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S U M M A R Y
We demonstrate the feasibility and reliability of a new approach to seismic modelling of
long-wavelength mantle structure. In doing so, we present new estimates of mantle model
uncertainties that successfully explain apparent discrepancies in earlier 3D seismic density
models and justify a new generation of model building. The characteristics of good models
and of modelling error are described by model space ‘maps’ that display the data fit of a
representative set of potential models. The neighbourhood algorithm (NA), recently developed
by Malcolm Sambridge, allows efficient production of such maps for the long-wavelength
model parametrizations used in imaging the mantle density using normal-mode data. We
observe that when NA is applied to our global modelling problem the results are not only
self-consistent and consistent with independent resolution tests, but also explain discrepancies
in the results of damped inversions. Synthetic ‘mapping’ experiments using the sensitivity
kernels and measurement errors of several data catalogues allow us to determine the resolution
of these data sets. Such resolution tests let us know which model parametrizations and data
sets, if any, can yield meaningful results in inversions of real data. The new resolution tests
reveal that recent density models from damped inversions of normal-mode data are not robust.
However, we also show that the addition of the most recent long-wavelength data will, for the
first time, reduce model covariances enough to achieve robust constraints on the depth and size
of long-wavelength density heterogeneity throughout the mantle.
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1 I N T R O D U C T I O N

Free-oscillation data have recently played an important role in im-
proving the resolution of long-wavelength mantle models. Mod-
els MM2.L12D8 (Resovsky & Ritzwoller 1999a), SPRD6 (Ishii &
Tromp 1999, 2001) and S20RTS (Ritsema & van Heijst 2000) all
have velocity variations constrained to improve fits to normal-mode
splitting function data, which are most extensive at spherical har-
monic degrees two and four. MM2.L12D8 and S20RTS both use
the normal model catalogue of Resovsky & Ritzwoller (1998) to
constrain long-wavelength structure, while SPRD6 combines these
data with those of Tromp & Zanzerkia (1995) and He & Tromp
(1996). As a result, all three have significantly ‘redder’ spectra of
mid-mantle velocity heterogeneity than do other seismic models,
and they are much more consistent with each other at long wave-
lengths than were the previous generation of models.

Three-dimensional (3D) models of mantle density are more crit-
ical to understanding mantle composition and dynamics than are
velocity models, but there are significant discrepancies associated
with attempts to constrain density models using normal modes. In-
versions such as those used in making SPRD6, in which the shear
velocity (vs), compressional velocity (vp) and density (ρ) compo-
nents are allowed to vary independently, are relatively rare. Model

SPRD6 is accompanied by images of the resolution matrix for the
inversions, and by tests with checkerboard and spike input models
that examine some particular effects of this resolution. These results
imply that the ρ variations and ρ–vs scaling of this model are ro-
bust. However, checkerboard and spike tests have known weaknesses
(Leveque et al. 1993), and much poorer resolutions were found in
tests of similar inversions using different prior constraints (Resovsky
& Ritzwoller 1999b; Romanowicz 2001) and in synthetic tests with
different forms of input models (Kuo & Romanowicz 2002). Each
of these studies concluded that few robust density features could
be constrained with existing data. Romanowicz (2001) was able
to bound the d ln ρ/d ln vs ratio at most depths, but Resovsky &
Ritzwoller (1999b) concluded that ρ–vs correlation could not be
located at any particular depth. Such results imply that resolution
matrices from damped inversions can significantly underestimate
model error, and also that other resolution estimates depend upon
the nature of the resolution test.

The source of such difficulties in model assessment is not mys-
terious. Rather, it is a familiar consequence of the existence of the
model null space, the set of model parameter combinations that have
negligible impact on the data fit. The null space is quite significant in
the severely underdetermined inverse problems of global tomogra-
phy. Even when the inverse problem is linear and the data errors are
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Gaussian, as is the case for normal-mode inversions, the null space
can produce strongly non-Gaussian behaviour in the distribution
of likely models. If an inversion is to preserve the usual relation-
ships between the data errors, resolution, and the covariance ma-
trix of the model parameters, the Gaussian behaviour of the model
space must be enforced by a priori constraints such as damping
(Tarantola 1987). In a typical inversion, the parametrization and
damping produce a stable result by allowing output models to in-
clude only a limited part of the null space, and inversion assessment
explores only that part of the null space. Furthermore, the a priori
constraints assign different weights to different null space model ele-
ments according to characteristics such as amplitude or smoothness,
and this both distorts the null space and biases model assessments.
Even as resolution at long wavelengths is improved by the addition
of important new surface wave and normal-mode measurements
(e.g. van Heijst & Woodhouse 1999; Masters et al. 2000; Widmer-
Schnidrig 2002), it is clear that damped inversions cannot be trusted
to give reliable estimates of either the resolution or improvement
provided by these data. In other words, a more complete description
of the model space, including some measure of the range of null
space models, is needed before we can know whether it is possible
to resolve the mantle density.

