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S U M M A R Y
We present a practical excitation Sompi method. The excitation Sompi method is a non-
stationary time-series method developed for the analysis of physical phenomena that obey
time-invariant linear processes. Hence, the model is a discrete form of an inhomogeneous lin-
ear differential equation. In contrast with previous methods, this method has three advantages:
(1) the method estimates both the eigen coefficients of the dynamic system and the excitation
sequence almost simultaneously; (2) the excitation sequence is without statistical constraints
and can have a wide variety of characteristics; (3) the parameter estimation method is con-
structed to be robust for practical use: parameters with small error can be estimated even if the
assumed model conditions are not fully satisfied.

We demonstrate the usefulness of the present method by applying it to the analysis of
the Earth’s polar motion. We analysed SPACE95 data from 1976 to 1996 with a three-day
sampling interval. As a result, a real eigenfrequency between 2.33 × 10−3 and 2.39 × 10−3 cpd
was estimated. This is slightly larger than the previously estimated value of 2.30 × 10−3cpd.
Because the previous methods, which lack these three advantages, tend to estimate biased
parameters, our result is thought to be closer to the true value. On the other hand, Q, which
was estimated to be from several tens to a thousand by previous methods, was estimated by the
present method to fall in a range from 90 to 346. Using the present method, we thus succeeded
in estimating a less biased real eigenfrequency and in restricting the range of Q. This will also
be a powerful method for the analysis of other kinds of physical phenomena that obey linear
time-invariant dynamic processes.

Key words: Chandler wobble, Earth rotation, excitation Sompi method, inhomogeneous AR
model, polar motion, time-series analysis.

1 I N T RO D U C T I O N

There are many geophysical phenomena that obey a linear de-
terministic process (e.g. Fowler 1990). Their physical rules can
generally be described by an inhomogeneous linear differential
equation:

c0
d px(t)

dt p
+ c1

d p−1x(t)

dt p−1
+ · · · + cpx(t) = u(t). (1)

In eq. (1), the coefficients cj indicate characteristics of the dynamic
system and can be rewritten as complex eigenfrequencies. The term
u(t) on the right-hand side represents an external force or excita-
tion. When the excitation acts on the system, the system responds
according to its characteristic values and generates a displacement
x(t). To clarify the physical mechanisms of the system, we need to
analyse the observable quantity x(t) and estimate both cj values and
u(t).

In such an analysis, the time-series data x(t) are generally non-
stationary. When the coefficients cj temporally change, the system is

time-variant and the phenomenon is essentially non-stationary. The
phenomenon also becomes non-stationary when the system is time-
invariant and a general excitation exists. Accordingly, the techniques
of non-stationary time-series analysis are necessary to estimate the
cj values and u(t).

With a view to clarifying the physical mechanisms, we classi-
fied the techniques for non-stationary time-series analysis into three
categories. Techniques of the first category do not conform to the dy-
namic eq. (1). Those of the second and the third categories conform
to the equation, but techniques in the second category are suitable to
a time-variant system while those in the third category are suitable
to a time-invariant system.

Wavelet analysis is a popular technique belonging to the first
category (e.g. Chui 1992). The analysis transfers data from physical
space to the space constituted with wavelets. If the proper analyzing
wavelet is selected, the transferred data describe the data features
well. However, the transfer does not relate directly to a physical
process. Hence, the results are preliminary and do not have a physical
meaning directly.
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Techniques of the second category usually require models. Most
of these models place restrictions on u(t), because it is impossible
to estimate both c j values and u(t) without any a priori informa-
tion. Windowed Fourier analysis is a popular method for modelling a
time-variant system (e.g. Oppenheim & Schafer 1999). This analysis
tacitly assume the slow temporal change of the system and no ex-
citation because Fourier analysis is a stationary time-series analysis
method based on time-invariant system without excitation. An time-
varying autoregressive (AR) model and an autoregressive moving
average (ARMA) model have a similar physical meaning, but white
or coloured noise excitation is assumed (Dembo & Zeitouni 1988;
Grenier & Omnes-Chevalier 1988; Kanai et al. 1992). Analysis by
a Kalman filter also has a similar physical meaning, but the system
characteristics can change quickly (Kalman & Bucy 1961; Grewal
& Andrews 1993).

Techniques of the third category also use models with special
assumptions about the excitation. For example, the ARMA model
assumes a coloured noise excitation (e.g. Kay & Marple 1981), and
the autoregressive integrated moving average (ARIMA) model as-
sumes an integrated coloured noise excitation (Box & Pierce 1970).

Because of such special assumptions about the excitation, the
preexisting methods can be applied to limited kinds of data. In con-
trast, we have developed a new method that can be applied more
broadly (Yokoyama et al. 1997, 1999, 2000, hereafter papers I, II
and III, respectively). We first described a dynamic equation for a
time-invariant system with a discrete form as an inhomogeneous
autoregressive (IAR) model. This model can express general phe-
nomena generated by time-invariant linear systems. Then we devel-
oped the excitation Sompi method, which is one of the parameter
estimation methods of the IAR model. This method was designed
to keep the generality of the IAR model as far as possible. While
the pre-existing methods impose tight conditions on the excitation,
conditions required by our method are flexible and moderate. Hence,
we can express a variety of excitation sequences.

In the first half of this paper, we propose an extended and improved
version of the excitation Sompi method. In paper I, we presented
a basic model constituting the fundamental part and its parame-
ter estimation method. While the basic model was formulated for
single-component data, we extend the model in this paper to two-
component data. This widens possible applications of the method.
The upper-layer model of the basic model, the model group, was de-
scribed in papers II and III. We improve on the criteria and method
for parameter estimation of the model group in this paper, enabling
us to use the method even when its assumptions are not fully satisfied.

Table 1. Analysis results of polar motion by preexisting and the present methods.

