the Ps , so that in P̄ we know

r 0(P̄) (25)

as well as

r L (P̄) (26)

as it comes from the fact that by definition

ζL (P̄) = 0. (27)

In this equation we are implicitly assuming that P̄ is a tide gauge
point and that the local datum EL is chosen so as to pass through P̄ .
Our purpose is to find the transformation between the two geodetic
datums as well as T (P) and δW , what allows us to compute ∀P ∈ A

ζL (P) = TL (P) − δW

γ
, (28)

and then r L (P) and r 0(P) too.
In addition transforming ζL to ζ0 and then this to N0, through

eq. (7), we can for any new GPS point derive the corresponding
orthometric height (GPS levelling) from

HP = h0P − N0P , (29)

the height HP will then be referred to the height datum with
origin P̄ .
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Table 2. Approximate formulae for the
normal field used through the paper; rela-
tive accuracy in the range 10−5, 10−6.

U (ϕ, h) = U0 − γe(ϕ)h − 1/2γ ′
e(ϕ)h2

γ (ϕ, h) = γe(ϕ) + γ ′
e(ϕ)h + 1/2γ ′′

e (ϕ)h2

γe(ϕ) = �0(1 + 5, 30244 · 10−3 sin2 ϕ)
γ ′

e(ϕ) = −�′
0(1 − 1, 457 · 10−3 sin2 ϕ)

γ ′′
e (ϕ) = �′′

0 sin 2ϕ

γ (ϕ, h) = −γ (ϕ, h)ν − H (ϕ)eϕ

U0 = 62, 636878 · 106 m2 s−2

�0 = 0, 9780327 · 106 mGal
�′

0 = 0, 30877 · mGal m−1

�′′
0 = 72 · 10−9 mGal m−2

H (ϕ) = 0, 814 · 10−3 sin 2ϕ mGal m−1

3 T H E S O L U T I O N

We shall propose the solution of the height datum/geodetic datum
problem in 10 steps. To be more specific in the rest of the paper
we shall adopt the approximate formulae in Table 2, which are well
suited for our purposes, especially to compute orders of magnitude.

3.1 Step 1: Transformation between E 0 and EL

By r 0 we mean the algebraic position vector, r 0 = [x0, y0, z0]+, in
terms of the Cartesian triad attached to the ellipsoid E0, with Z0

along the symmetry axis of E0. An analogous notation holds for r L .
The small rototranslation between EL and E0 can then be expressed
by

r 0 = r L + t + ε ∧ r L (30)

where t is the position of the centre of EL in terms of E0 coordinates,
while ε is the infinitesimal rotation vector. The inverse of eq. (30) is

r L = r 0 − t − ε ∧ r 0. (31)

To be more specific we shall assume that |t | is at most of the order
of 102 m and ε is also such that R|ε| = 0(102 m) with R ≡ 6.300 km
(i.e. |ε| is of the order of a few arcseconds).

3.2 Step 2: Anomalous potential

Let us first recall that by U (r ) we mean the normal potential com-
puted according to

r → (ϕ, λ, h) → U (ϕ, h), (32)

which is a function analytically well specified. Accordingly, when
we have to express a normal potential attached to one of the two el-
lipsoids we have only to change the argument U (r 0), U (r L ) because
U is always the same function.

For instance if r 0P , r L P refer to the same point P in space, by
using eq. (30) we have to the first order,

U (r 0) − U (r L ) = γ (r L ) · (r 0 − r L ) = γ (r L ) · (t + ε ∧ r L ). (33)

Now, recalling that

T0(P) = W (P) − U (r 0P ) and TL (P) = W (P) − U (r L P ),

we get immediately

TL (P) − T0(P) = γ · (t + ε ∧ r ). (34)

Let us explicitly remark here that, as customary in geodesy, we can
neglect the index 0, L for quantities which are already multiplied
by infinitesimals of the first-order, like r in (35).