This is the primary motivation for implementing techniques that
‘map’ the mathematical topography (where ‘highs’ correspond to
high likelihoods or good fits to the data and ‘lows’ to poor fits) of an
undistorted multidimensional model space, including the null space.
However, because such ‘maps’ are made by testing (‘sampling’) a
large number of different combinations of model parameters, this
approach can be prohibitively computationally intensive. An impor-
tant new technique for the efficient sampling of a model space is the
neighbourhood algorithm (NA) developed by Sambridge (1999a,b),
which is much faster than regular or Monte Carlo sampling, and
more easily tuned than genetic algorithms. The first successful ap-
plications of this algorithm were to inverse problems of up to 24 free
parameters. Thus, NA seems well suited to the normal-mode inverse
problem, which can be separated into individual inverse problems for
each spherical harmonic component of lateral structure variations
(Resovsky & Ritzwoller 1999a), and where the radial resolution of
the data suggests that there should be approximately ten components
of the radial parametrization of the mantle (e.g. Ishii & Tromp 2001;
Romanowicz 2001).

The primary purpose of this paper is to demonstrate that the NA
approach is, indeed, a feasible and reliable approach to the long-
period global inverse problem. This must been shown in order to
justify future model building and interpretation using the method.
To test the method, we employ controlled experiments, with both
synthetic and real data, for which certain idealized results are pre-
dictable if adequate ‘maps’ are produced by the NA procedure. Be-
cause our synthetic experiments employ the data error and sensi-
tivity kernels of real data, these experiments also allow us to test
the resolution of various normal-mode data sets. We hope that by
demonstrating both a reliable technique and true resolution, this pa-
per provides justification for a new generation of seismic models of
mantle density and velocity.

2 T H E S Y N T H E T I C E X P E R I M E N T S

2.1 Data and parametrization

In addition to several trials with real data, we examine the reliability
of the NA approach with a series of synthetic experiments. These

allow us to compare NA ‘mapping’ estimates of model precision
(error bar) with observed modelling inaccuracies, where the latter
are the differences between the output models from inversions and
the input models used to generate the synthetic data.

The ‘input’ models used to create synthetic normal-mode data
are either the spherically symmetric model PREM (Dziewonski &
Anderson 1981) or PREM plus the volumetric part of aspherical
model SPRD6. These are each used to construct two data sets: one
of 132 splitting functions corresponding to those used by Ishii &
Tromp (1999, 2001) (data set 1); and one matching a set of 205 split-
ting functions with which we hope to construct new long-wavelength
mantle models (data set 2). The former data set is a combination of
the catalogues of He & Tromp (1996) and Resovsky & Ritzwoller
(1998), which includes several dozen pairs of inconsistent (differ-
ences greater than combined errors) measurements for the same
structure coefficient. The latter data set includes a non-conflicting
combination of: the two catalogues of data set 1; the catalogue of
Masters et al. (2000); several new generalized spectral fitting mea-
surements that improve the resolution of deep-mantle vp (Pestana
2001); and splitting functions corresponding to 75 different funda-
mental and overtone surface wave velocity maps from three cata-
logues (Wong 1989; van Heijst & Woodhouse 1999; Trampert &
Woodhouse 2001). The synthetic data are modified by synthetic
noise drawn from Gaussian distributions matching the standard de-
viations reported for real data measurements (or those we have in-
ferred for some surface wave data, as in Beghein et al. (2002)).