System Stationary Method or model Real eigenfrequency Q Excitation function Reference
or Non-stationary (cpd)

Time-variant Non-stationary FT-BPF [(2.083–3.125) × 10−3] [Infinity] Fully-estimated Kosek & Kolaczek 1997
Time-invariant Stationary Maximum likelihood 2.304 × 10−3 61 (37, 185) [White noise] Jeffreys 1968

AR method (2.209–2.460) × 10−3 (−1930, 711) [None] Chao 1983
AR model 2.311 × 10−3 179 (74, 789) [White noise] Wilson & Vincente 1990

Non-stationary Kalman filter [2.309 × 10−3] [170] Fully estimated Preisig 1992
Dynamic equation [2.299 × 10−3] [100] Fully estimated Chao 1993
Dynamic equation [2.299 × 10−3] [100] Fully estimated Rio & Cazenave 1994
ARMA model 2.301 × 10−3 96 (50, 300) [Colored noise] Ooe 1978
ARMA model 2.310 × 10−3 170 (47, 1000) [Colored noise] Wilson & Vincente 1980
Monte Carlo 2.306 × 10−3 49 (35, 100) [Atmospheric data] Furuya & Chao 1996
Monte Carlo 2.275 × 10−3 72 (30, 500) [Atmospheric data] Kuehne et al. 1996
Excitation Sompi 2.362 × 10−3 143 (90, 346) Fully estimated This paper

[] indicates assumed value/character.

With these extensions and improvements, the method is complete
and ready for practical use.

In the second half of this paper, we apply the present method to
an analysis of the Earth’s polar motion from 1976 to 1996. Polar
motion is a two-component motion and obeys a first-order linear
differential equation (e.g. Lambeck 1980; Moritz & Mueller 1988).
The system of polar motion is assumed to have time-invariant phys-
ical characteristics on the timescale spanned by the data. Although
the causes of the polar motion excitation have not been clarified in
detail, torques from the atmosphere, the ocean, earthquakes, and the
core–mantle coupling are thought to be candidates (e.g. Lambeck
1980). Hence, the excitation can be a mixture of different sources
and has a wide variety of characteristics. Such a phenomenon that
obeys a time-invariant linear process and that has a compound exci-
tation sequence is appropriate for a demonstration of the excitation
Sompi method.

There are many previous studies of polar motion, and the ma-
jor results of these studies are summarized in Table 1. Because the
polar motion system is mostly time-invariant, as mentioned above,
few analyses used a time-variant model (Kosek & Kolaczek 1997).
Analysis methods using time-invariant models are sorted into three
groups. Methods of the first group estimate only a real eigenfre-
quency and Q, assuming a stationary polar motion (Jeffreys 1968;
Chao 1983; Wilson & Vincente 1990). Those of the second group
estimate an excitation sequence using a given real eigenfrequency
and Q (Preisig 1992; Chao 1993; Rio & Cazenave 1994). Methods in
the last group impose tight restrictions on the excitation sequence
and estimate a real eigenfrequency and Q (Ooe 1978; Wilson &
Vincente 1980; Furuya & Chao 1996; Kuehne et al. 1996).

Parameters estimated by such analyses tend to include a large bias.
The assumption of methods of the first group is incompatible with
the character of the actual data: polar motion data is non-stationary
because of excitations. The neglect of the effect of the excitation
tends to generate a bias in the estimated real eigenfrequency and
Q. When methods of the second group are used, the excitation se-
quence can be seriously misestimated, depending on the given real
eigenfrequency and Q. In methods of the last group, the imposed
restrictions on the excitation sequence are generally not satisfied by
the actual excitation sequence. The difference between the assump-
tions and the actuality usually induces a bias in the estimated real
eigenfrequency and Q. In contrast with these pre-existing methods,
the method proposed in this paper does not have such disadvantages.
Hence, it enables a real eigenfrequency, Q, and excitation sequence
with smaller bias to be estimated.
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In the next section, we present the excitation Sompi method in-
cluding both the established and newly developed parts. In Section 3,
we perform some synthetic tests of the method to confirm its capa-
bilities, and then we analyse a series of polar motion data in Sec-
tion 4. In Section 5, we summarize and discuss the results.

2 E X C I TAT I O N S O M P I M E T H O D

We present the excitation Sompi method in its entirely in this section.
The fundamental part of the method has already been established
in papers I, II and III, but we extend and improve the method here.
The newly developed elements are as follows:

(1) We rewrote the formulae of the method, which were writ-
ten for single-component data in paper I, for the analysis of two-
component data.

(2) In papers II and III, we used three criteria for parameter esti-
mation: (i) minimize the root mean square (rms) error of the input
sequence; (ii) minimize scattering of estimated frequencies of the
model group; and (iii) minimize the rms error of the output sequence.
In this paper, we replaced the second criterion with criterion (ii′):
adopt frequencies smaller than a reciprocal number of the initially
given AR order and minimize their scattering; and we deleted the
third criterion.

(3) We changed the parameter estimation procedure as required
by the new criterion (ii′).

We present the method with detailed explanations of the new
elements in the following subsections.

2.1 Model

We consider data with two orthogonal components. To treat the com-
ponents simultaneously, we define complex discrete data x̃n , whose
real part is the first component of the data and whose imaginary part
is the second. Then the two-component IAR model is written with
complex AR coefficients ã j , AR order p, and complex excitation
ũn as

p∑
j=0

ã j x̃n− j = ũn . (2)

This is a discrete model of the two-component inhomogeneous linear
differential equation (1).

Considering observation noise, we describe observable data ỹn as

ỹn = x̃n + ε̃n . (3)

In eq. (3), complex noise ε̃n is assumed to be a random sequence
with zero mean and variance σ 2.

To take into account a priori information about the excitation ũn ,
and make estimation possible, we assume that ũn is expanded with
a proper set of basis ϕ̃n, j with complex coefficient β̃ j and degree q:

ũn =
q∑

j=1

β̃ j ϕ̃n, j . (4)

The character of the sequence ũn can be controlled by changing
the basis set ϕ̃n, j . For example, a stochastic process can be approxi-
mately described by a narrow width basis, and a deterministic pro-
cess can be described by a basis created from a proper waveform and
width. An excitation of mixed process can be described by combin-
ing the different kinds of basis sets. When proper amplitudes β̃ j are
supplied, a stationary excitation can be described. An event-based

excitation can also be expressed by assigning a zero amplitude to
some β̃ j .

Eqs (2), (3) and (4) constitute the model of the two-component
excitation Sompi method.

2.2 Policy and criteria

We use the two criteria described above. The first criterion (i) was
presented in paper I. It is based on a sense of achieving a good fit
between the data and the model. The fit is evaluated not in data
space but in excitation space. Such an evaluation is used by meth-
ods that take into account observation noise, such as the Pisarenko
and extended Prony methods (e.g. Kay & Marple 1981). The other
criterion (ii′) is an improved version of criterion (ii) presented in
paper III. It was derived as is described below.

