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S U M M A R Y
At global as well as at regional scale, the lithosphere appears faster to Love waves than to
Rayleigh waves. This Love–Rayleigh discrepancy can be modelled by introducing transverse
isotropy in the upper mantle. In some regions however, it is so large that the question arises
as to whether part of it could be an artefact related to the presence of heterogeneities in the
lithosphere. Using a multiple-scattering scheme to model surface waves in 3-D structures, we
analyse the influence of small-scale heterogeneities in the lithosphere on the Love–Rayleigh
discrepancy in the period range 25 to 60 s. Small-scale heterogeneities tend to lower the
apparent phase velocity of the surface waves, and have a larger effect on the Love waves than
on the Rayleigh waves. This is not due to mode-coupling, which plays a negligible role here,
but to the interference of the primary field with the one backscattered twice. For models with
S-wave velocity variations of rms 2.5 per cent, and spatial correlations at distances of 20 to
100 km, we find that the Love waves are on average and at most 0.1 per cent slower than the
Rayleigh waves. This apparent Love–Rayleigh discrepancy varies linearly with the variance of
S-wave velocity variation in the structure. We conclude that small-scale heterogeneities do not
contribute significantly to the large Love–Rayleigh discrepancies of 4 to 9 per cent observed in
some regions, since they produce an apparent discrepancy which is negligible in comparison,
and which even has the opposite sign.

Key words: anisotropy, inhomogeneous media, Love waves, Rayleigh waves, surface waves,
wave propagation.

1 I N T R O D U C T I O N

Modern global seismic models of the Earth include anisotropy at dif-
ferent depths. The best resolved anisotropic parameter in the litho-
sphere is ξ , which expresses the difference between the velocity
of horizontally propagating SH and SV waves. Globally, SH waves
propagate faster than SV waves in the upper mantle. The velocity
difference is of about 4 per cent in the Preliminary reference Earth
model (PREM) of Dziewonski & Anderson (1981) and 3 per cent
in the AK135 model of Kennett et al. (1995). Much of the evi-
dence for this anisotropy comes from measurements of Love and
Rayleigh wave phase velocities and the so-called Love–Rayleigh
discrepancy, expressing that Love waves usually have a phase ve-
locity larger than predicted by isotropic models that fit the phase
velocity of the Rayleigh waves.

Locally, and especially in continental regions, the Love–Rayleigh
discrepancy may reach values much larger than those found in global
models. For example, analysing Love and Rayleigh waveforms,
Debayle & Kennett (2000) infer that SH waves have velocities up
to 9 per cent larger than SV waves in Australia. This velocity dif-
ference can hardly be explained by a pyrolitic mantle model where
crystals would be perfectly oriented. An horizontal flow in the man-

tle creates a Love–Rayleigh discrepancy which varies with azimuth
and which is mostly positive (i.e. SH waves faster than SV waves,
as in global models), whereas a vertical flow produces a negative
discrepancy without azimuthal variations (Maupin 1985). In regions
of large positive discrepancy, one would thus expect to observe im-
portant azimuthal variations of the phase velocities. In Debayle &
Kennett (2000), the region of large difference between SH and SV
wave velocities does not correspond to the region with largest az-
imuthal velocity variation. In other continental regions, as in Iberia
(Maupin & Cara 1992), Germany (Friederich & Huang 1996) or
South Africa (Freybourger et al. 2001), important positive Love–
Rayleigh discrepancies do not seem to be associated with strong
azimuthal variations of the Rayleigh wave phase velocities. The
surface wave velocity pattern in these regions is also difficult to
reconcile with a geodynamic model compatible in particular with
SKS-splitting.

Although intrinsic anisotropy is undoubtedly responsible for part
of the Love–Rayleigh discrepancy, the question arises as to whether
part of it could be an artefact created by propagation in laterally het-
erogeneous structures, as suggested by Levshin & Ratnikova (1984).
In this paper, we analyse the effect of small-scale isotropic hetero-
geneities in the lithosphere on the phase velocities of Love and
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Figure 1. Maps of the phase anomalies of the (a) Rayleigh wave and (b) Love wave fundamental modes at 25 s period in the model shown in Fig. 2. The phase
anomaly is expressed in radians. The arrows indicate the direction of the incident surface wave.

Rayleigh waves in the period range 25 to 60 s, with emphasis on
the Love–Rayleigh discrepancy they can produce. By isotropic we
mean that the material is isotropic, not necessarily the shape of the
heterogeneities.