From a ‘starting’ model (PREM or PREM + SKS12WM13 of
Liu & Dziewonski 1994) we then either perform damped least-
squared inversions or use the NA procedure to find perturbations
that best fit the synthetic data. The perturbations are parametrized
as changes to the mean values of vs , vp and ρ (independently) in
each of four lower-mantle layers (layer 1 = 2891–2360 km depth;
layer 2 = 2360–1800; layer 3 = 1800–1050 km; layer 4 = 1050–670
km) and three upper-mantle layers (layer 5 = 670–400 km; layer
6 = 400–220 km; layer 7 = 220–24 km). The widths of the layers
are derived from the sensitivity kernels of Backus & Gilbert (1968)
for the data set from Resovsky & Ritzwoller (1998). Our inversions
are subjected to an overall damping that produces the most stable
combination of the size of the perturbations and the fit to the data
(e.g. Backus & Gilbert 1970). The misfit levels that result are within
1 per cent of the best misfits observed with negligible damping and
the selected damping level is nearly identical to the damping that
minimizes the input–output discrepancies discussed below.

The seven-layer inversion is roughly equivalent to the seven eigen-
function inversions performed by Ishii & Tromp (1999, 2001).
Though layered inversions do not produce realistically smooth mod-
els, they have approximately the same resolution and can identify the
same robust structural features as inversions that enforce smooth-
ness a priori through choices of parametrization and damping. This
is demonstrated by the similarity in the 3D vs components of the
models of Ishii & Tromp (2001) and Resovsky & Ritzwoller (1999a).
We have found the nature of our results to be independent of the
combination of input and starting models we use.

2.2 Input–output discrepancies

We observe two forms of discrepancy when we compare the damped
least-squares (LS) inversion results to the input models. Our pri-
mary test of the NA approach will be its ability to account for these
discrepancies.

The inversion produces a set of layer perturbations, which
are added to the starting model to give an output model. The
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Figure 1. Rms amplitudes of density model inaccuracies and uncertainties, compared with an input model. The input model, the rms of SPRD6 at degrees two
and four averaged in each of seven layers, is shown by the solid lines. Dashed lines indicate the rms of inaccuracy (the difference between the input model and
output models) for damped least-squared inversions of two synthetic data sets. The dark shading indicates the model uncertainty predicted by the covariances
of the damped LS inversions, and light shading shows the model uncertainty estimates from NA ‘mapping’. Because the dark shading is usually lower than
the level of the dashed lines, there is a discrepancy between the observed and predicted accuracy from the damped inversions. (a) Data set 1 consists of 132
normal-mode splitting functions matching the data used in constructing model SPRD6 (Ishii & Tromp 2001). (b) Data set 2 consists of 205 splitting functions
corresponding to the normal-mode and surface waves data that we will be using to ‘map’ new constraints on mantle density models. The NA uncertainties
account for all output–input differences and show the expected improvement from surface wave constraints on the upper mantle.

‘input–output’ difference, or modelling inaccuracy, is the mean dif-
ference between the input model and the output model in each layer.
The LS inversion also produces a covariance matrix for the layer
perturbation parameters. The covariance matrix is closely related
to the resolution matrix, and its diagonal elements give the (square
of the) model layer uncertainties or standard deviations (Tarantola
1987).

Fig. 1 provides examples, using data sets 1 and 2, of the input–
output difference and LS inversion uncertainty for each layer. This
figure shows root-mean-square (rms) amplitudes over 14 degree-two
and four spherical harmonic components in each layer. Results are
only shown for the density component, but the results for vs and vp

are similar, except that, relative to the input model, the amplitudes
of both input–output differences and uncertainties are smaller. The
solid lines give the amplitude of the input model for this experiment
(SPRD6), and the dashed lines indicate the amplitude of the input–
output difference. The latter is reduced as we increase the number
of data points, but remains roughly commensurate with the input
amplitudes. Most notably, the input–output differences for data set 1
are often greater than the amplitude of the SPRD6 density variations,
despite the fact that this data set is essentially the same as that used to
construct that model. These differences are approximately the same
as the ranges of good-fitting density models observed by Resovsky
& Ritzwoller (1999b) and are a strong indication that the density
component of SPRD6 is not robust.

The darkly shaded region indicates the level of uncertainty as-
sociated with the LS inversion covariances. These uncertainties are
approximately the same for the two data sets, and are usually smaller
than the input–output difference. There are two kinds of discrepancy
evident in these uncertainties. The first, and most important, is that
the uncertainties are smaller than the input–output differences in
most layers. The second discrepancy is that data set 2 produces
greater uncertainty than data set 1 (except in the top layer), despite
having more data with better theoretical resolution (as predicted

using the methods of Backus & Gilbert (1968)). This discrepancy
is a consequence of the inconsistent measurements in data set 1,
which are imitated in our synthetic data. These make it necessary
to use a stronger damping that reduces variances while increasing
the input–output error relative to data set 2. The first discrepancy
is evidence that the most straightforward assessment of damped in-
versions underestimates modelling error. The second discrepancy
shows that even if these error estimates are scaled upward (using
2σ rather than 1σ error bars), they are not reliable estimates of the
true resolution of the data or, by extension, of the real uncertainty
in the models.