A model world based on assumptions is different from the actual
world. For example, while white noise is assumed in the model,
the actual noise may have colour and may include pulsations. Non-
linear signal may be contaminated while the system is assumed to
be linear. Furthermore, the assumed basis set is not the true basis
set because the true excitation is unknown.

When such differences cannot be neglected, it is not possible
to use the classical least-squares method for parameter estimation.
This problem has been studied, and some new techniques have been
presented. One such technique is robust estimation (Huber 1981;
Kassam & Poor 1985). This method considers the case when errors
of the least-squares method do not obey a Gaussian distribution.
Another technique is the H∞ filter, which extends the Kalman filter
and considers non-white noise (Nagpal & Khargonechker 1991;
Shaked & Theodor 1992). As in the previous studies, we take into
account differences from the assumptions, which we shall call model
selection error.

Because the estimation error does not necessarily obey a partic-
ular stochastic distribution, in general we cannot avoid estimation
bias caused by model selection error. Hence, we select a way to
diminish estimation error rather than to diminish the bias. An esti-
mated physical quantity with sufficiently small error is enough for
our needs even if the small error is biased.

The estimation error becomes small when the initially given
AR order p becomes sufficiently larger than the true AR order p0

(paper III). Because the model selection error and noise are divided
and absorbed by the given p parameters, parameter estimation er-
rors become small when the number of given parameters increases.
Accordingly, we can estimate parameters close to true values if we
supply a large number of parameters.

We proved the relation between the size of the error and the num-
ber of given parameters in paper III, and derived criterion (ii) for
AR order estimation. When the initially given AR order increases,
the values of the estimated parameters that are close to true values
gradually approach true values. When the number of parameters
becomes sufficiently large, the estimated parameter values will not
change any more because they are already close enough to true val-
ues. In other words, the parameter values close to true values do
not change against a high initially given AR order. Thus, param-
eters with small scattering in response to a change in the initially
given AR order are preferred. This is what the original criterion (ii)
implies.

Although the criterion is necessary for the selection of preferred
parameters, it is not sufficient. It is still possible to select parameters,
such as Nyquist frequency, originating from noise or model selection
error. Thus, we need another constraint to exclude such parameters.
We present such a constraint in the new criterion (ii′).
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In the appendix to paper III, it is proved that frequencies originat-
ing in noise or model selection error are expected to be larger than
the order of 1/(p − p0)	t , where 	t indicates the sampling inter-
val. Thus, we regard the frequencies larger than 1/(p − p0)	t as of
noise or model error origin. Frequencies smaller than 1/(p − p0)	t
and with small scattering are regarded as of signal origin. In the
actual analysis, we take large values of p and use 1/p	t instead of
1/(p − p0)	t because we do not know p0. Thus, we have criterion
(ii′). With this criterion, we cannot extract signal frequencies larger
than 1/p	t . However, if we know the rough frequency range of the
signal, we can extract such signals by changing 	t .

When we use this criterion, the selected frequencies correspond
to those estimated, and their number equals the estimated AR order.
The estimation of the frequencies is equivalent to the estimation of
the AR parameters, so it is approximately equivalent to the estima-
tion of ũn in eq. (2). Accordingly, we can estimate all the parameters
with criterion (ii′), and criterion (iii) is not necessary any more. De-
tailed procedures for using criterion (ii′) are described in subsec-
tions 2.4 and 2.5.

2.3 Estimation of the basic model parameters

The model of the excitation Sompi method written in eqs (2), (3) and
(4) has four kinds of independent parameters, ã j , p β̃ j and ϕ̃n, j . The
parameter q is not independent because it is the degree of basis set
ϕ̃n, j . Because the simultaneous estimation of all parameters is diffi-
cult, we first prepare proper candidate sets ϕ̃n, j , and then we select
a good choice from them. For each candidate set ϕ̃n, j , we prepare
candidate models with different initially given AR orders p. We call
a group of candidate models for a given set ϕ̃n, j a model group, and
we call each model with an initially given AR order a basic model.
In other words, a set of candidate models is composed of model
groups, and each model group is composed of basic models.

Parameters of the basic model, ã j and β̃ j , are estimated simulta-
neously using criterion (i). This parameter estimation method was
suggested in paper I, and we here extend the method from a single
component to two components.

The rms error in the excitation space is defined as follows:

S = 1

N − p

N−1∑
n=p

∣∣∣∣∣∣
p∑

j=0

ã j (ỹn− j − ε̃n− j ) −
q∑

j=1

β̃ j ε̃n, j

∣∣∣∣∣∣
2

. (5)

Minimizing the rms error, we have[
P̃ −Φ̃

−Φ̃∗ Ψ̃

] [
Ã
B̃

]
= λ

[
Ã
0

]
, (6)

where

P̃ = 1

N − p




N−1∑
n=p

ỹn ỹ∗
n . . .

N−1∑
n=p

ỹn−p ỹ∗
n

...
. . .

...
N−1∑
n=p

ỹn ỹ∗
n−p . . .

N−1∑
n=p

ỹn−p ỹ∗
n−p




, (7)

Φ̃ = 1

N − p




N−1∑
n=p

ỹn ϕ̃
∗
n,1 . . .

N−1∑
n=p

ỹn ϕ̃
∗
n,q

...
. . .

...
N−1∑
n=p

ỹn−pϕ̃
∗
n,1 . . .

N−1∑
n=p

ỹn−pϕ̃
∗
n,q




, (8)

Ψ̃ = 1

N − p




N−1∑
n=p

ϕ̃n,1ϕ̃
∗
n,1 . . .

N−1∑
n=p

ϕ̃n,1ϕ̃
∗
n,q

...
. . .

...
N−1∑
n=p

ϕ̃n,q ϕ̃
∗
n,1 . . .

N−1∑
n=p

ϕ̃n,q ϕ̃
∗
n,q




, (9)

Ã =




ã0

...

ã p


 , (10)

and

B̃ =




β̃1

...

β̃q


 , (11)

Eq. (6) is the eigen equation, which is the fundamental equation of
the basic model. Here the variance of the noise is substituted by
the eigenvalue. The left matrix on the left-hand side of eq. (6) is
a Hermitian matrix in the two-component case, while it is a real
symmetric matrix in the single-component case.