Heterogeneities change the apparent velocity of elastic waves in
a complex way. In structures with large-scale heterogeneities, waves
favour paths through fast regions and therefore appear on average to
travel faster than the mean velocity of the structure would suggest
(Wielandt 1987). On the other hand, small-scale heterogeneities pro-
duce multiple-scattering which tends to decrease the waves apparent
velocity (Shapiro et al. 1996b; Herman 2001). For surface waves,
heterogeneities may in addition produce mode-coupling, which may
in turn modify the apparent velocity of the total wavefield. The dif-
ferent mechanisms may affect differently the Love and the Rayleigh
waves, producing an apparent Love–Rayleigh discrepancy. The ef-
fect of small-scale heterogeneities on surface wave propagation has
been studied in 2-D structures by Kennett & Nolet (1990) and Park
& Odom (1999) in particular. Kennett & Nolet (1990) show that
upper mantle heterogeneities on scales of 300 to 400 km and with
S-wave deviations of ±2 per cent do not affect Rayleigh waves at pe-
riods larger than 20 s. Park & Odom (1999) develop a formalism to
calculate the scattering of multimode wavefields by corrugated inter-
faces. They present an application in a shallow-water environment
with emphasis on the attenuation of high-frequency guided waves
by irregularities of the water bottom. In the present paper, we use
a multiple-scattering scheme developed by Maupin (2001), which
has the advantage over previous studies of being able to take into
account the 3-D nature of the scattering. After a short description of
the method and of the characteristics of the heterogeneous models
we have used, we analyse the amplitude of the Love–Rayleigh dis-
crepancy in models of the lithosphere with small heterogeneities at
different scales, and in models of corrugated Moho.

2 S H O R T D E S C R I P T I O N
O F T H E M E T H O D

The wavefield is calculated with a multiple-scattering scheme for
modelling surface wave propagation in 3-D structures (Maupin
2001). A monochromatic plane surface wave is incident on a 3-D
heterogeneous structure, which is here a realization of a stochas-
tic model with predefined characteristics. The structure is separated

into a laterally homogeneous reference structure and superimposed
lateral heterogeneities. The lateral heterogeneities, which act as sec-
ondary sources, scatter energy away from the dominant propagation
direction and produce mode coupling. The method calculates the
total wavefield in the 3-D structure, expressed as a sum of modes of
the reference structure. No approximation is made concerning the
azimuthal variation of the scattering, and in particular no assump-
tion needs to be made on the strength of the backscattered field. The
method is based on a Neumann series, which means that multiple-
scattering is included in an iterative way. The first iteration gives
the Born approximation, and each new iteration adds one order of
scattering to the total wavefield.

As an example, Fig. 1(a) shows the phase of the vertical com-
ponent of a Rayleigh wave fundamental mode at 25 s period prop-
agating through the structure shown in Fig. 2. Fig. 1(b) shows the
same for the transversal component of the Love wave fundamen-
tal mode. In both cases, the phase is measured at the free surface
and we show the difference with respect to the phase in the ho-
mogeneous reference structure, which is here the PREM model
(Dziewonski & Anderson 1981) with a 35 km thick continental crust.
The monochromatic plane wave, which is either a pure Rayleigh
wave fundamental mode or a pure Love wave fundamental mode,
is incident onto the heterogeneous structure from the left, as shown
by the two arrows on Figs 1(a and b). Although the wavefield loses
its simple plane structure in the 3-D model, it keeps a dominant
propagation direction similar to the initial one. We denote therefore
the x-direction, or direction of initial propagation direction, simply
for direction of propagation in the rest of the text. Similarly, the
perpendicular horizontal direction, denoted y, is simply called the
wave front direction.

From the phase anomaly φ(x, y) of the total wavefield, the ap-
parent phase slowness δs(x, y) in the structure is simply calculated
by:

δs(x, y) = −T

2π

1

x
(φ(x, y) − φ(x0, y)) (1)

where x is the distance in the initial propagation direction, y is the
horizontal distance along the incident wave front, and T is the period
of the wave. x0 is a reference distance which we would normally
set at x = 0. Due to boundary effects in the numerical code, it is
however more appropriate to use a reference distance slightly inside
the heterogeneous structure. We use x0 = 50 km in the examples
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Figure 2. Relative variations in S-wave velocity in the 3-D model used to calculate the wavefields shown in Figs 1, 3 and 4. The top panel shows an horizontal
cross-section at 100 km depth and the bottom panel shows a vertical cross-section at horizontal distance 500 km. The velocity variations have an rms of 2.5 per
cent and a gaussian autocorrelation function with a correlation distance of 100 km.

shown in later sections. A minus sign is included to take into account
the phase Fourier convention in Maupin (2001). When there are
several modes involved, we use the phase of the total wavefield.

