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S U M M A R Y
We present a semi-analytical, semi-numerical method to simulate wave propagation in piece-
wise heterogeneous media that the Earth presents. Wave propagation in such media will high-
light the reflections/transmissions at interfaces, while the volume heterogeneities in each ge-
ological formation generate scattered waves that are superimposed on the boundary waves to
cause fluctuations in amplitude and phase. The numerical method is a straightforward exten-
sion to irregular multilayered media of the generalized Lipmann-Schwinger integral equation
formulated in terms of volume scattering and boundary scattering. Compared to the finite-
difference and finite-element methods for heterogeneous media, the boundary-volume integral
equation technique enjoys a distinct characteristic of the explicit use of the boundary condi-
tions of continuities for displacement and traction across subsurface interfaces, which provides
sufficient accuracy for simulating the reflection/transmission across irregular interfaces. The
resultant global coefficient matrix is sparse and narrow-banded. We discuss several aspects
of seismic modeling implementation in order to make the calculations more efficient. The
accuracy of the method is tested by comparing with the analytical solutions for a semicircular
alluvial valley, which confirms that sampling at three elements per wavelength is sufficient
to ensure the accuracy for general applications. To show the applicability of the method, we
calculated synthetic seismograms that show significant impact of volume heterogeneities on
seismic responses in a layered medium system.

Key words: boundary-volume integral equation technique, generalized Lipmann-Schwinger
integral equation, piecewise heterogeneous media, wave propagation.

I N T RO D U C T I O N

Most geological formations are strongly stratified with fairly smooth lateral variations in medium property within each formation. In this layered
media, the mean properties of the media are strong contrast between layers, while volume heterogeneities inside each layer can be described
as deviations from the mean values. Wave propagation through such piecewise heterogeneous media will dominate the reflection/transmission
across subsurface interfaces, while the scattered waves by volume heterogeneities are superimposed on the boundary waves and lead to, at
seismic frequencies, moderate fluctuations in amplitude and phase of the resultant field. This implies that wave propagation simulation through
such media may prefer some exclusive methods that somewhat differ from general numerical modeling techniques. The key issues for such
candidate methods are (1) the geometrically accurate description of irregular interfaces, (2) the explicit use of the boundary conditions of
continuities for displacement and traction across interfaces, (3) the ability to deal with spatial fluctuations and subtle scattering effects of
volume heterogeneities inside each formation.

Indeed, the finite-difference (FD) and finite-element (FE) methods are often thought of as general tools for the complete solution to
problems of wave propagation in arbitrarily varying media. However, these methods do not explicitly consider the boundary continuity
conditions between different formations. That disables the methods to sufficient accuracy for modeling the reflection/transmission across
irregular interfaces. Numerical errors involved may produce effects so large that are comparable to those caused by attenuation, dispersion,
and anisotropy predicted by scattering theory (Wu 1989). Therefore, numerical modeling schemes have to be highly accurate to yield reliable
results about both subtle reflection/transmission effects across interfaces and subtle scattering effects from volume heterogeneities inside each
formation. In contrast to the regular gridding in the FD method, the FE method allows spatial sampling to vary with the local complexity of the
media. This flexibility makes the method more reliable to model irregular interfaces. However, both the FD and FE methods are characteristic
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of the implicit use of boundary conditions, while the explicit use will lead to a category of semi-analytical and semi-numerical methods
that may be more important for the reflection/transmission simulation across irregular interfaces. The purpose of this paper is to develop an
accurate and efficient seismic modeling method for wave propagation in piecewise heterogeneous media. We demonstrate its suitability to
comply with the three special requirements mentioned above.