Our synthetic experiments with damped inversions show that the
inversion covariances and associated resolution tests are inadequate
means of determining model robustness—whether they demonstrate
the model to be robust (e.g. Ishii & Tromp 2001) or not (e.g. Kuo &
Romanowicz 2002). Variances (and covariances) that underestimate
model error, such as those we have observed, are evidence of a
significant null space in the inverse problem. This is why we turn to
the alternative of making undistorted ‘maps’ of model spaces that
include the null space in describing the fit of models to the data.

3 N E I G H B O U R H O O D A L G O R I T H M
E X P L O R A T I O N S

The neighbourhood algorithm, as described in two papers
(Sambridge 1999a,b), is a tool for the efficient sampling of a model
space. When properly tuned, it simultaneously identifies the model
parameters most likely to generate a given data set and finds overall
‘maps’ of model likelihood in a relatively broad section of model
space. The first step in the NA procedure (NA search) explores
‘neighbourhoods’ of the models that best fit the data, iteratively
finding better models and defining new neighbourhoods. NA search
is an extension of the ‘Gibbs sampler’ or ‘heat bath’ approach to
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searching a model space for good models. NA search ‘maps’ regions
of both good and poor fitting models while preferentially exploring
the neighbourhoods of good-fitting models.

The second step in the procedure (NA Bayesian) uses a differ-
ent implementation of Gibbs random walks. Here, the NA search
‘maps’ are resampled in a way that produces a ‘likelihood sampling’,
where the density of samples near a particular model is inversely
proportional to the misfit of that model to the data. The likelihood
sampling yields rapidly converging numerical integrals of quantities
such as average parameter values, variances and covariances. The
resampling algorithm uses relative, rather than absolute, model like-
lihoods. Thus, integrals are computed without manipulating the very
small and numerically unstable probability densities characteristic
of highly dimensioned model spaces.

NA search and NA Bayesian can be tuned to a particular in-
verse problem through adjustments to a few control parameters.
The tunability of the NA search algorithm makes it easy to adjust
the exploration phase of the algorithm to ensure that searches are
neither too narrow nor too broad. Searches that are too narrow can
become trapped in relatively unimportant local minima in the misfit
function (maxima of the likelihood function) or may accumulate
many points near the top of the most-probable peak that slow the
NA Bayesian resampling without providing useful information con-
cerning the likelihood distribution. Searches that are too broad fail
to identify the likely regions, or do so with so many points that the
NA Bayesian converges very slowly.

Searches are broadened by increasing the number (Nr ) of best-
fitting neighbourhoods in which to test new models, and by decreas-
ing the ratio of Nr to the number of new models (Ns) created in each
iteration. For a small number of iterations (Ni ) the search is usually
too broad, while a very high number of iterations will produce too
many points to allow NA Bayesian to run efficiently. When there
are significant data misfit minima within the model space being
searched, it is not difficult to identify appropriate settings of Nr , Ns

and Ni . Such settings produce a sequence of models and their data
misfits that progresses from a uniform sampling towards a likeli-
hood sampling. Similarly, the speed of convergence of the Bayesian
step is controlled by another two parameters: the number of steps
in the random walks (Nw), and the number of different best-fitting
cells from which to start the walks (Nc). The NA Bayesian code
outputs convergence tests that allow the user to identify appropriate
settings of Nw and Nc. The total number of resampled points should
be within 50 per cent of the number of points in the original sam-
pling, as long as the NA search produces a reasonable approximation
of a likelihood sampling.