In addition, we calculate a mean phase slowness as a function of
propagation distance by taking the mean over the whole wave front:

δs̄(x) = 1/A

∫ A

0
δs(x, y) dy (2)

where A is the dimension of the model in the y-direction.
The results are discussed in terms of apparent phase velocity,

the inverse of the apparent slowness. We calculate the phase ve-
locity anomalies of Love and Rayleigh waves in different models
and identify the possible difference in anomaly with the apparent
Love–Rayleigh discrepancy. A more correct procedure would be
to invert the phase velocity anomalies to give the SH- and SV-
wave velocity depth profiles and to then compare the two.This
would require calculating the apparent phase velocities at a much
larger number of periods, instead of at two periods only as we
are doing now. Our simplified procedure is valid only if the par-
tial derivatives of the Love and Rayleigh wave phase velocities
are sufficiently similar. We tested that point by inverting a con-
stant Rayleigh wave phase velocity anomaly over a period range
of 15 to 100 s into an S-wave velocity perturbation with depth,
and then calculating the Love wave phase velocity anomaly pro-
duced by this model perturbation. In PREM-like models and at 25 s
period, this resulted in phase velocity anomalies for Love waves

about 20 per cent larger than for Rayleigh waves. This difference
would not affect our conclusions and we can assume that our simpli-
fied approach gives a reasonable evaluation of the Love–Rayleigh
discrepancy.

3 C H A R A C T E R I S T I C S O F T H E M O D E L S

Fig. 2 shows two cross-sections of the 3-D model in which the wave-
fields shown in Fig. 1 are calculated. Lateral variations are located
from 0 to 200 km depth. The S-wave velocity variations have an rms
of 2.5 per cent and a spatial correlation following a gaussian function
with a correlation length of 100 km. The model has been generated
by 3-D inverse Fourier transformation of a spectrum with random
phase and power spectrum proportional to exp(−a2k2/4), where k
is the amplitude of the circular wavenumber vector, and a is the cor-
relation length (100 km in the present model). The relative P-wave
velocity and density variations follow the relative S-wave velocity
variations, with amplitude ratios of 1 for the P-wave velocity and
0.4 for the density.

Two other models with smaller correlation distances have also
been used. The first one has correlation lengths equal to 20 km in
all directions, and the second one has correlation lengths equal to
100 km in the two horizontal directions and 20 km in the vertical
direction. These correlation lengths have been chosen in order to test
the influence on the Love–Rayleigh discrepancy of heterogeneities
at a scale similar to the wavelength and smaller. Heterogeneities
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larger than 500 km in horizontal dimensions, or larger than the
wavelength, are not analysed here as they would require models
with dimensions which would necessitate using another numerical
technique to calculate the wavefield.

The rms variation in our models is 2.5 per cent, leading to peak-
to-peak variations of about 15 per cent. Rms variation of the same
magnitude but at smaller correlation lengths have been found in
the upper mantle by array studies using short-period P waves
(Charette 1991; Hestholm et al. 1994; Wu & Flatté 1990). Mod-
els of the S-wave velocity variation at these correlation distances
are more sparse. Igel & Gudmundsson (1997) model S-wave prop-
agation in the mantle at periods similar to ours. Their model with
largest rms variation and smallest correlation length is similar to
the model shown here in Fig. 2. Nolet & Moser (1993) analyse the
effect of mantle heterogeneities on the S-wave dispersion and favour
a model with upper mantle variations with rms of 3.5 per cent at
200 km correlation length.

As changes in crustal thickness influence Love and Rayleigh wave
phase velocities differently and may bias estimates of the Love–
Rayleigh discrepancy (Debayle & Kennett 2000), we analyse also
the effect of Moho corrugations. We use two models with depth
variations of the Moho having an rms of 1 km, like in Hestholm
et al. (1994), and with spatial correlations following gaussian func-
tions with correlation distances of 20 and 100 km.