3.3 Step 3: Telluroids

A telluroid is an approximate surface used for the linearization of
the relevant geodetic BVP; it has to be computed with known data.
In our case, corresponding to a foot-point on the ellipsoid with
coordinates (ϕ, λ), we have a height h̃ determined by solving the
equation

W̃ (P) = U (ϕP , h̃). (35)

Here W̃ (P) refers to the approximate true potential which is a known
function according to eq. (22).

In a pure spherical approximation, eq. (35) becomes

h̃ P = µ

W̃ (P)
− R (R = radius of the reference sphere) (36)

showing explicitly that h̃ P is datum independent. In the case eq. (35)
a simple differentiation shows that a change of datum would give

δh = 1

γ

∂U

∂ϕ
δϕ

and, for δϕ of the order of few arcseconds and an altitude h ∼
2000 m, this, (cf. Table 2), is much less than 1 mm and therefore
negligible.

Accordingly we can write an explicit approximate formula for
h̃(P) (cf. Table 2)

h̃(P) = U0 − W̃ (P)

γe(ϕP )
− 1

2

γ ′
e(ϕP )

γe(ϕP )

(
U0 − W̃ (P)

γe(ϕP )

)2

(37)

which is, for any practical purpose, datum independent. So the same
function h̃(ϕ, λ), given by eq. (37), can be used to construct a tel-
luroid S̃L attached to EL or the telluroid S̃0 attached to E0, i.e. the
two telluroids do not coincide.

3.4 Step 4: Height anomalies

Recalling eqs (10) and (34), we can write

h0(P) − hL (P) = h̃(P) + ζ0(P) − h̃(P) ± ζL (P) = ζ0 − ζL

= T0 − δW

γ
− TL − δW

γ
= 1

γ
(T0 − TL )

= −γ

γ
· (t + ε ∧ r ) = ν · (t + ε ∧ r ). (38)

3.5 Step 5: Linearized gravity observation equations

We can use eqs (10) and (11) to write


	gL = −∂TL

∂h
+ γ ′

γ
TL − γ ′

γ
δW = BTL − γ ′

γ
δW

	g0 = −∂T0

∂h
+ γ ′

γ
T0 − γ ′

γ
δW = BT0 − γ ′

γ
δW

(39)

which yields

	gL − 	g0 = B(TL − T0) = B[γ · (t + ε ∧ r )]. (40)

An easy but lengthy computation and a judicious simplification
of eq. (40) gives

	gL − 	g0 = H (t · e ϕ + �ε · eλ) (41)

where H (ϕ) is as in Table 1, e ϕ, eλ are defined in Table 1 and

� = a{1 − e2 sin2 ϕ}−1/2.

Though small, the term (41) cannot be neglected since it can amount
to ∼10 cm for translations t and rotations �ε up to 100 m.
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3.6 Step 6: The BVP

Let us start here by observing that T0, TL are both harmonic func-
tions. For the geocentric T0 this is standard; on the contrary, for TL ,
one has to observe that the two centrifugal potentials of W (P) and
U (r L ) do not cancel but give rise to a term (considering only the
translation)

1

2
ω2

(
X 2

0 + Y 2
0

) − 1

2
ω2

[
(X0 − tX )2 + (Y0 − tY )2

]

= ω2 (X0tX + Y0tY ) − 1

2
ω2

(
t2
X + t2

Y

)
which is linear in X0, Y0 and therefore harmonic. Nevertheless, for
the same reason, we expect TL not to be regular at infinity.

It follows that if we want to write and use the BVP theory for
an anomalous potential, it is safer to do it for T0 rather than for TL ,
though the final approximations implied are known to be very small.

Exploiting eqs (39) and (40) we have


	T0 = 0

BT0 = 	gL − H (t · e ϕ + �ε · eλ) + γ ′

γ
δW.