There is no guarantee that it will be possible to find control param-
eters that permit a convergent sampling within a practical time frame
and produce results that are insensitive to small changes in these con-
trols. However, in the present examples we are confident that prac-
tical and reliable settings have been found. They vary slightly from
component to component and data set to data set, but are approxi-
mately Ns = 15, Nr = 15, Ni = 9000, Nw = 10 000 and Nc = 7. For
each of 27 spherical harmonic components, approximately 135 000
models in 21-dimensional space (seven layers of perturbations to
vs , vp and ρ) are created by NA search, and an additional 70 000
by NA Bayesian. The time required for each component was ap-
proximately 80 h of time on a single 400 MHz Sun UltraSPARC-II
processor. We have been able to implement parallelized versions of
the NA codes. With these, ‘mapping’ of each component requires
just over 12 h on eight processors of a Sunfire cluster of 750 MHz
UltraSPARC-III processors. We do not anticipate that the compu-
tational intensity of this approach will be a problem. This is partly

because the long-wavelength nature of these data and models allows
us to restrict ourselves to relatively low-dimensioned model spaces,
and partly because both NA search and NA Bayesian are extremely
well-suited to parallelization and implementation on either super-
computers or one of the increasingly common linked networks of
workstations.

There is one additional set of tuning parameters needed to imple-
ment the NA technique: the ranges of the model values to be tested. If
the ranges are too large, a prohibitively large number of models may
need to be sampled before the best-fitting regions are identified. If
ranges are too small, important good-fitting models may be excluded
a priori. In our synthetic experiments, we choose ranges nearly the
same as the range of recently published long-wavelength models
for vs ; about 150 per cent of the range of recent models for vp; and
about 250 per cent of the range of recent models for ρ. These ranges
combine the observed variability among existing models with an
approximation of the different effects of damping on vs , vp and ρ,
given the relative scarcity of constraints on the latter two quantities.
We have confirmed that if these ranges are expanded, ‘mapping’
results with either real or synthetic data remaining consistent as
long as equivalent sampling densities are used. Conversely, results
for smaller ranges are not consistent for either real or synthetic
data.

Examples of NA search and NA Bayesian outputs are given in
Fig. 2. It is important to note that the shape of the 2D Bayesian
likelihood function (Fig. 2b) does not exactly match the distribu-
tion of the sampling (Fig. 2a), because initially lightly and densely
sampled regions of equivalent fit are given equal weight by the re-
sampling. The 2D marginals correspond to detailed images of the
tradeoffs between parameters, which are more commonly repre-
sented by scalar measures such as the elements of resolution or co-
variance matrices. The 1D marginals (Figs 2c and d) yield Bayesian
mean value and standard deviation estimates for model parameters.
Our standard deviation estimates are given by the half-range of the
x-axis multiplied by the fraction of the x-axis corresponding to like-
lihoods within a factor of e−1/2 of the maximum likelihood. For a
Gaussian distribution, this is identical to the usual σ , but this esti-
mate can also be applied to non-Gaussian distributions such as that
of Fig. 2(d). The rms of such error estimates for density are shown
by the lightly shaded regions of Fig. 1. These uncertainties from
NA are larger than either the uncertainties or the inaccuracies of the
damped inversions. It should be noted that, in order to show fine
details of the distributions, Fig. 2 displays only the inner 30 per cent
of the parameter ranges explored by NA. The full ranges are wide
enough to include all significant likelihood regions for most of our
parameters.

4 TE S T S O F N A - M A P P I N G R E S U L T S

We have tested the reliability of our model space maps in three
ways: (1) consistency with well-resolved results from damped in-
versions; (2) consistency with independent resolution tests; and (3)
consistency with discrepancies in synthetic inversions.

4.1 Consistency with damped inversions

If NA ‘mapping’ correctly identifies well-resolved model character-
istics, then these characteristics should also be identified by damped
inversions. This is because, by definition, the null space has little
impact upon the apparent likelihood of well-resolved characteristics
of the models. Such characteristics include both individual model
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Figure 2. Examples of output for degree-two zonal density heterogeneity in layers 4 and 5 (outermost lower mantle and transition zone), from the NA-sampling
and NA Bayesian algorithms applied to data set 2. Only the central 30 per cent of each parameter range is shown, so that it is easier to see patterns within
the most-likely region. (a) A projection of a sampling of a 21-dimensional model space on to two dimensions. The density of dots represents the density of
sampling, while darker dots indicate models of better fit. The more densely sampled regions are also those of better fit models. (b) the corresponding NA
Bayesian 2D marginal, with greater likelihood shown by darker colors and a black line marking the ‘confidence’ contour that encloses 90 per cent of the total
likelihood. (c) and (d) show shaded regions that are the corresponding 1D marginals, together with solid line that indicate Gaussian fits and dashed lines that
mark the e−1/2 levels. The non-Gaussian shape and wider-than-Gaussian e−1/2 level of the TZ marginal are evident.

