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S U M M A R Y
A wavelet-based method is introduced for the modelling of elastic wave propagation in
2-D media. The spatial derivative operators in the elastic wave equations are treated through
wavelet transforms in a physical domain. The resulting second-order differential equations
for time evolution are then solved via a system of first-order differential equations using a
displacement-velocity formulation. With the combined aid of a semi-group representation and
spatial differentiation using wavelets, a uniform numerical accuracy of spatial differentiation
can be maintained across the domain. Absorbing boundary conditions are considered implic-
itly by including attenuation terms in the governing equations and the traction-free boundary
condition at a free surface is implemented by introducing equivalent forces in the semi-group
scheme. The method is illustrated by application to SH and P–SV waves for several models
and some numerical results are compared with analytical solutions. The wavelet-based method
achieves a good numerical simulation and shows an applicability for an elastic-wave study.

Key words: elastic waves, numerical modelling, propagation, semi-group, wavelet transform,
wavelets.

1 I N T R O D U C T I O N

The use of synthetic seismograms is one of most useful methods in estimating the seismic response of media at a given receiver. Various
numerical approaches have been proposed to solve the elastic wave equations. For problems related to a stratified medium, the reflectivity
method (Kennett 1983) provides a useful means of modelling the seismic response out to the long distances. By taking a Fourier transform
with respect to time and introducing a composite use of a Hankel transform and Fourier transform to horizontal components, Kennett (1983)
recast the elastic wave equations in terms of a system of the first-order differential equations for the vertical direction and then superposed
the cylindrical waves in stratified media to determine the response at a receiver.

For more complex media, various methods have been introduced. The finite difference (FD) method (Kelly et al. 1976; Virieux 1986)
is applicable to many problems in simple media because the FD scheme is relatively easy to implement in computer codes and does not
requires too much computer time and memory. However, the FD scheme encounters difficulties when it is applied to problems such as
laterally heterogeneous media with irregular non-planar boundaries or media with free surface topography (e.g. Moczo 1998). Therefore,
special care is needed to implement the boundary conditions. Moczo et al. (1997) combined the finite difference and finite element (FE)
methods near the free surface, since it is much easier to satisfy the boundary conditions in the FE scheme. The pseudo-spectral method based
on Chebychev expansions can provide higher accuracy spatial differentiation than simple FD or FE methods by using a series of global,
infinitely differentiable basis functions (Augenbaum 1992; Kosloff et al. 1990). However, this style of pseudo-spectral method suffers from
a nonuniform grid spacing for the collocation points of the basis functions. The non-uniform grid spacing problem requires an increase in
the number of grid points to remove grid dispersion and makes it difficult to handle complicated geometries. Recently the spectral element
method (SEM) was introduced for various media problems (Faccioli et al. 1996; Komatitsch & Vilotte 1998; Komatitsch & Tromp 1999). By
including boundary conditions in a variational form of the governing equations and using element interaction, Komatitsch & Vilotte (1998)
satisfied the free-surface boundary condition directly and so avoided one of the usual complications in numerical work.

We introduce a wavelet-based method for numerical simulation of elastic wave propagation. In this method we represent the differential
operators via multiscale wavelets, and can achieve high accuracy in the spatial representation. The scheme does not require a non-uniform
grid as in the Chebychev implementation of the pseudo-spectral method and can be adapted to a wide range of media geometries and related
phenomenon.
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Figure 1. Examples of wavelets ψ(x) and its scaling function ϕ(x) of Daubechies; (a) Daubechies-6 wavelets and (b) Daubechies-20 wavelets.

1.1 Wavelets

After Daubechies (1992) built the foundation of a discrete wavelet transform scheme, a wide range of methods based on wavelets have been
adopted in many areas. The ability of the wavelet transform to resolve features at various scales has made wavelet analysis one of most useful
techniques in signal processing despite its recent development. Anant & Dowla (1997) compared polarization information across a number of
scales in determining P-phase arrival time, and used transverse compared to radial amplitude information at different scales in determining
S-phase. Similar research was done by Tibuleac & Herrin (1999) in a study of Lg-phase arrivals using wavelets. Lilly & Park (1995) used
multiwavelets to estimate the time-varying spectral density matrix for three-component seismic data. Multiwavelet spectral analysis seeks
to minimize the spectral leakage in the spectrum estimates in a similar way to multitaper spectrum analysis. Another approach in signal
processing using multiwavelets is to measure the anisotropy at a given area using the relative phase between components to estimate an
average particle motion ellipse for the array (Bear et al. 1999).