Targeted at wave propagation in layered media, numerical modeling techniques with an explicit use of boundary continuity conditions
have been extensively studied. The boundary integral equation-discrete wavenumber method (Bouchon et al. 1989) provides a full-wave so-
lution for multilayered media having irregular interfaces. This method incorporates the discrete wavenumber Green’s function representation
into the boundary integral equation techniques so that the evaluation of the singular integrals associated with the Green’s function can be
avoided. Kennett (1984) presented a coupled mode method where the propagator can be broken down into contributions associated with
particular wavetypes. It can be modified to incorporate moderately heterogeneous media. Chen (1990) combined the wavefield plane-wave
expansion, the discrete wavenumber Green’s function representation, and the boundary integral equation to develop a global generalized reflec-
tion/transmission matrices method for irregular layered media. This method can be viewed as an extension of the generalized R/T coefficients
method (Kennett 1983) developed for horizontally layered media to irregular layered ones. However, the presence of general volume hetero-
geneities inside each layer precludes the applicability of these plane-wave decomposition methods. In general, the volume heterogeneities lead
to a coupled boundary-volume interaction that requires an extension of traditional boundary methods to account for volume heterogeneities.

Fu et al. (1997) developed a numerical method to solve the Lipmann-Schwinger integral equation for numerical wave propagation
in volume heterogeneous media. By incorporating the boundary integral representation into the Lipmann-Schwinger integral equation, the
method was then extended (Fu 2001) to study the influence of widely observed strong scattered noises caused by rugged topographies and
strong volume heterogeneities in complex near-surface areas. In the present work we extend the generalized Lipmann-Schwinger integral
equation numerical method to heterogeneous layered media having irregular interfaces. The method provides an efficient scheme to synthesize
seismograms in piecewise heterogeneous media by the explicit use of boundary continuity conditions across subsurface interfaces. The
scattering term associated with volume integrals over volume heterogeneities can be calculated by accurate Gaussian integration numerical
algorithms, which guarantees an optimum seismic modeling for scattering effects by volume heterogeneities with arbitrary complexity.
The presentation is restricted to antiplane motion (SH waves), which is similar to the acoustic case. The generalization of the scheme
to the elastic case is straightforward. Although this boundary-volume integral equation numerical technique can be a powerful tool for
piecewise heterogeneous media, the computation becomes extremely time intensive due to the very large size of the resulting matrices to be
inverted when the ratio of model dimension to wavelength becomes too large. Consequently the technique is limited to small problems or
low frequencies. Several aspects are considered in the paper to make the algorithm implementation more efficient. However, the resulting
improvement in computing speed is not significant for large problems. Much faster solutions might be obtained by incorporating a fast multipole
method that has been used to solve boundary integral equations for 3-D electromagnetic scattering problems (Coifman et al. 1993) and for
3-D elastic wave scattering problems (Fujiwara 2000). Applying the fast multipole method to the boundary-volume integral equation for
piecewise heterogeneous media will be conducted in the future.

S I M U LTA N E O U S I N T E G R A L E Q UAT I O N S F O R M U LT I L AY E R E D M E D I A

Problem definition

Wave propagation in a large-scale boundary structure with internal volume heterogeneities can be described by a generalized Lipmann-
Schwinger integral equation (GLSIE). It is formulated as the superposition of incident, boundary-scattering, and volume-scattering waves. In
this section we extend the GLSIE representation to multilayered media with each layer being different scale heterogeneities. The problem to
be studied is illustrated in Fig. 1. In this model, there are N heterogeneous layers V (i)(i = 1, 2, . . . , N ) over a half-space, among which the ith
layer is bounded by two irregular interfaces ∂V (i−1) and ∂V (i). The uppermost interface is a free surface, and an arbitrary source is embedded
in the sth layer. For simplicity, we restrict the present study to the 2-D SH problem (or acoustic problem). The elastic properties of each layer
are described by the shear modulus µ(i)(r) and density ρ(i)(r) with the corresponding reference values µ

(i)
0 and ρ

(i)
0 . The solution domain of

the problem for the ith layer is defined as V̄ (i) ∈ V (i) + ∂V (i−1) + ∂V (i). Seismic response u(r) for steady state scalar wave propagation in the
ith layer satisfies the following scalar equation

∇2u(r) + (
k(i)(r)

)2
u(r) = −δsi s(r, ω), r ∈ V̄ (i) i = 1, 2, . . . , N , (1)

where the wavenumber (k(i)(r))2 = ω2ρ(i)(r)/µ(i)(r)with the corresponding reference wavenumber (k(i)
0 )2 = ω2ρ