(42)

For clarity, we should emphasize that while the Laplace equation
in (42) has to hold in the exterior of the telluroid S̃0 (see Step
3), the boundary condition can hold only on that part of S̃0 which
corresponds to the data area A.

So strictly speaking eq. (42) is not a BVP and in fact it is a
problem with a non-unique solution. Nevertheless the knowledge
of a global model TM and of a residual height model of the terrain,
with the corresponding residual potential correction TRT C , can help
in finding a very acceptable solution by a so-called remove-restore
concept (cf. Moritz 1980). The idea is that by subtracting from 	g
the terms corresponding to very long wavelengths (calculated from
TM ) and those with very short wavelengths (calculated from TRT C )
one is left with a fairly smooth field in the area A, displaying very
little correlation with the field in distant areas. At this point one
can apply any solution method, from the use of Stokes’ function,
to the use of a stochastic approximation technique like collocation
(cf. Moritz 1980) to compute the relevant residual potential and then
add back to it the contribution of TM and TRT C .

What is relevant here is that to a kind of BVP{
	u = 0

Bu = f on A,

we attach a linear operator S such that

u = S{χA f }
where χA(P) = 1 on A and χA(P) = 0 elsewhere.

If we now use this operator S for the problem (42), exploiting its
linearity one gets

T0 = S{χA	gL} − S{χA Ht · e ϕ} ± S{χA H�ε · eλ}

+ S

{
χA

γ ′

γ
δw

}
= T̃ 0 − t · η

1
− ε · η

2
+ δW k (43)

where we have put

T̃ 0 = S{	gL}, k = S

{
γ ′

γ
χA

}

η
1

= S{HχAe ϕ}, η
2

= S{H�χAeλ}.
(44)

One has to stress that T̃0 is exactly the local solution computed by
ignoring any problem of height or geodetic datum and using only the

gravity anomaly 	gL obtained from the normal potential formula
and local coordinates.

Moreover η
1
, η

2
, k are very smooth functions of the computation

point P, so that the connection terms in (42) appear mostly as a
linear trend on A.

3.7 Step 7: Space (GPS) observations; the planimetric part

As we said in Section 2, geodetic space observations, in particular in
GPS observations which are the most frequent, are able to provide us
with the geometric positions of points S with respect to a geometric
ellipsoid E0. The position of P is collected in the vector r 0 which
we consider as the outcome of the space observation.

Let us use the decomposition (Fig. 2)

r P = r Q + hνP (45)

for both datums E0 and EL .
We have then

r 0P − r L P = r 0Q − r L Q + h0P (ν0P − νL P ) + (h0P − hL P )νL P

= t + ε ∧ r P (46)

Recalling eq. (38) and defining the vertical projector Pν

Pνa = (a · ν)ν, (47)

we can rearrange eq. (46) as

(I − Pνi )
(

t + ε ∧ r Pi

) = (
r 0Qi

− r L Qi

) + h0Pi

(
ν0Pi

− νL Pi

)
.

(48)

We can observe that this is an observation equation for the tan-
gential component of t + ε ∧ r at the GPS type station Pi , because
the second member is fully known from observations, according to
the scheme

GPS → ϕ0i , λ0i , h0i → r 0Qi
, h0Pi , ν0Pi

Classical → ϕLi , λLi → r L Qi
, νL Pi .

3.8 Step 8: Space (GPS) observations of levelling type

From GPS observations we indeed know h0Pi and at the same time
from W̃ (Pi ) we know h̃ Pi . Then we know ζ0Pi = h0Pi − h̃ Pi too, and
we can write (cf. eq. 10)

Figure 2. Decomposition of the position vector of P according to the
geocentric datum.
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ζ0Pi = 1

γ
T0(Pi ) − 1

γ
δW. (49)

By using eq. (43) in eq. (49) we receive

ζ0Pi = 1

γ
T̃ 0(Pi ) − 1

γ
t · η

1i
− 1

γ
ε · η

2i
+ δW

γ
[ki − 1] (50)

Note: before continuing we have to observe that for a rough under-
standing of the results obtained up to now, we can think in terms
of spherical approximation and see that eq. (48) has basically a
geometric content, to be used for the determination of t, ε, while
eq. (50) has more a physical content to be used for the determination
of the height datum shift (1/γ )δW . As a matter of fact in spherical
approximation η

1
= η

2
= 0 so that (50) depends on δW only.