The discrete wavelet transform is based on a multiresolution analysis that decomposes a signal into components of different scales.
Decomposition at a given scale is done by sampling using a scaling function ϕ(x), and a companion wavelet function ψ(x). The remaining
part of the signal is decomposed using successive higher scales of the scaling function. Fig. 1 shows one pair of scaling function and wavelets
(Daubechies-6 and Daubechies-20) used in discrete analysis. An example of signal decomposition onto a wavelet basis is presented in Fig. 2.
The chirp signal is decomposed by projecting on a set of subspaces (Qi , Pj ) where Qi represents the projection on the wavelet subspace with
a scale i and Pj the scaling subspace which the orthogonal complement of a wavelet subspace with a scale j.

The wavelet transform is similar to a Fourier transform in the sense that it maps a time function onto 2-D function with a scale a and a
translation τ that can be compared to a frequency ω and a time t. When, however, we use the Fourier transform in the time-frequency analysis
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Figure 2. Decomposition of chirp signals using wavelets based on a multiresolution analysis.

of a non-stationary signal in a physical problem, we have two conflicting requirements. The window width T must be long enough to give the
desired frequency resolution but must also be short enough so as not to lose the localization in time. A narrow window gives a good time
resolution but poor frequency resolution because it has an infinite bandwidth. On the other hand, a wide window gives a good localization in
frequency but poor time localization because an impulsive response in frequency does not decay rapidly in time. The sinusoid, basis functions
which are used in Fourier transform, are local in frequency but global in time and rely on cancellation to represent discontinuities in time
(Chan 1995). Therefore, sinusoids are not efficient in representing functions that have compact support in both time and frequency. However,
wavelets are confined in both the frequency and time domains. When we analyse signals at a frequency ω0 by changing the window width, we
can keep the number of cycles of a basis function constant by using wavelets. The confinement characteristics of wavelets allow an extension
to the field of numerical analysis. As shown in Fig. 2 the wavelet transform needs only a small number of wavelet subspaces to synthesize a
chirp signal, compared to a Fourier transform which would need quite large number of sinusoidal subspaces (basis functions) for such chirp
signals.

1.2 Wavelets and PDEs

The application of wavelets in numerical analysis can be generally divided into three streams. One is to simplify the governing partial
differential equation (PDE) into a lower order of PDE through a wavelet transform. Lewalle (1998) applied Hermitian wavelets, the derivatives
of a Gaussian bell-shaped curve, to a diffusion problem through a canonical transformation and showed a promising development for the
numerical prediction of intermittent and nonhomogeneous phenomena. However, this approach has a limitation in the sense that all equations
of interest cannot be treated with a certain kind of wavelet. Another approach is the composite use of an FD scheme and an interpolating
wavelet transform. Holmström (1999) applied the usual techniques to do all operations in the physical representation and used interpolating
wavelets to construct and update the representation. With the help of interpolating wavelets, this scheme achieves the adaptability in domains
by imposing a threshold on the wavelet coefficients. Moreover, the scheme is cheap in computation cost compared to other adaptive methods
due to the application of FD technique in obtaining the responses of operators. However, this composite scheme suffers from defects of the
usual FD scheme as well. The alternative approach is to apply a wavelet transform to the differentiation of a function. A given operator is
decomposed into a wavelet basis and then the action of the operator on a function is computed using a wavelet basis which includes the
operator effects (Beylkin 1992).

Beylkin (1992) computed the non-standard form (NS-form) of several basic operators, such as derivatives and the Hilbert transform,
using wavelets. The NS-form of operator has an advantage compared with the standard form. We can reduce the effort in applying the operator
because NS-form of operator is a banded diagonal matrix. Using an NS-form of derivative operator and semi-group approach, Beylkin &
Keiser (1997) developed an adaptive pseudo-wavelet method for solving non-linear parabolic partial differential equations (PDEs) in one
spatial dimension and time.
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The adaptive pseudo-wavelet method is based on a semi-group approach, a well-known analytical tool for expressing the solution of PDEs
in terms of non-linear integral equations by considering a parabolic PDE as complex of linear and non-linear parts. This wavelet approach
combines the desirable features of a FD scheme, spectral methods, and adaptive grid approach. The pseudo-spectral method is similar to the
pseudo-wavelet method in the sense that the evolution equation is split into linear and non-linear parts and the contribution of each part is
added later. We note that a pseudo-spectral method considers a linear contribution in the Fourier space and a non-linear contribution in the
physical space. Therefore, multiple transforms between spaces are needed to cover the full complex contribution.

1.3 Wavelets for wave propagation

Since Beylkin & Keiser’s (1997) scheme was developed for parabolic PDEs, it has a limitation in application to other classes of PDEs. So, we
need to extend this scheme for elastic wave equations. To apply the scheme for a parabolic PDE to the elastic wave equations, we rewrite the
governing equations as a system of first-order PDEs using a displacement-velocity formulation. With this transformation, we can treat elastic
wave equations as a simple system of PDEs using wavelets. Also, the system of PDE using displacement-velocity formulation occupies much
less memory during computation rather than using a velocity-stress formulation.