The horizontal dimensions of the models are 1000 km, with a
sampling interval of 5 km. Numerical considerations are of course
a limiting factor when choosing the dimensions of the model. It
has, however, to be large enough to be representative of a random
structure, and to ensure that wave phenomena such as wave front
healing converge sufficiently. Significant Love–Rayleigh discrepan-
cies have been observed by interstation phase measurements over
regions which are not more than a few hundred kilometres wide
(Wielandt et al. 1987; Friederich & Huang 1996; Maupin & Cara
1992; Freybourger et al. 2001). Measuring apparent phase veloc-
ity over a distance of 1000 km should therefore be sufficient to
test if this observed discrepancy is biased by small-scale hetero-
geneities. The sampling interval of 5 km has been chosen to en-
sure a good representation of the forward as well as backscattered
fields.

4 R E S U L T S I N M O D E L W I T H 1 0 0 K M
C O R R E L A T I O N D I S T A N C E

Fig. 1 shows the phases of the Rayleigh and Love waves at 25 s
period in the model shown in Fig. 2, with small-scale heterogeneities
having correlation distances of 100 km in all directions. We notice
that the pattern of phase variation is very similar for the two waves
and follows obviously the zones of high and low velocities in the
model. The amplitude of the phase variation is significant, with a
total variation of about π/2. The pattern is more smooth for the
Rayleigh wave than for the Love wave, for which we can see an
interference pattern related to the presence of stronger reflected
waves. Let us also note that large amplitude variations occur across
the structure. The effect on the amplitudes is larger than on the
phases. This is not surprising as phases, or traveltimes, are usually
a more stable element in the wavefield than the amplitudes. In this
model, the amplitude of the Rayleigh wave varies by a factor of
6 across the structure, and the amplitude of the Love wave by a
factor of 3. This proves that the strength of heterogeneity we have
chosen is not small and is able to produce significant effects on the
wavefield.

Figure 3. Mean phase velocity anomaly as a function of propagation dis-
tance in the model shown in Fig. 2 (2 lowest curves) and in a model with
opposite velocity variations (2 upper curves). The velocity anomalies for
Rayleigh waves are shown as solid lines and for Love waves as dashed lines.

4.1 Amplitude of the Love–Rayleigh discrepancy

The two lowest curves of Fig. 3 show the mean phase velocity
anomalies for the Rayleigh and Love waves, derived from the phases
shown in Fig. 1, and plotted as a function of propagation distance
into the 3-D structure. Although they start at a propagation distance
of 200 km, meaningful values are obtained only for propagation over
at least a few correlation lengths, that is at the largest propagation
distances in the present model.

The two upper curves show the apparent velocities in a model
identical to the one presented in Fig. 2, but with opposite veloc-
ity variations. This enables us to separate in the phase velocity
anomalies the bias related to the particular model we are using,
which changes sign when changing model, from the part which is
more intrinsically related to the fact that the model has small-scale
heterogeneities.

The two Rayleigh wave apparent velocities vary in a symmet-
ric way, but their mean is slightly below zero. This is similar for
Love waves, but with a mean at a low velocity. Modelling other
realizations of the same random structure gave similar results. Het-
erogeneities tend to reduce the apparent velocities of the Rayleigh
waves less than of the Love waves, which are on the average slower
than Rayleigh waves by 0.005 km s−1, or about 0.1 per cent.

In addition to calculating the mean phase velocity variation along
the wave front, we analyse the apparent velocity at different points
along the wave front by plotting δc(x, y) as a function of x for
different y values. This corresponds more closely to an observa-
tional situation where the phase at two different isolated stations are
used to calculate the interstation phase velocity. The Love–Rayleigh
discrepancy, or difference between the phase velocity anomaly of
the Love wave and phase velocity anomaly of the Rayleigh wave,
is shown in Fig. 4 for propagation distances larger than 200 km.
Although there is of course some scatter in the Love–Rayleigh dis-
crepancy measured at different y-locations, most values are below
0 from 700 to 1000 km propagation distance, and the rms of the
discrepancy is smaller than the mean discrepancy itself.

4.2 Effect of mode-coupling

The results shown here are those calculated with one mode
only. Mode coupling, either Love–Love, Rayleigh–Rayleigh or
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Figure 4. Love–Rayleigh discrepancy as a function of propagation distance in the model shown in Fig. 2, measured along lines located every 5 km and
perpendicular to the initial wave front.