Now (48) allows a reasonable determination of both t, ε only
when the space stations (connected in a unique datum) are fairly
apart from one another so that the horizontal projections (I − Pνi )
are referred to planes with a wide spread of attitudes. If this is not
the case, i.e. when the area A is fairly small, we immediately realize
that the vertical component t ·ν can only be very poorly determined.
In addition if r Pi

are more or less parallel to some average direction
ν̄, the component of ε along ν̄ will not be adequately determined
too, because the contribution of (ε · ν̄)ν̄ ∧ r Pi

will in general be too
small.

These two small area effects however do not have a quite sym-
metrical impact on our problem; in fact t · ν is really needed only
if we want to determine the full geometric transformation, specially
the height part as we can see from eq. (38). On the other hand, if A
is small even if we do not determine (ε · ν̄) this has very little impact
in the geometric transformation

r 0 = r L + ε ∧ r L

as far as r L is very close in direction to ν̄.
Therefore, to cope with this situation, we shall add other two

steps, integrating the observation eqs (38) and (50) in such a way
that t · ν̄ can be conveniently estimated (step 9) and, if we want to
know better the whole ε, also ε · ν̄ can be well estimated (step 10).

3.9 Step 9: The tide-gauge condition

Assume that P̄ , the origin of the height datum, is a tide gauge and
it is included in the GPS stations too. Then, as claimed in eqs (25),
(26) and (27), we know both r 0P̄ and r L P̄ , so that we can add to (48)
the observation equation

r 0P̄ − r L P̄ = t + ε ∧ r L P̄ . (51)

As it is obvious (51) is certainly suited to determine t · ν P̄ .

3.10 Step 10: The azimuth condition

Traditionally the orientation of a local geodetic datum is done by
equating an ellipsoidal to the corresponding astronomical azimuth
(Heiskanen & Moritz 1990, Chapter 5). The effect of this is to place
the axes e0Z , eL Z parallel to one another. If we assume this as a
condition, we see that

ε = εeZ = ε sin ϕν + ε cos ϕe ϕ. (52)

It is then easy, after substitution into (48), to realize that ε can be well
determined, even for a small zone A, apart from the pathological case
of the poles where cos ϕ ∼= 0. This basically answers to the problem
we have formulated.

4 S U M M A R Y O F T H E R E S U L T S
A N D D I S C U S S I O N

In Section 3 we have established linearized and suitably approxi-
mated (according to our definition at the end of Section 1) observa-
tion equations, involving the unknowns of our problem, namely:

T0(P): anomalous potential with respect to a normal field attached
to a geocentric reference ellipsoid,

t , ε: rototranstlation parameters for the transformation, E0 ↔ E1,
δW : height datum parameter.

Since following the 10 steps the reader can easily lose the point
we deem it useful to summarize them making more explicit the way
in which the estimation problem is solved. Basically our observation
equations, and the constraints involving all the unknowns, are:


	T0 = 0

−∂T0

∂h
+ γ ′

γ
T0 = 	gL − H (t · eQ + �ε · �λ) + γ ′

γ
δW

(53)

here (cf. 42) the Laplace equations has to hold in the exterior of
the telluroid S̃0, (see eq. 37 and subsequent comment), while the
boundary relation (53) has to hold on the part of S̃0 that corresponds
to the area A. Then we have the ‘horizontal’ GPS equations (cf.
eq. 48)(