The implementation of the traction-free boundary condition at a free surface is one of the important issues in the numerical modelling of
elastic wave propagation (e.g. Vidale & Clayton 1986; Ohminato & Chouet 1997). One of the reasons for using a velocity–stress formulation
in most numerical methods comes from the direct relation to the boundary condition. Generally, three major approaches have been applied to
express the presence of a free-surface. One way is to implement a stress-free boundary condition at the free surface and satisfy the condition
explicitly. Gottlieb et al. (1982) showed how to use 1-D characteristic variables to enhance the stability of the boundary treatment and Kosloff
et al. (1990) and Bayliss et al. (1986) implemented a traction-free condition by maintaining the magnitude of the outgoing characteristic
variables at the boundary. Although this scheme was introduced first by Bayliss et al. (1986) for a finite difference method, this approach has
proved popular for pseudo-spectral methods (Carcione 1994; Tessmer & Kosloff 1994).

Another approach is to modify the physical parameters (a ‘vacuum formalism’) and set the elastic wave velocities α, β to zero with the
density ρ close to zero above the free surface (Graves 1996). Since, however, a small value of density above a free surface is considered, the
time responses often show grid dispersion at a free surface or the Rayleigh waves exhibit rather low frequency content due to progressive
energy leakage of incident waves into the vacuum layer. To cure this phenomenon, some researchers have introduced a special treatment of
the differentiation of the normal stress term at the free surface (Ohminato & Chouet 1997; Zahradnik 1995; Moczo et al. 1997).

An alternative is to use an integrated form of the elastodynamic equations, namely a ‘weak (or variational) form’. Faccioli et al. (1996)
and Komatitsch & Tromp (1999) considered a composite form of equations that includes the governing equation and the boundary conditions
at the same time by taking the dot product of each term with an arbitrary test function. The ‘weak form’ approach has advantages that one can
consider the effects at the boundaries implicitly and can overcome the drawbacks in handling non-periodic boundary conditions when using
a Fourier method.

In this study, we develop a scheme to express a traction-free condition using displacement variables, not the composite use of velocity and
stress variables as in stress-velocity formulation. Also, the condition is implemented in a system of governing equations as an equivalent force
term via a semi-group approach. Also, we compare numerical results with analytical solutions in several simple models for validation of the
method and show the applicability of the method to complex media. For modelling in media with a surface topography using a wavelet-based
method, we refer to Hong & Kennett (2002).

2 P R O B L E M F O R M U L A T I O N

2.1 Semi-group approach

In this section we rewrite the elastic wave equations in the form of a system of first-order partial differential equations (PDEs) and apply
a semi-group method by approximating an exponential function of a matrix operator using a Taylor expansion. The detailed procedure is
discussed separately for the SH wave case and the P–SV wave case.

The semi-group approach is used to convert PDEs to non-linear integral equations in time and to estimate the behaviour of the solutions.
We consider a time evolution PDE for a variable g(x, t) (Beylkin & Keiser 1997; Belleni-Morante 1979) given by

∂t g = Lg + N f (g), (1)

where f (g) can be a non-linear function of g(x, t), Lg is a linear part, so L is a linear operator, N f (g) is a non-linear part, and so N is a
non-linear operator. The initial condition is

g(x, 0) = g0(x), 0 ≤ x ≤ 1. (2)

The solution of the initial value problem for eq. (1) can be represented in the general form

g(x, t) = etLg0(x) +
∫ t

0
e(t−τ )LN f (g(x, τ )) dτ, (3)
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which can be justified by the method of successive approximations. The solution, eq. (3), verifies the dependence on the initial conditions,
and provides for the existence and uniqueness of solutions. Magnitude estimates for g(x, t) can be found by asymptotic analysis.

Beylkin (1992) found a way to represent the operators in eq. (3) in terms of sparse matrices which made it possible to use this semi-group
approach as a numerical algorithm to solve a parabolic PDE. By rewriting the elastic wave equations in terms of a first-order PDE system
using displacement-velocity scheme, we can apply a semi-group approach to elastic wave equations.

The evolution of eq. (3) in discrete time is investigated by Beylkin et al. (1998) and an explicit discretization formula is given by

gn+1 = eδtLgn + δt
M−1∑
m=0

βm Nn−m, (4)

where the coefficient βm is a function of δtL and controls the order of a quadrature approximation. The gn is the value of g(x, t) at the discrete
times tn = t0 + nδt for time step δt . Nn represents the non-linear part at time tn . We note that the separate treatment of linear and non-linear
contributions in eqs (3) and (4) makes it possible to implement the time dependent effects (e.g. transient effects, boundary conditions) by
considering an additional contribution.