Eliminating the vector from eq. (6), we have

(P̃ − Φ̃∗Ψ̃−1Φ̃)Ã = λÃ, (12)

Solving eq. (12), we have the eigenvector Ã that corresponds to the
minimum eigenvalue. Then the roots are estimated from

ÃT Z̃ = 0, (13)

where

Z̃ =




z̃0

...

z̃−p


 (14)

and

z̃ = e2π i f̃ (15)

In eq. (15), indicates a complex eigenfrequency.
Because the coefficients in eq. (13) are complex, the equation has

p roots. In the single-component case, the coefficients are real and
the equation has p/2 roots of complex conjugate pairs when p is
even and (p − 1)/2 roots of complex conjugate pairs and a real root
when p is odd.

2.4 Estimation of the model group parameters

Parameters of the model group, the AR order and AR parameters
ã j , are estimated using criterion (ii′). This estimation procedure has
four steps. The outline of the procedure and the details of the first
step are mostly the same as described in papers II and III. However,
we change the details of the other steps in this paper.

The first step is the determination of the range of the initially given
AR order p. While the initially given AR order should be larger than
the true AR order as mentioned above, the true AR order is unknown.
Hence, we set the initially given AR order to p = 1, 2, . . . , P , with
large P. That is, we prepare P basic models.

The second step is the estimation of candidate eigenfrequencies.
We first estimate the parameters of each basic model, and then trans-
fer the estimated AR parameters to eigenfrequencies with eq. (13).
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Next, we discard frequencies higher than 1/p because they may be
of noise or model selection error origin.

The third step is the estimation of AR order. Associating
each basic model with the initially given AR order p, we sort
the remaining frequencies in ascending order and number them
f̃ (1)

p , f̃ (2)
p , . . . , f̃ (K )

p . Then we determine the rough region p =
P1, P1 + 1, . . . , P2 where the frequencies seem to be stable against
p, and calculate their standard deviation σ

(k)
f as

σ
(k)
f =

√√√√ 1

P2 − P1 + 1

P2∑
p=P1

∣∣∣ f̃ (k)
p − ¯̃f (k)

∣∣∣2
wp. (16)

In eq. (16), the mean frequency is defined as

¯̃f (k) = 1

P2 − P1 + 1

P2∑
p=P1

˜f
(k)
p wp, (17)

and wp is a weighting factor. In this step, only a rough estimation

of σ
(k)
f is sufficient, so we set all the weighting factors to unity.

Such preliminary estimation diminishes a computational load of
determining the weighting factor for all the remaining frequencies.
When σ

(k)
f is small enough, it indicates the stability of the eigen-

frequency f̃ (k), and the stability implies closeness of the estimated
value to the true value. Then we estimate the AR order as the number
of stable frequencies.

In the last step, we estimate preferred eigen frequencies. We recal-
culate the mean frequency in eq. (17) supplying the weighting factors
from M-estimates (e.g. Huber 1981). We introduce M-estimates here
because of the inhomogeneous distribution of the candidate frequen-
cies. This estimation also excludes extremely biased values caused
by the non-linear algorithm used by the root-finding problem in
eq. (13). Strictly speaking, the meaning of the frequencies finally
estimated is statistically unclear. However, this point can be ne-
glected because the scattering of the candidate frequency is usually
quite small.

In the practical calculation in the following sections, we use
Tukey’s biweight, which among various M-estimates has a gentle
nature (Tukey 1974; Huber 1981). The ψ-function in this method is
as follows:

ψ(x) =
{

x(1 − x2)2 f or |x | ≤ 1
0 otherwise.

(18)

When we use the above procedure, we can reduce the computa-
tional load in addition to diminishing the effect of noise and model
selection error (Yokoyama et al. 2000). When we used the method
in paper III, we needed to recover the output sequence and to calcu-
late P2 − P1 + 1 times the rms error in the last step. However, we
do not need to recover the output sequence in the present method.
Hence, we can estimate the parameters with an extremely small
computational load.

2.5 Selection of the basis set

Criterion (ii′) is also used to select the basis set. In paper II, we used
criterion (iii) and directly estimated the basis set. However, we do
not need to use direct estimation in the present method, because the
model group parameters are hardly affected by the difference be-
tween the given and the true basis set. Hence, we adopt the candidate
basis set that shows the smallest scattering of estimated frequencies.
Then we adopt the associated AR order and eigenfrequencies.

2.6 Recovery of input and output sequences

Using the parameters estimated by the preceding steps, we fi-
nally recover input and output sequences. To make the calculation
simpler, we first transfer the estimated eigenfrequencies ¯̃f (k)(k =
1, 2, . . . , p) into the corresponding AR parameters ã′

j and recover
the input sequence with

ũn =
p∑

j=0

ã′
j ỹn− j . (19)

In this case, ũn contains noise because ỹn is used instead of x̃n . We
can use a low-pass filter on ũn and remove most noise as demon-
strated in paper II if necessary. However, we do not use any filter
here for simplicity.

The output sequence is recovered using the recovered ũn as
follows:

x̃n =




p∑
j=1

C̃ j z̃
′n
j −

p∑
j=1

ã′
j x̃n− j = ũn

for n = p, p + 1, . . . , N − 1
p∑

j=1

C̃ j z̃
′n
j for n = 0, 1, . . . , p − 1

(20)

The first terms of both equations in (20) relate to the homogeneous
solution of differential equation (1) and imply free oscillation. This
term is necessary if x̃n is not zero when n ≤ p − 1. The amplitude
of the term C̃ j can be estimated by fitting the data to eq. (20). The
second and the third terms in the first equation of (20) together relate
to the inhomogeneous solution of eq. (1). These terms imply forced
oscillation.

2.7 Advantages of the excitation Sompi method

The present method has three advantages: (1) the method estimates
both the eigen coefficients of the system and the excitation sequence
mostly simultaneously; (2) the excitation sequence does not have any
statistical constraints and is able to have a wide variety of charac-
teristics; (3) the parameter estimation method is constructed to be
robust for practical use: parameters with small error can be estimated
even if the model assumptions are not fully satisfied.

The first advantage is derived from eqs (6) and (19). When we
solve a set of linear equations with two variables, we first elimi-
nate one variable and determine the other. Then, we determine the
first eliminated variable. In spite of the two-step procedure, both
variables are theoretically determined simultaneously. The present
method is similar to this problem. We first eliminate parameter B
associated with the excitation from eq. (6), and then estimate A.
Next, we estimate the excitation sequence. For this estimation, we
use eq. (19), which is an approximated relation, instead of eq. (2),
which is precise. Hence, the simultaneous estimation of the eigen
coefficients and the excitation is not completely achieved. However,
this mostly simultaneous estimation is much more advanced than the
previous methods, which can estimate either the eigen coefficients
or the excitation sequence, or can estimate them both iteratively.
This advantage implies that the parameters estimated by the present
method have a smaller bias than those estimated by the previous
methods, which require given or initial parameters.