(i)
0 /µ

(i)
0 , δsi = 1 for i = s and

δsi = 0 for i 	= s, and s(r, ω) is the body force. The seismic response u(r) also satisfies the following boundary conditions: 1) the traction-free
condition on the free surface: ∂u(r)/∂n = 0 at r ∈ ∂V (0), 2) the continuities of displacement and traction at the interboundary between V (i)

and V (i+1)


u(i)(r) = u(i+1)(r)

µ(i) ∂u(i)(r)

∂n
= µ(i+1) ∂u(i+1)(r)

∂n
, r ∈ ∂V (i)

, (2)

and 3) the radiation boundary conditions imposed on the far-field behaviour at infinity
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Figure 1. Configuration of the problem considered.




lim
|r |→∞

u(r) = 0

lim
|r |→∞

∂u(r)

∂r
= 0

. (3)

Boundary-volume integral equation representation

To explicitly use the boundary conditions defined by eq. (2) in the solution of the problem, we need to transform eq. (1) into an integral
equation in terms of boundary and volume integrals of the solution domain. Supposing the source point is located at r0, the source term can
be expressed as s(r, ω) = S(ω)δ(r − r0), where S(ω) is the source spectrum and δ(r − r0) is the delta function. Defining the relative slowness
perturbation O (i)(r) = ρ(i)(r)µ(i)

0 /ρ
(i)
0 µ(i)(r) − 1, we then rewrite eq. (1) with respect to the reference wavenumber

∇2u(r) +
(

k(i)
0

)2
u(r) = −δsi S(ω)δ(r − r0) −

(
k(i)

0

)2
O (i)(r)u(r). (4)

With the aid of the free-space Green’s function, eq. (4) can be transformed into the following generalized Lipmann-Schwinger integral equation∫
∂V (i−1)

[
G(i)(r, r′)t (i−1)(r′) − u(i−1)(r′)

∂G(i)(r, r′)
∂n

]
dr′ +

∫
∂V (i)

[
G(i)(r, r′)t (i)(r′) − u(i)(r′)

∂G(i)(r, r′)
∂n

]
dr′

+
(

k(i)
0

)2
∫

V (i)
O (i)(r′)w(i)(r′)G(i)(r, r′) dr′ + δsi S(ω)G(i)(r, r0) =




w(i)(r), r ∈ V (i)

C (i−1)(r)u(i−1)(r), r ∈ ∂V (i−1),

C (i)(r)u(i)(r), r ∈ ∂V (i)

0, others

(5)

for all r′ ∈ V̄ (i), where u(i)(r) is the displacement on ∂V (i), t (i)(r) = ∂u(i)(r)/∂n the normal gradient of the displacement on ∂V (i), w(i)(r) is
the displacement inside V (i), and the coefficients C(r) generally depends on the local geometry at r. The causal Green’s function is defined
everywhere in the full heterogeneous region V̄ (i), relating an ‘observation point’ r to a ‘scattering point’ r′. It satisfies the homogeneous
Helmholtz equation in the reference medium

∇2G(i)(r, r′) +
(

k(i)
0

)2
G(i)(r, r′) = −δ(r − r′), (6)

for all r, r′ ∈ V̄ (i). For 2-D problems, the Green’s function is given by

G(i)(r, r′) =
i H (1)

0

(
k(i)

0

∣∣∣∣r′ − r

∣∣∣∣
)

4
, (7)

where i = √−1 and H (1)
0 is the Hankel function of the first kind and of zeroth order. Eq. (5) is a Fredholm integral equation of the second

kind. According to the Fredholm’s theorems of integral equations, we can prove that the solution of eq. (5) exists and is unique for boundary
value problems with both Neumann and Dirichlet boundary conditions. It is worth to mention that formulating wave propagation by integral
equations enjoys a unique advantage that eq. (5) naturally satisfies Sommerfeld nonreflecting and decay boundary conditions that are defined
by eq. (3) and imposed on the far field behaviour at infinity so that the integrals on artificial boundaries in the model vanish. Therefore, the
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artificial reflections that arise at the edges of the domain of computation can be avoided by an infinite absorbing element technique (Fu & Wu
2000).