When we consider the elastic wave equation in displacement-velocity form and use a vector form of variables and body force term, we
can treat an elastic wave equation using a semi-group approach. In this case, the body-force term is considered as equivalent to a non-linear
contribution and the linear operator in eq. (1) is a matrix operator. Also, the traction-free boundary conditions can be introduced as an
equivalent force (i.e. additional contribution) in the main equation system. Therefore, we can write the equation as

∂t U = LU + F(U), (5)

where U is a variable vector, L represents the elastodynamic equation terms through a matrix operator L, and F(U) represents equivalent force
terms (sources and boundary conditions). Thus we can identify a solution of the form eq. (4)

Un+1 = eδtLUn + δtβ0Fn, (6)

in terms of matrix elastic operator. We note that the first order (M = 1) of quadrature approximation (β0Fn) is enough for the consideration
of equivalent force contribution since F is linear in U.

The introduction of the traction-free boundary condition as an equivalent force removes instabilities associated with the free surface.
The exponential term in eq. (6) can be approximated via Taylor series (see Sections 2.3 and 2.4).

2.2 Equations

2.2.1 SH waves

When the velocity and density are functions of x and z, the SH wave displacement, uy satisfies the scalar wave equation:

ρ
∂2uy

∂t2
= ∂

∂x

(
µ

∂uy

∂x

)
+ ∂

∂z

(
µ

∂uy

∂z

)
+ fy, (7)

where ρ(x, z) is the density, µ(x, z) is the shear modulus and fy(x, z) is the body force at a point (x, z). We can simplify and rewrite the
governing eq. (7) introducing a linear operator Ly as

∂2uy

∂t2
= Lyuy + fy

ρ
, (8)

where

Ly = 1

ρ

∂

∂x

(
µ

∂

∂x

)
+ 1

ρ

∂

∂z

(
µ

∂

∂z

)
. (9)

To apply the semi-group approach to a SH wave equation, we rewrite eq. (8) using a relationship between displacement (uy) and velocity (vy)
of the SH wave as a first-order PDE system:

∂uy

∂t
= vy,

∂vy

∂t
= Lyuy + fy

ρ
. (10)

We consider the variables, uy and vy as components of a vector variable U and the non-linear term fy/ρ as a component of a force vector F.
The other component in F is set to zero following eq. (10). The linear operator matrix L consists of a linear operator Ly , identity term I and
zeros (see, eq. (19)).

For stability of the numerical computation around the source, we divide the medium into a source region and the remaining main region.
We assume that the source region is an homogeneous and elastic medium. As a force vector F is considered only in the source region, the
procedures for applying the semi-group approach are different for the two regions and will be discussed in Sections 2.3, 2.4.
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2.2.2 P–SV waves

The second order partial differential equations describing P–SV wave propagation in 2-D media can be written as

∂2ux

∂t2
= 1

ρ

(
∂σxx

∂x
+ ∂σxz

∂z
+ fx

)
,

∂2uz

∂t2
= 1

ρ

(
∂σxz

∂x
+ ∂σzz

∂z
+ fz

)
, (11)

where (ux , uz)(m,n) is a displacement vector and (σxx , σxz, σzz)(m,n) are stress tensor components at a point (m, n). The stresses σxx , σxz , σzz are
given by

σxx = (λ + 2µ)
∂ux

∂x
+ λ

∂uz

∂z
, σzz = λ

∂ux

∂x
+ (λ + 2µ)

∂uz

∂z
, σxz = µ

(
∂ux

∂z
+ ∂uz

∂x

)
, (12)

where λ(x, z) and µ(x, z) are the Lamé coefficients. The right-hand sides of eq. (11) can be simplified by introducing linear operators Li j

(i, j = x, z):

1

ρ

∂σxx

∂x
+ 1

ρ

∂σxz

∂z
= Lxx ux + Lxzuz,

1

ρ

∂σxz

∂x
+ 1

ρ

∂σzz

∂z
= Lzx ux + Lzzuz, (13)

where the Li j (i, j = x, z) are given by

Lxx = 1

ρ

∂

∂x

[
(λ + 2µ)

∂

∂x

]
+ 1

ρ

∂

∂z

[
µ

∂

∂z

]
, Lxz = 1

ρ

∂

∂x

[
λ

∂

∂z

]
+ 1

ρ

∂

∂z

[
µ

∂

∂x

]
,

(14)

Lzx = 1

ρ

∂

∂x

[
µ

∂

∂z

]
+ 1

ρ

∂

∂z

[
λ

∂

∂x

]
, Lzz = 1

ρ

∂

∂x

[
µ

∂

∂x

]
+ 1

ρ

∂

∂z

[
(λ + 2µ)

∂

∂z

]
.

In a similar way to the SH wave case, we rewrite the governing equation system (11) as a first-order PDE system by using a displacement-
velocity formulation:

∂ux

∂t
= vx ,

∂vx

∂t
= Lxx ux + Lxzuz + fx

ρ
,

(15)
∂uz

∂t
= vz,

∂vz

∂t
= Lzx ux + Lzzuz + fz

ρ
.