The second advantage is clear from eq. (4). As can be seen from
this treatment of the model, the basis set ϕ̃n, j does not have any
statistical constraints. Of course, the selection of the set itself is a
constraint, although various sets can be selected as the data warrant.
Hence, flexibility in the expression of the excitation sequence is
high. We also demonstrate this advantage in the next section.
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The last advantage is derived from criterion (ii′). In a practi-
cal problem, a difference exists between the model system and the
actual system. Most of the pre-existing methods do not take into
account this difference and evaluate estimated parameters using
statistical criteria, such as Akaike’s information criterion (AIC),
Akaike’s Bayesian information criterion (ABIC), and so on (Akaike
1973, 1980). Our criterion contrasts with those methods: it takes into
account a prediction error that does not obey the ideal statistical dis-
tribution, thus making the method robust. Hence, the practicability
of the present method is higher than that of the pre-existing methods.

Figure 1. The results of the analysis of a test data set synthesized from an event-based excitation: (a) given excitation sequence, (b) synthesized data sequence,
(c) estimated real frequencies with all initially given AR orders, and (d) estimated excitation sequence. A solid line and a broken line respectively indicate the
first and the second components.

There is another, secondary, merit derived from criterion (ii′). The
criterion makes parameter estimation possible without recovery of
the output sequence. This reduces the computational load compared
with the algorithm as previously described in papers II and III.

3 S Y N T H E T I C T E S T

In this section, we present the results of a synthetic test to confirm
the capability of the present method. Considering the application of
the method to polar motion, we first summarized the features of
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polar motion. Then we synthesized four data sets that have features
similar to those of polar motion and analysed them.

3.1 Polar motion

When induced rotational changes are small, the displacement of
the Earth’s instantaneous rotation pole ω is approximated by the
Liouville equation:

i

σ0

dm(t)

dt
× m(t) = �(t) (21)

Figure 2. The results of the analysis of a test data set synthesized from random excitation.

In eq. (21), the complex dimensionless quantity m indicates the
rotation pole within the fixed reference frame of a rotating body (e.g.
Munk & MacDonald 1960; Lambeck 1980). The eigenfrequency
of the equation, σ0 is the frequency of the Chandler wobble. The
observed real part of the eigenfrequency is about 2.30 × 10−3 cpd,
as shown in Table 1, and Q is observed to be roughly anywhere from
several tens to a thousand. The excitation term of the equation, the
complex quantity �(t), is called the excitation function.

Polar motion is thought to be excited by various torques. Large
contributions from an atmospheric torque and the ocean have been
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reported in recent studies (Gross & Lindqwister 1992; Chao 1993;
Rio & Cazenave 1994; Gross 2000). These excitations are found
in polar motion on a timescale shorter than a few years and may
have random phase and seasonal varying amplitudes. The core–
mantle coupling may excite polar motion because of the high coher-
ence between the decadal secular component of polar motion and the
geomagnetic field induced in the core (Yokoyama 1993). There also
may be event-based excitation. A large phase change was observed
in the motion of the mean pole from 1920 to 1940 (Lambeck 1980).
Event-based excitations caused by earthquakes and plate motion

Figure 3. The results of the analysis of a test data set synthesized from periodic excitation.

have also been proposed (Souriau & Cazenave 1985; Gross 1986;
Alfonsi et al. 1997).

Polar motion is affected by excitation torque with various fre-
quencies. Because of the wide range of timescales of the excitation
torques described above, polar motion also has a wide variety of
timescales: seasonal variation, the Chandler wobble, decadal vari-
ation, and longer term trends. In all cases, the motion is described
with the same dynamic equation, and feedback of polar motion to
the excitation torques is considered to be small. Accordingly, the dy-
namic equation (21) is regarded as linear. The system parameter of
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the equation, the Chandler frequency, is regarded as time-invariant,
because the mantle system on the short timescale discussed in this
paper is time-invariant. Thus, the dynamic equation of polar motion
is regarded as linear and time-invariant. Accordingly, it is described
by the model of the present method, and both the Chandler frequency
and the excitation function can be extracted using this method.

When we use the present method, we can use the following five
kinds of information based on the above-mentioned features of polar
motion.

Figure 4. The results of the analysis of a test data set synthesized from the combined excitations.

(1) Polar motion has a single eigenfrequency because it obeys
eq. (21). This indicates that the true AR order of the analysis model
is one.

(2) On the basis of eq. (21), polar motion has a counter-clockwise
rotation. That is, the real part of the eigenfrequency is positive.

(3) Although the eigenfrequency estimated by previous studies
might include bias, its real part is roughly 2.30 × 10−3 cpd.

(4) The amplitude of the free oscillation never increases because
of the law of energy conservation. That is, the sign of the imaginary
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part of the eigenfrequency, which corresponds to attenuation, is
positive or zero.

(5) Various torques or combinations of torques are thought to
excite polar motion.

3.2 Synthetic data

We created four data sets for numerical tests. The data sets were syn-
thesized from excitation sequences and a common complex eigen-
frequency. The first data set was synthesized from the event-based
excitation shown in Fig. 1(a). The excitation sequence shows two
events: one with width 32 (96 on the scale) at time 192 and one with
width 64 (192 on the scale) at time 4488. The excitation of the sec-
ond data set shown in Fig. 2(a) is a random sequence, and that of the
third data set shown in Fig. 3(a) displays amplitude modulation with
a period of 365. The excitation of the last data set is the sum of the
first three excitations. This excitation sequence is shown in Fig. 4(a).
We used an eigenfrequency of 2.300 × 10−3 + 1.150 × 10−5

i (Q = 100) to synthesize the four data sets. This value was taken
from the previous studies as shown in Table 1. The synthesized se-
quences are shown in Figs 1(b)–4(b).

When we synthesized the data sets, we did not consider trends
longer than several years. When considering the application of the
method in the next section, we used a data length of 6000 days and
a sampling interval of 3 days. That is, the number of data points is
2000. We added 40 dB of white noise, assuming a data precision
greater than three significant figures.