For piecewise homogeneous media (i.e. O (i)(r) = 0), eq. (5) reduces to a standard boundary integral equation that has been further for-
mulated as the boundary integral equation-discrete wavenumber method (Bouchon et al. 1989) and global generalized reflection/transmission
matrices method (Chen 1990) for multilayered media with irregular interfaces. An efficient alternative is to directly solve the boundary integral
equation for multilayered media by the boundary-element (BE) method (Fu 1996). The BE method has been modified to investigate regional
wave propagation in Tibet area (Fu & Wu 2001) and for theoretical study of the scattering effects of random topography on regional wave
attenuation and amplification (Fu et al. 2002). However, these boundary methods are limited by their abilities to handle volume heterogeneities.
For piecewise heterogeneous media (i.e. O (i)(r) 	= 0), some flexible approaches have been developed with a great saving of computing time
and memory at the cost of accuracy, for example, Schuster (1985) developed a hybrid BEM + Born series modeling scheme to solve multibody
scattering problems where perturbed parts with volume integrals can be approximated by a Born series. Wu & Fu (1998)incorporated the BE
method and a generalized screen (GS) propagator to model the heterogeneous media where the perturbed parts are solved by the GS method.
In this paper we pursue more accurate full-wave solutions for piecewise heterogeneous media. First, the discretization of eq. (5) can be done
in each layer by numerical methods such as the collocation method or weighted residual method. Then, all equations are assembled into a
set of simultaneous matrix equations by using the boundary conditions of continuity for displacement and traction across all interfaces. This
global matrix is sparse or narrow-banded, depending on the structure of the model.

Simultaneous matrix equations

We discretize each interface ∂V (i) into L (i) boundary elements denoted by �e(e = 1, 2, . . . , L (i)) and each volume V (i) into M (i) finite elements
denoted by �e(e = 1, 2, . . . , M (i)). The total node number is NP (i). In the collocation method, interpolation shape functions φ are used so that
the variables (r′, u, t , and w) are approximated by the linear combination of their nodal values over an element �e or �e defined geometrically
between the nodes I1 and I2, for example,

u(i)(ξ ) =
I2∑

l=I1

u(i)(rl )φl (ξ ), (8)

where ξ denotes the local coordinate of an element. We then rewrite the integral eq. (5) in operator form

H (i,1)u(i−1)(r j ) − G(i,1)t (i−1)(r j ) + H (i,2)u(i)(r j ) − G(i,2)t (i)(r j ) = K (i)w(i)(r j ) + δsi f (r j ), j = 1, 2, . . . , N P (i), (9)

where f is the incident field, H and G are the boundary integral operators, and K is the perturbation-domain integral operator. The elements
of H (i,1), G(i,1), H (i,2), G(i,2), and K (i) can be computed over elements respectively as

h(i,1)
jk =

L(i−1)∑
e=1

I2∑
l=I1

[∫
�e

∂

∂n
G(i)(r j , r′(ξ ))φl (ξ ) dr′(ξ )

]
δlk + C (i−1)(r j )δ jk, (10)

g(i,1)
jk =

L(i−1)∑
e=1

I2∑
l=I1

[∫
�e

G(i)(r j , r′(ξ ))φl (ξ ) dr′(ξ )

]
δlk, (11)

h(i,2)
jk =

L(i)∑
e=1

I2∑
l=I1

[∫
�e

∂

∂n
G(i)(r j , r′(ξ ))φl (ξ ) dr′(ξ )

]
δlk + C (i)(r j )δ jk, (12)

g(i,2)
jk =

L(i)∑
e=1

I2∑
l=I1

[∫
�e

G(i)(r j , r′(ξ ))φl (ξ ) dr′(ξ )

]
δlk, (13)

and

K (i)
jk =

M (i)∑
e=1

I2∑
l=I1

[(
k(i)

0

)2
∫

�e

O (i)(r′(ξ ))G(i)(r j , r′(ξ ))φl (ξ ) dr′(ξ )

]
δlk − δ jk, (14)

where δlk and δ jk are the Kronecker delta functions, and the Gaussian integration algorithm is used to numerically evaluate these integrals.
Eq. (9) can be further compacted as a matrix equation for j = 1, 2, . . . , N P (i)

A(i,1)Q(i−1) + A(i,2)Q(i) = K(i)v(i) + δsi f, (15)

where we define the boundary coefficient matrices A(i,1) = [H (i,1); − G(i,1)] and A(i,2) = [H (i,2); − G(i,2)], and the unknown boundary displace-
ment-traction vector Q(i) = [u(i); t (i)].