parameters that are well-resolved and strong trade-offs between pairs
of parameters. We have tested NA in this way using the real data
of data set 1 for both damped LS inversions and NA mapping. For
these experiments, the parameter set was reduced to three layers of
velocity perturbations (one for the whole upper mantle and two for
the whole lower mantle; d ln vp scales with d ln vs) and four layers
(one UM; three LM) for d ln ρ, and SKS12WM13 is used as a start-
ing model. The model parametrization is far simpler than the data
require, but this improves our chances of finding the well-resolved
parameters and tradeoffs that we need for this test. The range of each
parameter is also greatly restricted for our NA ‘mapping’, so that
the model space distortions of damped inversions are not too severe
over a damping range sufficient to explore a comparable range of
models. At weaker damping levels and greater model ranges, the
inversions become too numerically unstable to be meaningful.

When we observe a narrow peak near the centre (starting model)
of a 1D marginal from NA ‘mapping’, as in Fig. 3(a), damped LS
inversions of the same inverse problem should yield values for that

parameter that are relatively independent of damping and have a
value near the marginal peak. This behaviour is apparent in the
damped LS results in Fig. 3(a), for nearly an order of magnitude
range of damping. When we observe a 2D marginal with a sharp
peak in the direction of a corner, which implies a strong tradeoff in
the corresponding pair of parameters, the results of LS inversions
with decreasing damping should produce a sequence of points mov-
ing outward toward the most likely solution. Fig. 3(b) provides an
example of this behaviour. The damped LS solutions also progress
along a visible ‘ridge’ in the likelihood contours.

4.2 Consistency with Backus–Gilbert resolution

Backus & Gilbert (1968) introduced resolution filters as a tool for
finding optimal inversion damping. Such filters are constructed by
summing the data kernels, the functions that describe the sensitivity
of each measurement to each model parameter. The filter for each
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Figure 3. Comparison of results for NA ‘mapping’ and damped least-
squared inversions applied to data set 1 for degree-two zonal structure.
This experiment employs real data rather than synthetics, in an inversion
for three velocity and four density parameters. (a) The NA Bayesian 1D
marginal likelihood for deep-mantle vs , which corresponds to a diagonal
element of the inversion covariance matrix, together with values obtained
from least-squared inversions with four damping values. Larger λ implies
stronger damping. A wide range of damping values all give results within the
high-likelihood region, and weaker damping moves the result closer to the
likelihood peak. (b) An NA Bayesian 2D marginal likelihood for two density
parameters, which corresponds to an off-diagonal element of the covariance
matrix, again shown with results from several damped inversions. Increas-
ing likelihood is shown with darker shading. The lower likelihood contours
are shown as confidence levels (confidence increases with the total enclosed
likelihood). Weaker damping moves the inversion results from the starting
model (the asterisk at the centre) along a ‘ridge’ toward the likelihood peak.

parameter is the weighted kernel sum that most nearly produces a
sensitivity to only that parameter. Backus & Gilbert (1970) showed
that model resolution in damped inversions is a function of the
difference between a pure filter and the best filter achievable with the

given data kernels. This analysis cannot estimate absolute resolution,
which is a strong function of the null space and of the form of
regularization employed, but it does serve to estimate the relative
resolution of two data sets. In other words, we expect that when new
data are added, the improvement in the optimal filter for a given
model parameter will be matched by the improvement in resolution
(or reduction in error) for that parameter.

As noted in Section 2.2, this is not the case for the model error es-
timates from our damped inversions. In particular, Backus–Gilbert
analysis predicts that the introduction of many constraints from sur-
face wave measurements included in data set 2 should substantially
reduce the error in upper-mantle density, and even produce signifi-
cant error reductions for lower-mantle density. No such differences
are evident in the uncertainties from damped LS covariances shown
in Fig. 1. In contrast, the errors from NA ‘mapping’ assessments
exhibit a pattern of improvement for data set 2 that agrees with
the Backus–Gilbert prediction. In general, we have found that for
a variety of different data sets the error estimates from NA ‘map-
ping’ match both the size and pattern of predicted improvements in
resolution.