3.3 Analysis of synthetic data

We analysed the four data sets using the a priori information men-
tioned above. Among the five kinds of information, (2) and (4) were
used before selection of a preferred eigenfrequency to exclude im-
proper frequencies. Information (1) and (3) was then used to select a
preferred eigenfrequency: we selected only the one frequency clos-
est to 2.30 × 10−3 cpd. Information (5) was used when we prepared

Figure 5. Functions of the candidate basis sets: (a) spline-3, (b) spline-4,
and (c) spline-5.

Table 2. Candidate basis sets.

Basis set Function width Width (physical scale)

spl332 Spline-3 32 (96 days)
spl364 Spline-3 64 (192 days)
spl3128 Spline-3 128 (384 days)
spl432 Spline-4 32 (96 days)
spl464 Spline-4 64 (192 days)
spl4128 Spline-4 128 (384 days)
spl532 Spline-5 32 (96 days)
spl564 Spline-5 64 (192 days)
spl5128 Spline-5 128 (384 days)

candidate basis sets: we prepared basis sets able to describe the
characteristics of the candidate excitations.

The candidate basis sets were created from spline wavelets of
degree 3, 4 and 5 as shown in Fig. 5 (e.g. Chui 1992). By chang-
ing the degree and width of the spline wavelets, we can describe
a wide variety of event-based, random and periodic excitation se-
quences. Then we created the basis sets using spline wavelets of
three different degrees and with widths of 32, 64 and 128. That is,
we prepared nine candidate basis sets as shown in Table 2. Because
we did not consider longer-term trends, the maximum width of the
wavelets is 128, which corresponds to 384 days on the physical
scale. For short scales, wavelets with widths shorter than 32 might
be necessary to describe a random excitation. However, short-scale
wavelets increase the number of the basis and consequently increase
the computational load. Hence, we described small-scale variations
with higher degree spline wavelets instead of by using small-scale
wavelets.

We first analysed the time-series synthesized from the event-based
excitation shown in Fig. 1. Using the nine candidate basis sets and
setting the initially given AR order p = 1, 2, . . . , 150,we estimated
frequencies. The estimated frequencies with all initially given AR
orders and with the basis set spl432 are shown in Fig. 1(c). In this
figure, the frequencies of negative real parts and negative imagi-
nary parts were excluded on the basis of information (2) and (4).
The remaining frequencies showed a stable frequency against ini-
tially given AR orders larger than 20. This stability was obtained
also in the cases of the other candidate basis sets. Then we esti-
mated the mean value of the stable frequency for p = 20, 21,. . ., 70.
The result is shown in Table 3. The scattering of the complex fre-
quency was calculated from eq. (16), and the errors of the real and
imaginary parts were respectively determined from the standard de-
viation of each part. Among the nine candidate basis sets, set spl432
showed the least scattering. Hence, we adopted the estimated param-
eters of that basis set. The estimated excitation sequence is shown
in Fig. 1(d). Recovered data sequence is visually indistinguishable
from the analysed sequence.

Next, we analysed the time-series synthesized from the random
excitation shown in Fig. 2. In this case, we obtained a stable fre-
quency with initially given AR orders higher than 10. Then we
set p = 10, 11,. . ., 60 and estimated the eigenfrequencies shown in
Table 4. Basis set spl364 gave the best result, and we adopted the
estimated value of that basis set.

The data set of the periodic excitation shown in Fig. 3 was also
analysed. In this case, an apparently stable frequency appears with
low initially given AR orders, then it splits into two stable frequen-
cies with higher orders. This indicates that the two different fre-
quencies could not be resolved with the low orders due to a large
error as mentioned in Section 2.2. Then we set p = 40, 41,. . ., 90,
which is a range of resolved frequencies. Among the two stable
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Table 3. Analysis results for event-based excitation.

Basis Real frequency Imaginary frequency Scattering RMS error

spl332 (2.336 ± 0.039) × 10−3 (6.237 ± 28.376) × 10−5 2.864 × 10−4 2.307 × 10−1

spl364 (2.332 ± 0.046) × 10−3 (1.250 ± 2.185) × 10−4 2.232 × 10−4 2.740 × 10−1

spl3128 (2.340 ± 0.018) × 10−3 (3.341 ± 24.550) × 10−5 2.461 × 10−4 1.975 × 10−1

spl432 (2.329 ± 0.031) × 10−3 (2.315 ± 7.844) × 10−5 8.429 × 10−5 1.861 × 10−1

spl464 (2.338 ± 0.029) × 10−3 (3.090 ± 17.358) × 10−5 1.760 × 10−4 1.940 × 10−1

spl4128 (2.339 ± 0.032) × 10−3 (1.627 ± 3.275) × 10−4 3.291 × 10−4 2.872 × 10−1

spl532 (2.325 ± 0.014) × 10−3 (5.842 ± 44.918) × 10−5 4.494 × 10−4 2.265 × 10−1

spl564 (2.338 ± 0.035) × 10−3 (6.546 ± 31.691) × 10−4 3.189 × 10−4 2.342 × 10−1

spl5128 (2.338 ± 0.027) × 10−3 (5.865 ± 37.126) × 10−5 3.723 × 10−4 2.270 × 10−1

Table 4. Analysis results for random excitation.

Basis Real frequency Imaginary frequency Scattering RMS error

spl332 (2.320 ± 0.015) × 10−3 (2.801 ± 9.569) × 10−5 9.690 × 10−5 4.177 × 10−1

spl364 (2.320 ± 0.019) × 10−3 (1.260 ± 5.109) × 10−5 5.442 × 10−5 3.831 × 10−1

spl3128 (2.319 ± 0.022) × 10−3 (1.625 ± 8.701) × 10−5 8.969 × 10−5 3.890 × 10−1

spl432 (2.320 ± 0.019) × 10−3 (1.555 ± 6.486) × 10−5 6.770 × 10−5 3.879 × 10−1

spl464 (2.321 ± 0.019) × 10−3 (1.818 ± 8.933) × 10−5 9.130 × 10−5 3.936 × 10−1

spl4128 (2.320 ± 0.025) × 10−3 (2.448 ± 9.035) × 10−5 9.380 × 10−5 4.082 × 10−1

spl532 (2.318 ± 0.025) × 10−3 (4.529 ± 22.349) × 10−5 2.248 × 10−4 4.688 × 10−1

spl564 (2.320 ± 0.021) × 10−3 (3.239 ± 9.803) × 10−5 1.002 × 10−4 4.302 × 10−1

spl5128 (2.321 ± 0.020) × 10−3 (3.756 ± 17.244) × 10−5 1.736 × 10−4 4.459 × 10−1

Table 5. Analysis results for periodic excitation.