Here vx and vz are the velocity components in the x and z direction. In P–SV wave case, the vector variable U consists of vx , vz , ux and uz .
Moreover, a force vector F is composed of the terms ( fx/ρ, fz/ρ) and zeros. We note that the displacement-velocity formulation implemented
in this study can reduce the memory requirements during computation by about 30 per cent compared to a usual velocity-stress formulation.

The spatial derivatives ∂k (k = x, z) in the SH and P–SV wave equations are treated with the use of wavelet transform and these differentiated
displacement or velocity fields can be considered independently. Therefore, it is possible to treat the elastic wave equations through a first-order
PDE system via the introduction of linear operators Li, j (i, j = x, z) or Ly . Wavelets can achieve any order of differentiation of a function by
considering a derivative operator in wavelet bases. So, we have an advantage that we can obtain a differentiated function with one application of
operator in wavelet bases regardless of the order of derivative. The simplicity in the differentiation procedure is similar to a Fourier transform.
But, wavelets are more efficient in the sense that we can predict the phenomenon more easily because of their application in the time domain.
The differentiation scheme in the 2-D domain is discussed in Section 3.1.

2.3 Source region

If we use heterogeneous-media scheme for wavelets directly in the source region, we often have unstable results due to multiple differentiation of
the delta function representing a point source. Therefore, we assume that the source region is homogeneous and apply an homogeneous-medium
scheme around the source region. In this case, the linear operators Li j (i, j = x, z) in eq. (14) can be rewritten by

Lh
xx = λ + 2µ

ρ

∂2

∂x2
+ µ

ρ

∂2

∂z2
, Lh

xz = Lh
zx = λ + µ

ρ

∂2

∂x∂z
, Lh

zz = µ

ρ

∂2

∂x2
+ λ + 2µ

ρ

∂2

∂z2
, (16)

and Ly in (9) is simplified to

Lh
y = µ

ρ

∂2

∂x2
+ µ

ρ

∂2

∂z2
. (17)

The superscript h is added to the linear operators for the homogeneous case to distinguish them from the more general ones. Eqs (10) and
(15) can be expressed in first order differential equation form as

∂t U = LhU + F, (18)
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where Lh is a matrix operator in an homogeneous medium and F is a force term vector. For the SH wave case, U, Lh , F are given by

U =
(

uy

vy

)
, Lh =

(
0 I

Lh
y 0

)
, F = 1

ρ

(
0

fy

)
, (19)

and for the P–SV wave case,

U =




ux

vx

uz

vz


 , Lh =




0 I 0 0

Lh
xx 0 Lh

xz 0

0 0 0 I

Lh
zx 0 Lh

zz 0


 , F = 1

ρ




0

fx

0

fz


 , (20)

where (vx , vz) is a velocity vector. Following eq. (6), we can write an explicit discrete time solution as

Un+1 = eδtLh Un + δtβ0Fn, (21)

where Fn is a force vector at a discretized time tn and β0 is given by (eδtLh − I) (δtLh)−1 (see Beylkin et al. 1998). eδtLh and β0 can be
approximated by a Taylor expansion:

eδtLh = I + δtLh + 1

2
δt2L2

h + 1

6
δt3L3

h + · · · , β0 = I + 1

2
δtLh + 1

6
δt2L2

h + 1

24
δt3L3

h + · · · . (22)

The resultant forms of eδtLh and β0 are given in Appendix A.

2.4 The main region

We can simulate the remainder of the medium by considering the responses at the source region via boundary conditions. As the body force
only needs to be considered in the source region and its effect is transmitted to the main region via boundary conditions, we can omit the
source term fi (i = x, y, z) in the governing eqs (7) and (11). Therefore, the first-order differential equation system can be rewritten as

∂t U = LhU, (23)

where L is a 4-by-4 matrix operator in a P–SV wave problem and is 2-by-2 for a SH wave (Appendix B). The linear operators Ly , Li j

(i, j = x, z), the components of L, are given in eqs (9) and (14). Using a semi-group approach and the discrete representation (4), eq. (23)
can be discretized as

Un+1 = eδtLUn, (24)

where eδtL is evaluated using a Taylor expansion in (22), the resultant matrix is given in Appendix B.

2.5 Formulation including absorbing boundary conditions

Following Cerjan et al. (1985), a filtering scheme forcing the decay of wave amplitudes by multiplying an attenuation factor, has been used
in handling artificial boundaries (Sochacki et al. 1987; Kosloff & Kosloff 1986). This filtering scheme is also effective for the case when the
events impinge on the boundaries at shallow angles, unlike the paraxial approximation scheme (Clayton & Engquist 1977; Stacey 1988; Mahrer
1990). To achieve a consistent treatment of the application of absorbing boundary condition and for a quantitative analysis, the attenuation
factors have come to be considered as attenuation terms included in the elastic wave equation (Kosloff & Kosloff 1986; Sochacki et al. 1987).