I − Pνi

)(
t + ε ∧ r P1

) = (
r 0Qi

− r L Qi

) + h0Pi

(
ν0Pi

− νLpi

)
(54)

where r 0Qi
− r L Qi

and ν0Pi
− νL Pi

are computed from (ϕL Qi , λL Pi ,

ϕ0Pi , λ0Pi ) and h0Pi are directly known from GPS. To (54) we can
add the ‘vertical’ GPS equations (cf. 49)

1

γ
T0(Pi ) − 1

γ
δW m = ζ0Pi = h0Pi − h̃0Pi (55)

where h̃0Pi is nothing but the telluroid height derived from eq. 37.
Already at this point if we have a sufficient spread of the vectors

νi in eq. (54) (i.e. if GPS stations Pi lying in A have separations of
an order of magnitude comparable to the Earth’s radius) (53), (54)
and (55) are capable of determining our unknowns.

The solution should be achieved on a rigourous basis, as observed
at the end of point (b) in Section 2, by including for all the equation
a noise model and treating them as in a form of an overdetermined
boundary value problem. An equivalent solution can be found by
eliminating part of the unknowns and part of the equations. This
can be done by using (53), to eliminate T0, i.e. by determining T0

as function of 	gL (observed), t, ε (unknowns) and substituting it
into (55).

Since the problem (53) is linear we can always find a linear oper-
ator S{·} such that (cf. the discussion in step 6, Section 3)

T0 = S{χA	gL} − t · S{χA He q} + ε · S{χA H�eλ}

+ δW S

{
χA

γ ′

γ

}
. (56)

In this equation, derived when we know a global model TM and
of a residual height model for the area A, if we give names to the
known quantities (cf. eq. 45)

T̃ 0 = S{χA	gL}, η
1

= S{χA HeQ}, η
2

= S{χA�eλ}

k = S

{
χA

γ ′

γ

}
,

we recognize that the unknown T0 is expressed as the actual local
solution of the geodetic BVP, T̃ 0, computed ignoring any datum
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problem, suitably corrected by terms depending on the other un-
known parameters t, ε, δW . Substituting in (55) yields

−t · η
1i

− ε · η
2i

+ 1

γ ′ [ki − 1]δW = ζ0Pi − T̃ 0(Pi )

γi
. (57)

These equations together with (54) constitute the reduced ob-
servation system for the unknowns t, ε, δW , which could now be
estimated via least squares. A rigourous application of least squares
would require, in particular, the propagation of observational noise
from 	gL into T̃ 0(Pi ) in eq. (57). Also, if the points {Pi } in A cannot
span long distances one is forced to introduce more information in
order of well estimating the parameters. In particular, to determine
t · ν one can use for P̄ the ‘tide gauge’ eq. (38)

h0P̄ − hL P̄ = ν̄ · (t + ε ∧ r P̄ )

considering that h0P̄ is known by GPS while hL P̄ = 0.
Finally if the full vector ε has to be estimated for a small area A

one can use the re-parametrization of ε in terms of one variable
only, (52), which derives from imposing the classical condition of
equality of an astronomical azimuth with the corresponding azimuth
in the local geodetic network in A. Before closing let us remind
the reader that the solution of this problem provides us with both
an enhanced estimate of the geoid over A and the full geometric
transformation between the global reference system based on E0

and with coordinates (ϕo, λ0, h0) and the local one based on EL and
described in terms of the classical coordinates (ϕL , λL , H ).

Finally, What we proved here is not that the spherical approxi-
mation, with its splitting of the determination of δW from t, ε, is
wrong; rather we have proved that it is not sufficient, at the 1 cm
level, if the global rototranslation produces shifts of coordinates of
the order of 100 m. Nevertheless one could always think of using
a purely spherical approximation to determine gross estimates of
δW, t, ε and then one could use a new local datum E ′

L much closer
to E0, to reproduce the whole computation and come to a final es-

timate. Naturally the main road stays for us in using the approach
presented here.
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