Basis Real frequency Imaginary frequency Scattering RMS error

spl332 (2.301 ± 0.001) × 10−3 (1.139 ± 0.353) × 10−5 3.600 × 10−6 6.344 × 10−1

spl364 (2.303 ± 0.007) × 10−3 (1.290 ± 0.118) × 10−5 7.015 × 10−6 6.336 × 10−1

spl3128 (2.301 ± 0.001) × 10−3 (1.058 ± 0.154) × 10−5 1.727 × 10−6 6.347 × 10−1

spl432 (2.303 ± 0.008) × 10−3 (1.165 ± 0.356) × 10−5 8.316 × 10−6 6.339 × 10−1

spl464 (2.303 ± 0.010) × 10−3 (1.141 ± 0.330) × 10−5 1.067 × 10−5 6.340 × 10−1

spl4128 (2.302 ± 0.003) × 10−3 (1.132 ± 0.371) × 10−5 4.775 × 10−6 6.342 × 10−1

spl532 (2.304 ± 0.009) × 10−3 (1.221 ± 0.324) × 10−5 9.716 × 10−6 6.334 × 10−1

spl564 (2.303 ± 0.008) × 10−3 (1.155 ± 0.112) × 10−5 7.998 × 10−6 6.339 × 10−1

spl5128 (2.303 ± 0.007) × 10−3 (1.152 ± 0.191) × 10−5 7.569 × 10−6 6.339 × 10−1

Table 6. Analysis results for combined excitation.

Basis Real frequency Imaginary frequency Scattering RMS error

spl332 (2.218 ± 0.210) × 10−3 (3.801 ± 8.648) × 10−5 2.269 × 10−4 9.104 × 10−1

spl364 (2.221 ± 0.172) × 10−3 (3.351 ± 7.397) × 10−5 1.874 × 10−4 9.067 × 10−1

spl3128 (2.221 ± 0.105) × 10−3 (4.633 ± 11.595) × 10−5 1.564 × 10−4 9.030 × 10−1

spl432 (2.201 ± 0.205) × 10−3 (2.691 ± 2.036) × 10−5 2.057 × 10−4 9.523 × 10−1

spl464 (2.218 ± 0.196) × 10−3 (5.728 ± 14.622) × 10−5 2.446 × 10−4 9.065 × 10−1

spl4128 (2.220 ± 0.196) × 10−3 (4.195 ± 8.008) × 10−5 2.113 × 10−4 9.055 × 10−1

spl532 (2.262 ± 0.096) × 10−3 (3.437 ± 5.241) × 10−5 1.090 × 10−4 8.130 × 10−1

spl564 (2.206 ± 0.257) × 10−3 (4.288 ± 6.836) × 10−5 2.660 × 10−4 9.324 × 10−1

spl5128 (2.208 ± 0.231) × 10−3 (3.927 ± 6.329) × 10−5 2.397 × 10−4 9.319 × 10−1

frequencies, one of the frequencies is the eigenfrequency and the
other is the excitation frequency. When the excitation sequence is
periodic, it cannot be distinguished from the system eigenfrequency
because the basis of the AR system is a complex exponential func-
tion. However, we fortunately have information (1) and (3) in this
case, so we can select a frequency close to 2.30 × 10−3 cpd and
calculated the mean frequencies as shown in Table 5. In this case,
the preferred parameters were estimated using basis set spl3128.

The last time-series synthesized from the combined excitations,
shown in Fig. 4, was also analysed. In this case, we have two stable
frequencies, as in the third case, with initially given AR orders higher
than 80. Then we set p = 80, 81,. . ., 130 and obtained the result

shown in Table 6. The parameters finally adopted were estimated
using the basis set spl532.

We summarize the results of the four cases in Fig. 6. In all cases,
two significant figures of the estimated real frequencies correspond,
and the true values lie within their error bars. With respect to the
imaginary part of the eigenfrequency, the estimated values in all
cases correspond to within one order of magnitude, and the true
value is also within their error bars. Because the absolute value of
the real part is much larger than that of the imaginary part, the error
of the imaginary part is larger than that of the real part. The estimated
excitation sequence also corresponds well to the given sequence in
each case.

C© 2002 RAS, GJI, 150, 467–482



478 Y. Yokoyama

Figure 6. Estimated (a) real and (b) imaginary frequencies from the four
test data sets. A gray line indicates the true value.

Figure 7. The results of the analysis of polar motion: (a) analysed data, SPACE95, (b) estimated real frequencies with all initially given AR orders, and (c)
estimated excitation sequence. A solid line and a broken line respectively indicate x- and y-components.

Both a complex eigenfrequency and an excitation sequence close
to the given values were thus estimated. This successful result indi-
cates that the present method works even with model selection error
caused by the selection of the basis set. The ability of the method
to describe a variety of excitation sequences is also shown by the
result. Because we succeeded in our analyses of examples similar
to polar motion, the results of the analysis of actual polar motion
performed in the next section will be reliable.

4 A N A LY S I S O F P O L A R M O T I O N

In this section, we apply the present method to actual polar motion
data. We used the polar motion data of SPACE95 (Gross 1996)
shown in Fig. 7(a). The data duration is from 1976 to 1996. The
sampling interval is 3 days, and the number of data points is 2355.
Although SPACE95 reports not m but the location of p = (PMX −
iPMY ) the celestial ephemeris pole (CEP), the dynamic equation of
p is the same as that of m :

i

σ0

dp(t)

dt
+ p(t) = χ(t) (22)

Hence, we can apply the present method to the data in a similar
way as in the previous section. Note that the estimated excitation
sequence in this case will be −iσ0χ(t).
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Table 7. Polar motion analysis results.