4.3 Accounting for observed discrepancies

A damped LS inversion distorts the model space to choose as an
output model a particular low-misfit solution from the undistorted
model space. Therefore, in our synthetic inversions, both the in-
put model and the output model should be within the low-misfit,
high-likelihood region of model space. In turn, this implies that if
NA-mapping error estimates are good estimates of the size of low-
misfit regions, these errors usually will be larger than input–output
differences. In other words, the NA-mapping results should account
for most of the discrepancies observed in the synthetic experiments.

The lightly shaded regions of Fig. 1 show that this is true of our
NA ‘mapping’ uncertainties for ρ models at degrees two and four.
The rms size of the NA Bayesian uncertainties is everywhere larger
than the rms size of input–output differences for either data set. The
same is true of the vs and vp models and for individual spherical
harmonic components.

The NA ‘mapping’ outputs are also self-consistent, in that un-
certainties are everywhere larger than the differences between the
input model and either the most likely or mean models output by NA
Bayesian. These input–output differences from NA ‘mapping’ are
generally 50–100 per cent larger than the input–output differences
from the damped LS inversions. This, however, should not be con-
sidered a failure of the NA technique, because the ‘maps’ explore
a range of models more than twice as large as the space between
the input and starting models of the damped inversions. The latter
range is imposed by the damping needed to produce stable inversion
results, while the former is large enough to measure the true resolu-
tion of the data. We have also performed NA mapping restricted to
parameter ranges that match those of the damped inversions. When
we do so, the NA ‘mapping’ uncertainties become less reliable, but
both mean and most likely models yield input–output differences
smaller than those of the damped inversion results.
Thus, we have now shown that the results of NA mapping are
consistent with damped LS results where such consistency is ex-
pected, are consistent with an independent test of resolution, are
self-consistent, and account for observed discrepancies in synthetic
experiments. These observations provide us with confidence that
NA mapping is a reliable tool for assessing long-wavelength mantle
models.
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5 A P P L I C A T I O N : T H E T R U E
R E S O L U T I O N O F S E I S M I C
D E N S I T Y M O D E L S

The rms uncertainties of Fig. 1 not only test the NA-mapping tech-
nique, but also provide estimates of how well seismic data resolve
long-wavelength mantle density heterogeneity. Because our syn-
thetic data realistically imitate the error in real data, the error bars
for our synthetic experiments approximate the uncertainty in mod-
els that use real long-period data to image long-wavelength mantle
heterogeneity. These uncertainty levels correspond to the smallest
amplitude of structural features for which robust images can be ob-
tained with each data set and parametrization. In addition, model
covariances from the 2D marginals of NA Bayesian let us see which
model parametrizations, if any, are likely to yield meaningful con-
straints on mantle density. Strong covariances imply tradeoffs be-
tween parameter pairs and may imply that better parametrizations
exist. Tradeoffs between adjacent density layers, for instance, would
suggest that robust models require wider layers.

The NA ‘mapping’ error bars of Fig. 1(a) show that density struc-
ture with amplitudes of input model SPRD6 are not robust with re-
spect to the resolution of data set 1. Because this data set and our
radial parametrization are quite similar to those used to construct
SPRD6, we conclude that the model is not robust. This confirms the
implications of several experiments with smaller data sets and vari-
ous parametrizations (Resovsky & Ritzwoller 1999b; Romanowicz
2001; Kuo & Romanowicz 2002).

The results for the NA model covariances from 2D marginals,
demonstrated in Fig. 4, are as significant as the preceding results
from the 1D marginals. There are large off-diagonal elements spread
throughout the density columns of the data set 1 covariance matrix
(Fig. 4a). Because there are tradeoffs among density parameters
at all depths, even parametrizations with broader layers or long-

  -1.3e-5   1.3e-5

LM

UM

LM

UM

LM

UM

LM UM LM UM LM UM
Vs Vp ρ

Vs

Vp

ρ

LM UM LM UM LM UM
Vs Vp ρ(a) (b)

Figure 4. Covariance matrices from NA ‘mapping’ the degree-two zonal components of data sets 1 (a) and 2 (b). Covariances are derived as in Sambridge
(1999b). The scale maximum is half the amplitude of the largest diagonal matrix element for data set 1. Most of the important tradeoffs for data set 1, implied
by the visible off-diagonal elements of (a), are reduced by a factor of 2 or more in (b).