When we consider the P–SV wave equations including attenuation factors (Qx , Qz) in the main region scheme, the equations in (11) can
be rewritten as (Sochacki et al. 1987)

∂2ux

∂t2
+ 2Qx

∂ux

∂t
= 1

ρ

(
∂σxx

∂x
+ ∂σxz

∂z

)
,

∂2uz

∂t2
+ 2Qz

∂uz

∂t
= 1

ρ

(
∂σxz

∂x
+ ∂σzz

∂z

)
,

(25)

and the SH wave equation with Qy(x, z) is,

∂2uy

∂t2
+ 2Qy

∂uy

∂t
= 1

ρ

∂

∂x

(
µ

∂uy

∂x

)
+ 1

ρ

∂

∂z

(
µ

∂uy

∂z

)
. (26)

In this section, we describe the application to the P–SV wave case for the main region. When we consider the P–SV wave equations in (25) in
the form of the first order differential equation system in (23), the matrix operator Lq can be written as
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Lq =




0 I 0 0

Lxx −2Qx Lxz 0

0 0 0 I

Lzx 0 Lzz −2Qz


 . (27)

Following (24) and evaluating eδtLq by a Taylor expansion, we discretize the first order differential equation system. When we neglect the
product terms Li jLkl , the discretized solution of (25) including an intrinsic attenuation term is given by


un+1
x

vn+1
x

un+1
z

vn+1
z


 =




B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44







un
x

vn
x

un
z

vn
z


 , (28)

where the components Bi j (i, j = 1, 2, 3, 4) are:

B11 = I + δt2

2
Lxx − δt3

3
QxLxx ,

B12 = δt I − δt2 Qx + 2

3
δt3 Q2

x + δt3

6
Lxx ,

B13 = δt2

2
Lxz − δt3

3
QxLxz, B14 = δt3

6
Lxz,

B21 = δtLxx − δt2 QxLxx ,

B22 = I − 2δt Qx + 2δt2 Q2
x − 4

3
δt3 Q3

x + δt2

2
Lxx − 2

3
δt3 QxLxx ,

B23 = δtLxz − δt2 QxLxz, B24 = δt2

2
Lxz − δt3

3
(Qx + Qz)Lxz, (29)

B31 = δt2

2
Lzx − δt3

3
QzLzx , B32 = δt3

6
Lzx ,

B33 = I + δt2

2
Lzz − δt3

3
QzLzz,

B34 = δt I − δt2 Qz + 2

3
δt3 Q2

z + δt3

6
Lzz, B41 = δtLzx − δt2 QzLzx ,

B42 = δt2

2
Lzx − δt3

3
(Qx + Qz)Lzx , B43 = δtLzz − δt2 QzLzz,

B44 = I − 2δt Qz + 2δt2 Q2
z − 4

3
δt3 Q3

z + δt2

2
Lzz − 2

3
δt3 QzLzz .

Eq. (28) is introduced in the main region and satisfies the absorbing boundary condition implicitly. However in the source region we do not
include attenuation factors because we consider only a few grid points around the source.

2.6 Source

2.6.1 SH waves

We apply a point source for all SH wave propagation problems in this study and assume that the point source generates only pure shear waves.
The body force for SH wave case is given by

fy(x, z, t) = δ(x − xs)δ(z − zs)h(t), (30)

where h(t) is a source time function and (xs, zs) is a source position. Following Alford et al. (1974), the time history of an impulsive excitation
h(t) has been taken as

h(t) = Cs(t − t0)e−w(t−t0)2
, (31)

where Cs is a constant, t0 is a shifted time value and w controls the wavelength content of the excitation. In this study, we set t0 = 0.2 s and
w = 200.

2.6.2 P–SV waves

We introduce two kinds of sources: a vertically directed force and an explosive point source. The vertically directed force is used in Lamb’s
(1904) problem for the comparison between numerical results and analytic solutions, and in the case of a velocity model with a linear
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gradient. An explosive point source is implemented in the tests of absorbing boundary conditions for the P–SV wave case and in a two layered
heterogeneous model, because this source generates only compressional waves and simplifies the wavefields. To design a vertically directional
force, we set fx to zero and apply the point source described in SH wave case to fz . The design of an explosive point source is possible by the
introduction of an equivalent body force system using a moment tensor Mi j (t) which is given by (e.g. Kennett 1988)

Mi j (t) = Mi j h(t), (32)

where h(t) is the source time function in (31). The explosive point source can be simulated with isotropic dipole forces on each axis:

Mxx (t) = Mzz(t) = M0h(t), Mxz(t) = Mzx (t) = 0, (33)

where M0 is a seismic moment. Therefore, the body forces fx and fz for an explosive source can be described by (Ben-Menahem & Singh
1981)

fx (x, z, t) = −M0h(t)
∂

∂x
δ(x − xs)δ(z − zs), fz(x, z, t) = −M0h(t)δ(x − xs)

∂

∂z
δ(z − zs), (34)

where (xs, zs) is the source position.
Unlike a FD scheme which needs a generalized moment tensor with first-order accuracy in representing source effects for stable

computation (Frankel 1993; Graves 1996), a wavelet-based method can obtain an equivalent body force system (34) by differentiating the
delta function directly with sustenance of numerical accuracy in a main procedure.

2.7 Initial conditions

The media are supposed to be in equilibrium at time t = 0, i.e. the displacement fields (ux , uz) and velocity fields (vx , vz) are set to zero
everywhere in the media.

2.8 Free surface boundary condition

The accurate representation of the free surface boundary condition is one of the most important problems in numerical seismology. The
condition at the Earth’s surface is the requirement of zero traction. Therefore, for a flat free surface normal to the z-axis the condition is that

[σi z]z=0 = 0, i = x, y, z. (35)

Even in a velocity-stress formulation the traction-free condition cannot be satisfied directly because of the influence of the unconstrained
variables (e.g. σxx , vx , vz). Gottlieb et al. (1982) and Thompson (1990) have investigated stable and accurate implementation of the boundary
conditions for hyperbolic systems of PDEs.

In this study, we introduce a scheme for implementation of a traction-free condition in a displacement-velocity based system exactly and
stably. We consider the traction-free boundary condition independently from the main computational procedure by considering the boundary
condition with equivalent force terms through a semi-group approach. In other words, we introduce the boundary condition to governing
equations using equivalent terms and treat those effects with semi-group approach. We expect this scheme can be an effective method
for implementation of various boundary conditions which can be existed simultaneously or difficult to implement at the time in media by
considering the boundary conditions separately with additional equivalent force terms.

Since a wavelet-based method is a non-grid based scheme for a spatial differentiation, it is necessary to implement the boundary conditions
for a band of reference points (Hong & Kennett 2002). Therefore, we set µ and λ to be zero above a free surface using the vacuum formalism
to prevent any spurious wave propagation into the vacuum layer and to impose the boundary condition at the free surface.

2.8.1 SH waves

Since we set SH waves to be polarized along the y-axis in a Cartesian co-ordinate, ux = uz = 0. Therefore, σxz = σzz = 0 intrinsically and only
σyz has to satisfy the condition at the free surface. Since σyz vanishes at a free surface, we can include this condition in the governing equation
system by writing

∂

∂t

(
uy

vy

)
=

(
0 I

Ly 0

)(
uy

vy

)
+ 1

ρ

(
0

fy − ∂z

(
σ F

yz

)
)

, (36)

where δ(z) is a Dirac delta and σ F
yz is a free-surface tangential stress vector which is set to be zero except a free surface:

σ F
yz = δ(z)

(
µ

∂uy

∂z

)
. (37)

As the force term fy/ρ is considered at the source region scheme, only the boundary effect term is considered in the main region scheme.
The procedure for handling the equivalent force term in the main-region scheme follows the approach used for the source region.
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2.8.2 P–SV waves

From (35), the free surface boundary conditions for P–SV wave case in 2-D space require normal and tangential stresses to vanish (σzz = σxz = 0)
at the flat free surface (z = 0). Before we consider the boundary conditions at a free surface, we modify the other stress term σxx by imposing
the traction-free condition. We rewrite the spatial derivative term in z direction in σxx using σzz = 0 and obtain an expression for σxx in terms
of just the horizontal derivative of ux :

σxx |z=0 = 4µ(λ + µ)

(λ + 2µ)

∂ux

∂x
. (38)

We note that expression (38) is the same as that expressed by decomposing the wavefield into one-way modes for the boundary conditions
(namely ‘1-D analysis’) in Carcione (1994). Using (35) and (38), we can express the governing equations in (11) including the traction-free
condition by

∂2ux

∂t2
= 1

ρ

{
∂

∂x

(
σxx − σ F

xx + σ M
xx

)
+ ∂

∂z

(
σxz − σ F

xz

)
+ fx

}
,

∂2uz

∂t2
= 1

ρ

{
∂

∂x

(
σxz − σ F

xz

)
+ ∂

∂z

(
σzz − σ F

zz

)
+ fz

}
,

(39)

where,

σ F
i j = δ(z)σi j , i, j = x, z,

σ M
xx = δ(z)

{
4µ(λ + µ)

λ + 2µ

∂ux

∂x

}
. (40)

If we treat the equivalent force terms added for the traction-free boundary condition in (39) as the non-linear terms, we can rewrite a P–SV
governing equation system with implicit absorbing boundary conditions (25) as

∂

∂t




ux

vx

uz

vz


 =




0 I 0 0

Lxx −2Qx Lxz 0

0 0 0 I

Lzx 0 Lzz −2Qz







ux

vx

uz

vz


 + 1

ρ




0

fx − ∂x

(
σ F

xx

) − ∂z

(
σ F

xz

) + ∂x

(
σ M

xx

)
0

fz − ∂x

(
σ F

xz

) − ∂z

(
σ F

zz

)


 . (41)

As in the SH wave case, we apply the scheme in the main-region computation.