We assume that the medium below the layer V (N ) is homogeneous, bounded by ∂V (N ) and a spherical surface with its radius approach
infinity. Letting the source is located in the shallowest layer V (1) as the case in seismic exploration, we can use eq. (15) to build the following
global matrix equation that describes wave propagation in the whole model
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A(N+1,1)Q(N ) = 0

A(N ,1)Q(N−1) + A(N ,2)Q(N ) = K(N )v(N )

...

A(i,1)Q(i−1) + A(i,2)Q(i) = K(i)v(i)

A(i−1,1)Q(i−2) + A(i−1,2)Q(i−1) = K(i−1)v(i−1)

...

A(2,1)Q(1) + A(2,2)Q(2) = K(2)v(2)

A(1,1)Q(0) + A(1,2)Q(1) = K(1)v(1) + f

. (16)

We see that these matrix equations are coupled in the manner of Markovian chain due to the continuity of the displacement-traction vector across
interfaces. Solving the linear equation system (16) results in seismic responses u(r) for all nodes in the medium. The Gaussian elimination
algorithms can be used for small-scale problems. For large-scale problems or models with complex geometry, the resultant coefficient matrices
are sparse and the simultaneous matrix equations are better to be solved by (1) an improved block Gaussian elimination algorithm if seismic
survey is set at the free surface, or (2) conjugate gradient algorithms. Fast algorithm convergence is guaranteed by the system’s condition
number because the boundary-volume integral formulations often give rise to such coefficient matrices that their magnitudes are always larger
for the main diagonal terms.

A L G O R I T H M C O N S I D E R AT I O N S

Algorithm efficiency

Numerical accuracy, computational speed, and memory requirements have been recognized as three key issues to assess a numerical mod-
eling program. The strong dependence of these factors on individual modeling tasks complicates realistic performance analyses. Numerical
modelings in geophysics are often made at various frequency scales, for example, ultrasonic frequency, sonic frequency, exploration seismic
frequency, and crustal seismic frequency. The media to be modeled are also various at different heterogeneous scales. For practical applica-
tions, the trade-off between numerical accuracy and computational efficiency can be made for most modeling tasks. One major drawback of
the numerical method presented in this paper is the considerable computer time and memory requirements as indicated clearly by eq. (16).
The efficiency of our seismic modeling program depends on (1) the maximum frequency to be calculated, (2) the total number of nodes that
depends on elements per wavelength, and (3) the sparsity of the coefficient matrices depending on the geometrical complexity of the used
model. In addition, our numerical calculations are performed in the frequency domain, which can be easily vectorized and parallelized. In this
section, several aspects are considered in order to make the calculations more efficient.

Improved block Gaussian elimination

For a surface seismic survey we only need to calculate seismic responses at the free surface, which leads to an efficient block Gaussian
elimination scheme. Below is a brief description of the scheme for more complicated piecewise heterogeneous media. Fig. 2 shows a complex
fault model with different heterogeneous scales in each subregion �i (i = 1, 2, . . . , 8). Applying eq. (15) to each subregion in the order from
�8 to �1 leads to a series of matrix equations. The boundary conditions of continuity for displacement and its normal gradient across all
interfaces will compact these matrix equations into a global matrix equation system (17) where Ai j is the boundary coefficient submatrix

Figure 2. The geometry of a 2-D fault zone model with each subregion being different heterogeneous media. The source S(ω) is located in the first subregion
�1.
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obtained by numerical integration over the interboundary between �i and � j , Ki is the perturbation-domain coefficient submatrix of �i , and
mi = [w(i); u(i); t(i)] is the solution vector at all nodes of �i . There are three characteristics presenting in eq. (17), which will facilitate the
solution of this equation system by the great saving of computing time and memory. First, the global coefficient matrix is narrow, sparse, and
block-banded. Secondly, the source term f occurs in the last row because the source point is located at r0 ∈ �1. For multisource modeling, mi

and f become matrices but Ai j keeps unchanged. Thirdly, solving the eq. (11) is only for m1 if seismic observation is limited in the near-surface
region �1. That is, we do not need to keep the coefficient matrices for m2, m3, . . . , m8 in memory after each time of Gaussian elimination.