wavelength smooth functions of radius cannot robustly locate even
high-amplitude density heterogeneity with data set 1. This is similar
to what Resovsky & Ritzwoller (1999b) concluded, using a smaller
data set. There are also strong density–vs and density–vp tradeoffs
that indicate that density heterogeneity is mostly indistinguishable
from velocity heterogeneity, as observed by Kuo & Romanowicz
(2002). Since robust observations of vs heterogeneity can be made,
it is possible to use the amplitude of the density error bars to infer up-
per limits to d ln vs/d ln ρ (e.g. Romanowicz 2001). The NA ‘map-
ping’ covariances show, however, that subsets of data set 1 cannot
give much meaning to these limits because these data cannot place
correlated velocity and density variations at any particular depth.

Fig. 1(b) shows that even data set 2 would fail to resolve den-
sity variations of SPRD6 amplitudes, and we have found that such
amplitudes remain below uncertainty levels when we approximate
the addition of the resolving power of the recent Widmer-Schnidrig
(2002) catalogue. However, our NA ‘mapping’ with data set 2 also
provides several reasons for optimism concerning the resolution of
density heterogeneity with long-period data. First, the covariance
matrices for data set 2 (Fig. 4b) show that the additional data greatly
reduce tradeoffs among our vs , vp and ρ parameters. It is particu-
larly important that the addition of purely upper-mantle constraints
from the long-period surface wave data appears to reduce tradeoffs
between upper-mantle heterogeneity and the lower-mantle density
variations that are of greatest interest. The greatly reduced covari-
ances in the density columns imply that any density heterogeneity
large enough to be observed will be distinguishable from velocity
variations and can be located at specific depths, with a radial reso-
lution at least as good as that implied by our layer widths. In turn,
having density heterogeneity (or just upper limits, where it is too
small to be observed) placed at specific depths implies that data set
2 could be used to assess the likelihood and strength of velocity–
density correlation as a function of depth.
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A second source of optimism comes from the fact that the poor
density resolution evident in Figs 1(a) and 4(a) implies that least-
squares inversions with data set 1 require overdamping of the density
component to produce stable solutions. Thus the density component
of SPRD6 is likely to have artificially suppressed amplitudes. Now
that NA has proven to be an effective approach, a far less restricted
sampling of the density models can be explored, and there is reason
to believe that ‘good’ models with much greater amplitudes will
be found. Poor correlations between vs and ρ at degrees two and
four in SPRD6 in much of the lower mantle could be evidence for
strong chemical heterogeneity. Such heterogeneity might produce
density perturbations that are too large to be explored by damped
inversions. Inspection of SPRD6 also reveals that degree-two den-
sity heterogeneity amplitudes above the error levels in Fig. 1(b), if
accompanied by lower degree-four amplitudes, could even be con-
sistent with the predominance of thermal heterogeneity, and typical
values of d ln vs/d ln ρ. Finally, we note that both the long-period
data set and the inversion parametrization can be improved. The
recent catalogue of Widmer-Schnidrig (2002) includes several hun-
dred new normal-mode splitting functions. These should reduce the
uncertainty bounds of Fig. 1(b) by another 10–20 per cent, and
produce more diagonal covariance matrices than those of Fig. 4.
The number of well-resolved parameters can be improved by find-
ing the optimal parametrization for a given data set. These can be
constructed from a simple initial parametrization (such as layers) by
examining tradeoffs using a technique such as NA (e.g. Douma et al.
1996).

Our conclusions, therefore, are as follows: (1) NA is a practical
and reliable tool for exploring and assessing long-wavelength man-
tle models using long-period seismic data; (2) NA provides the first
meaningful error bars for seismic models of density heterogene-
ity, which are necessary if seismic density models are to become
more useful to the mineral physics and geodynamics communities;
(3) the error bars and covariances associated with typical splitting
function data sets are much poorer than suggested by damped inver-
sions, and previous seismic models of long-wavelength 3D density
variations in the mantle cannot be robust; (4) by using the most
recent long-period surface wave and normal-mode data to reduce
covariances and using the NA approach to avoid the limitations of
damped inversions, it is now possible, for the first time, to pro-
vide robust seismic constraints on density heterogeneity and the
likelihood of correlation between density and velocity variations.
Our own applications of NA to the degree-two zonal component
of real splitting function data have already retrieved robust lower-
mantle density variations. We expect a more complete model to
emerge when the parametrization is optimized and the latest data are
added.
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