Basis Real frequency Imaginary frequency Scattering RMS error
(cpd) (cpd) (cpd) (arc sec)

spl332 (2.361 ± 0.038) × 10−3 (6.694 ± 10.826) × 10−6 3.965 × 10−5 6.718 × 10−3

spl364 (2.362 ± 0.040) × 10−3 (6.454 ± 5.320) × 10−6 4.019 × 10−5 6.803 × 10−3

spl3128 (2.359 ± 0.032)× 10−3 (1.322 ± 2.457) × 10−5 4.038 × 10−5 6.633 × 10−3

spl432 (2.361 ± 0.042) × 10−3 (7.342 ± 7.179) × 10−6 4.256 × 10−5 6.712 × 10−3

spl464 (2.362 ± 0.036) × 10−3 (6.966 ± 6.385) × 10−6 3.705 × 10−5 6.798 × 10−3

spl4128 (2.363 ± 0.045) × 10−3 (8.637 ± 4.622) × 10−6 4.571 × 10−5 6.814 × 10−3

spl532 (2.362 ± 0.038) × 10−3 (7.194 ± 4.022) × 10−6 3.773 × 10−5 6.806 × 10−3

spl564 (2.361 ± 0.038) × 10−3 (7.541 ± 6.005) × 10−6 3.869 × 10−5 6.755 × 10−3

spl5128 (2.362 ± 0.032) × 10−3 (8.262 ± 4.850) × 10−6 3.224 × 10−5 6.801 × 10−3

Setting the initially given AR order p = 1, 2,. . ., 100 and using
the nine candidate basis sets in Table 2, we estimated frequencies.
The result in the case of spl5128 is shown in Fig. 7(b). In all basis
sets, two stable frequencies appear for p higher than 20. Then we
calculated the mean frequency for p = 20, 21,. . ., 70.

The results are shown in Table 7. Real frequencies estimated
by the different basis sets agree within three significant figures.
Imaginary frequencies correspond within one order of magnitude.
In summary, the results given by different basis sets are mostly
the same. This indicates the robustness of the parameter estimation
method: parameters with a small error are successfully estimated in
spite of the model selection error that results from mis-selection of
the basis set.

Although there is not a clear difference among the results of
the nine basis sets, we finally adopted the result of spl5128, be-
cause its scattering of the frequency is the smallest. The esti-
mated real part of the frequency (2.362 ± 0.032) × 10−3 cpd and
imaginary part is (8.262 ± 4.850) × 10−6. This is equivalent to a
Chandler period of 423 days (418–429 days) and a Q of 143 (90–
346). The estimated excitation sequence is shown in Fig. 7(c). Sea-
sonal and shorter variations are visible in the sequence, and large
excitations are recognized at 1977, 1979, 1985, 1988, 1990, 1995,
and 1996.

Such features are well distinguishable in wavelet space (e.g.
Combes et al. 1989). Fig. 8 shows wavelet transformed excitation
sequence by a spline-5 wavelet, which is a function of the adopted
basis set. In Fig. 8, both x- and y-components have similar charac-
teristics although the amplitude of the y-component is smaller than
that of the x-component.

The strongest signal in the wavelet-transformed excitation se-
quence is seen on a scale of approximately 2048 days. Signs and
intervals of the signals are not periodic, but the mean interval is
661 days. Because this scale is biannual, it is considered to re-
late to the quasi-biennial oscillation (QBO) as suggested by Rio &
Cazenave (1994).

The strongest secondary signal was seen on a scale of approxi-
mately 512 days. There are pairs of positive and negative signals.
On a scale of approximately 256 days, there are signal peaks that
appear at an interval half that of the signal at around 512 days. The
periodicity of the two kinds of signals were determined by Fourier
analysis to be 368 and 184 days. Hence, the signals are seasonal
variations as suggested by Chao (1993).

On a scale shorter than the seasonal variation, no typical sig-
nal pattern is observed. A Fourier spectrum with this scale in
Fig. 9 shows a broad spectrum, which implies coloured random
excitation as discussed in Chao (1993).

Besides the typical scales mentioned above, signal patterns with
a wide scale band are also seen in Fig. 8. In particular, there are
strong patterns at 1979, 1988, and 1990 as also seen in Fig. 7(c).
The large excitation at 1985 is not recognized in Fig. 8 as a wide band
signal. These wide band patterns indicate large and rapid changes
in the excitation. Although the physical cause is not clear, these are
considered to be event-based excitations.

The estimated excitation sequence thus includes biannual quasi-
periodic, annual and semiannual periodic, random, and event-based
variations. Hence, we conclude that a compound excitation se-
quence, as well as a complex eigenfrequency, was successfully ex-
tracted with the present method.

5 S U M M A RY A N D D I S C U S S I O N

We developed a practical excitation Sompi method. This method is
based on a model of a linear time-invariant dynamic equation and
is able to estimate both the system parameters and the excitation
sequence mostly simultaneously. Its parameter estimation method
is robust and works well even when the model assumptions are not
fully satisfied; it estimates parameters with small errors.

A remarkable difference between the present and previous meth-
ods was demonstrated by analyzing four synthetic data sets. The
present method succeeded in the estimation of proper parameters,
even when the given data sets were created from excitation se-
quences with extremely different features. This contrasts with the
previous methods, which can estimate only excitations with limited
characteristics and which may have a large estimation bias.

We also analysed polar motion data utilizing the advantages of
the present method. As a result, we obtained an eigenfrequency with
a value different from those previously obtained. The estimated real
eigenfrequency was 2.36 × 10−3(2.33 × 10−3 − 2.39 × 10−3) cpd
and Q was 143 (90–346). On the other hand, the real frequency of
the previous studies shown in Table 1 was about 2.30 × 10−3 and Q
was from several tens to a thousand.

Because the previous methods cannot estimate the eigenfre-
quency and excitation together, and because they do not take into
account model selection error, the estimated values may include a
large bias. In particular, they tend to estimate a smaller real eigenfre-
quency, because the frequency of the variation seems to be smaller
when the excitation positively acts. This is thought to be why the
previous methods estimated smaller eigenfrequencies. On the other
hand, we took into account both the excitation and the model selec-
tion error, so we succeeded in estimating an eigenfrequency whose
value is much closer to the true value.
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Figure 8. Wavelet-transformed excitation sequences of the (a) x-component and (b) y-component.

With respect to Q, a similar bias may be generated by the previ-
ous methods. For the same reason, they tend to estimate a large Q.
However, the previously estimated Q had a large error region, and
the value estimated by the present method falls within that region.
For this reason, the difference between the previous studies and this

study is not clear. Nevertheless, the region of Q estimated in this
study is relatively narrow, and the value is not too large. From this
point of view, we succeeded in restricting Q.

We have thus shown that the present method is useful for the prac-
tical analysis of physical data. This method can be applied to other
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Figure 9. Amplitude spectrum of the wavelet component on a scale shorter than seasonal variation. The solid and broken lines respectively indicate the x- and
y-components.

kinds of data whose dynamic processes are linear and time-invariant.
Hence, the method will be a powerful tool to extract physical infor-
mation about various geophysical phenomena.
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