Based on these characteristics, an improved block Gaussian elimination scheme is developed to solve eq. (17) for m1. The numerical
integration, assembly, and elimination of the coefficient matrices are performed subregion by subregion orderly from �8 to �1. Each time of
elimination can eliminate the coupling data of the interboundary between two adjoining subregions. This process continues until the surface
subregion �1 is reached, resulting in a final coefficient matrix with its dimension determined only by the nodal number in �1. This matrix
implicitly contains information of wave propagation through the whole model. Associating this matrix with surface multiline and multisource
survey, one will be able to calculate observed fields anywhere inside �1. During the whole computational procedure, the maximum memory
required for the global coefficient matrix is always limited to the total nodal number in the largest subregion.


K8 A87 A86

A78 0 K7 A76 A75

A68 0 A67 0 K6 A65 A64

A57 0 A56 0 K5 A54 A53

A46 0 A45 0 K4 A43 A42

A35 0 A34 0 K3 A32 A31

A24 0 A23 0 K2 A21

A13 0 A12 K1 A10







m8

m7

m6

m5

m4

m3

m2

m1




=




0

0

0

0

0

0

0

f




(17)

Elements per wavelength

Fewer elements per wavelength will reduce the size of the resultant coefficient matrices. For the boundary integral-discrete wavenumber
method, Campillo (1987) found that a discretization rate of three points per wavelength is sufficient to make the numerical noise level
negligible. Furthermore, Bouchon et al. (1989) compared the method with the plane-wave reflection and transmission coefficient method for
a flat-layered medium and verified the method’s accuracy at a sampling rate of three points wavelength. To test the accuracy of our seismic
modeling program and also determine an applicable element number per wavelength, we compare our numerical solution with the exact
solution of scattering for a semicircular alluvial valley of radius a (see Fig. 3). The excitation is in the half-space with an infinite train of
incident harmonic plane waves controlled by frequency ω and the angle of incidence θ measured from the vertical axis. Seismic responses
are recorded on the free surface. Because of geometric simplicity, the problem can be solved exactly in closed form. The analytical solution
in the frequency domain has been studied by Trifunac (1971) for understanding of the role of surface topography. Although the model is one
of the simplest, the two sharp edges at x = ±a in the model provide a crucial target to test various numerical methods. Fig. 4 presents a
comparison between the analytical solutions (Trifunac 1971) and our results calculated using various sampling rates for the dimensionless
frequencies η = 1. The dimensionless frequency is defined as η = 2a/λ, where λ is the wavelength of incident waves. The remarkable
agreement between the two solutions shows the validity of our computation program and also confirms that sampling at three elements per
wavelength is sufficient to ensure the accuracy of the results, even though the elements are too few to represent the shape of the arc of the
semicircular alluvial valley. Using two elements per wavelength will reduce accuracy for two receivers at x = ±a. Because the wavelength
is the function of frequencies, a variable element dimension technique can be adopted in the program implementation (Fu 1996) to improve

Figure 3. Geometry of a semicircular valley with the radius a and the velocity v1 in the half space of velocity v2. The excitation is in the half-space with an
infinite train of incident harmonic plane waves of frequency ω and angle θ .
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Figure 4. The frequency responses of the semicircular valley (see Fig. 3) to 00 incident harmonic plane wave with the dimensionless frequencies η = 1. The
solid lines denote the exact solutions (Trifunac 1971) and the dots denote our results for various sampling rates. It confirms that sampling at three elements per
wavelength is sufficient to ensure the accuracy of the results.

computation speed. The element dimension for each frequency is computed according to the medium velocity and the frequency, and then the
model is automatically discretized.