Love–Rayleigh coupling, proved to be negligible in all the stochas-
tic models we have tried. As an example, taking into account
the coupling of the fundamental mode of the Love wave with its
first overtone decreases the mean apparent phase velocity by only
0.0005 km s−1. This is because the amplitude of the first over-
tone reaches only 2 per cent of the amplitude of the fundamen-
tal mode, and is not able to modify significantly the phase of the
total field. For Rayleigh waves, the relative amplitude of the first
overtone generated by coupling to the fundamental mode reaches
only 1 per cent and the apparent phase velocity modification due
to this coupling is even smaller than for Love waves. Similarly,
Love–Rayleigh coupling modifies the apparent phase velocities by
at most 5 × 10−5 km s−1. Altogether, mode-coupling does not con-
tribute to the Love–Rayleigh discrepancy we measure in small-scale
heterogeneous structures. Neglecting it modifies the Love–Rayleigh
discrepancy by at most 10 per cent.

4.3 Effect of multiple-scattering

In all the examples we show, the wavefield includes waves scat-
tered up to three times, but the results are very similar with two
orders of scattering only. On the other hand, there is no Love–
Rayleigh discrepancy at only one order of scattering. The ampli-
tude of the discrepancy varies with the variance of the lateral vari-
ations. Taking into account the scale difference, the reduction in
velocity which we find for Love waves is actually similar to the
one found by Shapiro et al. (1996a) for high-frequency P waves in
stochastic 1-D models. At a wavelength of four times the correla-
tion length, they find a velocity reduction of 2.5 per cent in models
with 15 per cent rms variation. Assuming a quadratic variation, that
would produce a velocity reduction of nearly 0.1 per cent for an
rms of 2.5 per cent. A quantitative comparison with the 2-D results
of Herman (2001) is more difficult as he considers only density
variations.

These different results lead us to conclude that the dominant
mechanism which affects the phase of surface waves in structures
with small-scale heterogeneities is, as for body waves, the interfer-
ence of the primary field with the one which is backscattered twice.
This yields a decrease of the apparent velocity which is proportional
to the square of the strength of the backscattered field. Inspection of
the azimuthal pattern of scattered surface waves shows that the Love
waves have a strong backscattered field relative to Rayleigh waves
(Snieder 1986; Maupin 2001). This is also apparent in Fig.1, where
the interference of the primary field with a backscattered field is
much more apparent for the Love wave than for the Rayleigh wave.
The velocity decrease is therefore usually stronger for the Love wave
than for the Rayleigh wave, leading to a negative Love–Rayleigh
discrepancy.

4.4 Results at longer period

At 60 s period, the mean apparent discrepancy is smaller than at
25 s by a factor of 2. In addition, there is more scatter than in
Fig. 4 in the discrepancies measured at different y locations.

5 R E S U L T S I N M O D E L S W I T H
S M A L L E R C O R R E L A T I O N D I S T A N C E S

In Figs 5 and 6, we show the mean phase velocity discrepancies
measured in two models with smaller correlation distances.

The model used in Fig. 5 has correlation distances equal to
100 km in the two horizontal directions and 20 km in the verti-
cal one. Due to smaller correlation lengths in the vertical direction,
the mode-coupling is even smaller here than in the previous section.
The mean Love–Rayleigh discrepancy, equal to −0.003 km s−1, is
only slightly smaller than in the previous case.

For a model with correlation distances of 20 km in all direc-
tions, convergence to a stable Love–Rayleigh discrepancy occurs at
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Figure 5. The same as Fig. 3 for a model with 100 km correlation distances
in the horizontal directions and 20 km in the vertical direction.

Figure 6. The same as Fig. 3 for a model with 20 km correlation distances
in all directions.

smaller propagation distances, as can be seen in Fig. 6. In this case,
the Love–Rayleigh discrepancy is the dominant feature of the fig-
ure, and variations related to changing sign of the heterogeneities are
smaller. As in the other models, the apparent phase velocity of the
Love waves decreases more than the apparent phase velocity of the
Rayleigh waves, leading to a negative Love–Rayleigh discrepancy
equal to −0.004 km s−1. Despite the smaller correlation lengths,
there are still significant variations of ±0.01 km s−1 in the apparent
phase velocities measured at different y-locations. If one can allow
for larger variations at these correlation lengths, the Love–Rayleigh
discrepancy can increase to 0.015 km s−1 at 25 s period, equivalent
to 0.4 per cent of the phase velocity, and 0.13 km s−1 at 60 s period.