Bouchon’s sparsity approximation

The boundary-volume integral formulation for a large-scale model with complex geometry will produce a sparse matrix equation system.
For some problems of practical interest, it contains much more nonzero elements and can be easily too large to solve. We can reduce the
numerical burden by making the coefficient matrix sparser. Bouchon et al. (1995) suggested an approach of threshold criterion to remove very
small entries in the coefficient matrix for the BE numerical simulation. Encouraging results with significant savings on both computing time
and memory requirements were demonstrated by Ortiz-Aleman et al. (1998) using various threshold criteria. The approach is based on the
significant spatial decay of Green’s functions. The interaction between two spatial points separated at large relative distance may be too weak
and can be neglected. The thresholding strategy can be directly used in our modeling program. The resultant sparse system is more suited
to be solved by conjugate gradient algorithms. Fast convergence rates can be obtained by (1) using the main diagonal part of the coefficient
matrix as a preconditioner, and (2) taking the solution at present frequency step as an initial guess for solving the next frequency step. The
approximate solution with the thresholding approach is more or less similar to aperture approximation in the Kirchhoff modeling. Some minor
reflections and small-amplitude changes imposed on seismic responses are missing, but the main features of seismograms are preserved.

N U M E R I C A L E X A M P L E S

It has been recognized in exploration geophysics that the complex near-surface media can form strong multiple scattered noise that may be
extremely deteriorative to seismic data. Likewise in seismic ground motion, the scattering effect of volume heterogeneities of the near-surface
media below a rough topography should be considered in the amplification/deamplification evaluation. In this section, we present examples to
demonstrate the combined effects of both rough topography and volume heterogeneities in the near-surface layered media. All computations
for these examples are performed with frequency range 0 ∼ 40 Hz and the source at depth 20 m below the free surface. The dimensions of
the models are 3000 m horizontally and 1000 m vertically. These examples also illustrate the usefulness of our method for investigating the
complexity of multiply scattered wavefields in random media.

Fig. 5(a) shows a homogeneous layered model with two upper-rises on the free surface and the wave velocity indicated in the figure.
The model is designed to illustrate the scattering effect of rough topography in a homogeneous layered system. From the snapshot shown in
Fig. 5(b) calculated at 600 ms, we see strong scattering energy from topographic anomalies. However, the absence of volume heterogeneities
leads to a very weak fluctuation in the coherent wavefield within the interior of the model. This is the distinct characteristic compared to wave
propagation in the presence of volume heterogeneities.
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Figure 5. Synthetic seismograms for piecewise homogeneous media. (a) Homogeneous multilayered model with the free surface of two upper-rises.
(b) Snapshot of wavefields passing the whole model at 600 ms.

Figure 6. Synthetic seismograms for piecewise heterogeneous media. (a) Heterogeneous multilayered model with randomly 5 per cent velocity perturbation
in the near-surface layer. (b) Snapshot of wavefields passing the whole model at 600 ms.

Figure 7. Synthetic seismograms for piecewise heterogeneous media. (a) Heterogeneous multilayered model with randomly 15 per cent velocity perturbation
in the near-surface layer. (b) Snapshot of wavefields passing the whole model at 600 ms.

The near-surface sediment is generally a highly heterogeneous region. Let us perturb the medium velocity of the near-surface layer in
the model randomly by 5 per cent, as shown in Fig. 6(a), but leave the others in the model intact. We see fairly complex seismic responses (see
Fig. 6b) generated due to the diffusion scattering of the volume heterogeneities. The wavefield’s interaction with the small-scale heterogeneities
poses quite different scattering characteristics from topographic scatterings. The snapshot demonstrates the development of the volume
scattering into the interior of the model. The wavefield fluctuation, however, is moderate because of the small velocity perturbation in this
example.

The situation becomes formidable when the velocity perturbation increases to 15 per cent (see Fig. 7a). The snapshot shown in Fig. 7(b)
exhibits strong scattered noises due to random volume heterogeneities especially in the near-surface layer. These strong diffuse scatterings
break up wavefronts, destroy wavefields, and impair the quality of seismic data. Multiple scattering still continues after the primary wave
front has passed as time progresses. Although heterogeneities in the near-surface medium are not purely random and may span many different
scales, the examples given in this section may provide insight into volume scattering effects by small-scale heterogeneities in the near-surface
layer.
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C O N C L U S I O N