6 R E S U L T S I N M O D E L S
W I T H C O R R U G A T E D M O H O

Fig. 7 shows the mean apparent phase velocity of Rayleigh and Love
waves propagating in a model with a corrugated Moho discontinuity.
The rms of the Moho depth variation is 1 km, as in the models of
Hestholm et al. (1994), and the correlation distance is 20 km. The

Figure 7. The same as Fig. 3 for a model with corrugated Moho. The rms
of the Moho variation is 1 km and the correlation distance is 20 km.

main difference with the results in 3-D models is that the phase
velocity anomalies are dominantly positive. The Love waves are still
slower than the Rayleigh waves, but the Love–Rayleigh discrepancy
is of only −3 × 10−3 km s−1, that is a factor of 10 smaller than for
the 3-D heterogeneities of the previous section. Similar values of
Love–Rayleigh discrepancies are found in models with correlation
distances of 100 km.

7 C O N C L U S I O N

Lithospheric small-scale heterogeneities do not perturb strongly or
very differently the phase velocities of the Love and Rayleigh waves
in the period range 25 to 60 s. They produce no significant mode-
coupling. They reduce slightly the waves apparent phase velocities
by a mechanism which is similar to the one acting on body waves:
energy backscattered twice interferes with the primary wavefield
with a delay, and thus reduces the waves apparent phase velocity.
Since backscattering is usually stronger for Love waves than for
Rayleigh waves, the reduction in velocity is larger for the Love
waves, producing on average a negative Love–Rayleigh discrepancy.

The amplitude of the discrepancy is not strongly dependent
on the correlation distances in the models, and varies linearly
with the variance of the velocity variations. For rms variations of
2.5 per cent, leading to peak-to-peak variations of the order of
15 per cent, we find an average Love–Rayleigh discrepancy of about
−0.004 km s−1, or −0.1 per cent at 25 s period, and −0.05 per cent
at 60 s period. This is negligible compared to the Love–Rayleigh
discrepancies of 4 to 9 per cent which are observed, and has in addi-
tion the opposite sign. Corrugations of the Moho discontinuity with
an rms of 1 km produces even smaller effects.

Our knowledge of the amplitude of the actual small-scale S-wave
velocity variations in the lithosphere is of course very poor. How-
ever, considering the difference in amplitude between the observed
and the apparent Love–Rayleigh discrepancy we measure here, the
fact that they have opposite signs, and the fact that the models we
have been using produce significant wave amplitude variations, in-
creasing the variance in the models does not seem to be an option
for better explaining the observed discrepancy.

Very large Love–Rayleigh discrepancies, which are difficult to
explain with realistic models of lithospheric anisotropy, or which
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do not fit with other seismological data like SKS-splitting measure-
ments, cannot be explained by the effect of small-scale lateral het-
erogeneities. As this study is limited to models with heterogeneities
at scales smaller than about 500 km, this of course does not pre-
clude that larger scale heterogeneities, like continental margins,
large Moho depths variations, or regional heterogeneities, may be
responsible for part of the discrepancy. This kind of larger scale vari-
ation may introduce non linear phenomena, like mode-coupling or
ray-bending, which are usually not accounted for in the procedures
used to analyse the data, and which may affect differently the Love
and the Rayleigh waves. Wang & Dahlen (1994) showed that in the
period range 150 to 450 s, ray-bending in global models produces
an apparent Love–Rayleigh discrepancy of 0.02 to 0.1 per cent. One
can expect larger effects on shorter period waves, since they are
more affected by larger velocity variations in the upper part of the
lithosphere and are more sensitive to regional scale variations.

The interpretation of the data in terms of lithospheric anisotropy
is usually limited to rather simple anisotropic structures and to the
assumption that mineral orientation alone is responsible for the
anisotropy. We have also to explore the possibility of other forms
of anisotropy in the lithosphere, and analyse in more detail the ef-
fect on wave propagation of more complex anisotropic structures,
for example with small-scale variations as proposed by Jordan &
Gaherty (1995). One should also keep in mind that there is a trade-
off between density and anisotropy in the models resulting from
inversion of Love and Rayleigh wave phase velocities. Although in-
verting the Love–Rayleigh discrepancy for density variations alone
leads to unrealistic models (Cara et al. 1983), the presence of low-
density layers in the lithosphere not accounted for in the inversion
would affect the amplitude of the Love–Rayleigh discrepancy.
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Wu, R.S. & Flatté, S.M., 1990. Transmission fluctuations across an array
and heterogeneities in the crust and upper mantle, Pure appl. Geophys.,
132, 175–196.

C© 2002 RAS, GJI, 150, 58–64