We have presented a boundary-volume integral equation technique to simulate wave propagation in multilayered media having irregular
interfaces and volume heterogeneities in each layer. We first describe wave propagation within each layer by a generalized Lipmann-Schwinger
integral equation in terms of volume scattering and boundary scattering. We then extend the integral equation to multilayered media using
the boundary conditions of continuity for displacement and traction across all interfaces. The resultant global coefficient matrix is sparse and
narrow-banded, depending on the complexity of the model. We discuss several aspects of seismic modeling implementation. Compared to
the finite-difference and finite element methods, this method enjoys a distinct characteristic of the explicit use of boundary conditions across
subsurface interfaces, and consequently is most suitable to accurately model wave propagation in piecewise heterogeneous media that the
Earth presents. Wave propagation in such a medium will dominate the reflections/transmissions at interfaces. To show the applicability of
the method, we calculated synthetic seismograms that show significant impact of volume heterogeneities on the seismic response in layered
medium system.
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Bouchon, M., Schultz, C.A. & Toksöz, M.N., 1995. A fast implementation
of boundary integral equation methods to calculate the propagation of
seismic waves in laterally varying layered media, Bull. seism. Soc. Am.,
85, 1679–1687.

Campillo, M., 1987. Modeling of SH-wave propagation in an irregularly
layered medium—Application to seismic profiles near a dome, Geophys.
Prospect., 35, 236–249.

Chen, X.F., 1990. Seismogram synthesis for multilayered media with ir-
regular interfaces by global generalized reflection/transmission matrices
method—I. Theory of two-dimensional SH case, Bull. seism. Soc. Am.,
80, 1696–1724.

Coifman, R., Rokhlin, V. & Wandzura, S., 1993. The fast multipole method
for the wave equation: a pedestrian prescription, IEEE Antennas Propa-
gation Mag., 35, 7–12.

Fu, L.Y., 1996. 3-D boundary element seismic modeling in complex geol-
ogy, 66th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,
1239–1242.

Fu, L.Y., 2000. Numerical study of generalized Lipmann-Schwinger integral
equation including surface topography, accepted by Geophysics.

Fu, L.Y. & Wu, R.S., 2000. Infinite boundary element absorbing
boundary for wave propagation simulations, Geophysics, 65, 625–
637.

Fu, L.Y. & Wu, R.S., 2001. A hybrid BE-GS method for modeling regional
wave propagation, Pure appl. Geophys., 158, 1251–1277.

Fu, L.Y., Mu, Y.G. & Yang, H.J., 1997. Forward problem of nonlinear Fred-
holm integral equation in reference medium via velocity-weighted wave-
field function, Geophysics, 62, 650–656.

Fu, L.Y., Wu, R.S. & Campillo, M., 2002. Energy partition and attenuation
of regional phases by random free surface, to appear in, Bull. seism. Soc.
Am.

Fujiwara, H., 2000. The fast multipole method for solving integral equa-
tions of three-dimensional topography and basin problems, Geophys. J.
Int., 140, 198–210.

Kennett, B.L.N., 1983. Seismic Wave Propagation in Stratified Media, Cam-
bridge University Press, Cambridge.

Kennett, B.L.N., 1984. Guided wave propagation in laterally varying
media—I. Theoretical development, Geophys. J. R. astr. Soc., 79, 235–
255.

Ortiz-Alemán, C., Sánchez-Sesma, F.J., Rodriguez-Zuniga, J.L. & Luzon,
F., 1998. Computing topographical 3D site effects using a fast IBEM/
conjugate gradient approach, Bull. seism. Soc. Am., 88, 393–399.

Schuster, G.T., 1985. A hybrid BIE + Born series modeling scheme: Gen-
eralized Born series, J. acoust. Soc. Am., 77, 865–879.

Trifunac, M.D., 1971. Surface motion of a semi-cylindrical alluvial valley
for incident plane SH waves, Bull. seism. Soc. Am., 61, 1755–1770.

Wu, R.S., 1989. The perturbation method in elastic wave scattering, Pageoph,
131, 605–637.

Wu, R.S. & Fu, L.Y., 1998. A hybrid method for wave propagation simula-
tion in near-surface regions, 68th Ann. Internat. Mtg., Soc. Expl. Geophys.,
Expanded Abstracts, 1065–1068.

C© 2002 RAS, GJI, 150, 800–808