3 N U M E R I C A L A N A L Y S I S

3.1 Calculation of linear operators in 2-D

Following the scheme developed by Beylkin & Keiser (1997), we apply a wavelet transform to obtain the effect of the linear operators on
the displacement or velocity fields (Lun or Lvn) at a discretized time tn . Each Li j (i, j = x, z) and Ly are composed of two spatial derivative
terms of the form ∂i (a∂ j gn) (i, j = x, z) where gn represents the displacement or velocity fields at time tn and a is a function of λ and µ. First,
we differentiate gn in the j direction for a whole domain. The first order differentiated 2-D fields multiplied by a are used as input fields for
the other spatial differentiation, ∂i .

We use the Daubechies-20 wavelets (Fig. 1(b)) which have 20 vanishing moments and 40 wavelet coefficients. The larger the number
of vanishing moments of the wavelets, the better the resolution of the sudden variations of physical parameters in heterogeneous media. We
follow the differentiation scheme in Beylkin (1992). From (16) and (17), we need not only the first-order differentiation operator, but also
the second order differentiation operator (∂2

i , i = x, z) for the computation in a source region. The coefficients (r 1
l , r 2

l where −38 ≤ l ≤ 38)
of the non-standard form of first- and second-order spatial differentiation operator (∂i , ∂2

i , i = x, z) based on Daubechies-20 wavelets, can be
computed following (4.3) and (4.4) in Beylkin (1992). The coefficients r 1

l for Daubechies-20 wavelets are given in Appendix C.
The inherent assumption of differentiation of 2-D displacement or velocity fields using wavelets is that vertical and horizontal dimension

of domain are same as each other regardless of numbers of reference points included for each direction. This characteristic makes it possible
to use different sizes of grid step in each direction. When we differentiate a velocity or a displacement fields horizontally in a domain with
twice the horizontal length compared to vertical length, we can stay apace with elastic wave propagation in every direction by multiplying by
an additional factor of 1/2 for every horizontal differentiation of the fields.

In this section, we discussed treatment of the linear operators and associated features in the wavelet-based method without mathematical
consideration of operators on wavelet bases as it is out of scope of the paper. We refer to Beylkin & Keiser (1997) for the details of the
projection of operators on to the wavelet bases (see also Hong & Kennett 2002).
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3.2 Numerical aspects

The stability condition is independent of the S wave velocity or of the Poisson’s ratio ν. The usual stability condition for a finite difference
method in 2-D case is given by (Virieux 1986)

αδt

√
1

δx2
+ 1

δz2
< 1, (42)

where δt is the time step, δx is the grid step for the x-axis, δz for the z-axis and we set δx to be equal to δz. We apply an empirical stability
condition based on a finite difference method in this study:

Cwαmax
δt

δz
< 1, (43)

where Cw is a constant and αmax is the highest wave velocity of the domain. The constant Cw is controlled by the extent of order of terms
considered in the Taylor expansion for the discrete time solutions in eq. (22). In this study, we consider up to third orders of terms in the Taylor
expansion and the numerical results are stable when Cw = 10.

The minimum number of grid points per smallest wavelength varies with a type of wavelets which are used. Generally, for Daubechies
wavelets, the number of grid points needed per wavelength can be reduced by a half when twice higher-order wavelets (e.g. Daubechies-6:
Daubechies-12) are implemented. For example, Daubechies-3 wavelets need about 32 grid points per wavelength for numerically stable
computation, Daubechies-6 needs 16 points, Daubechies-9 needs 8 points and Daubechies-20 needs 3 points. However, this relationship can
not be carried indefinitely for much higher wavelets because it is difficult to compute higher wavelet coefficients using any known numerical
scheme (Shensa 1992; Strang & Nguyen 1996) and the resultant coefficients are unstable with the increase of the number of vanishing moments
of wavelets. Moreover, the magnitude of coefficients can be smaller than round-off error in the numerical modelling and their calculation may
require excessive numerical precision. In this study, we apply Daubechies-20 wavelets.

For numerical simulation of P–SV wave propagation in 2-D media with 128-by-128 grid points, the memory required is of the order of
10 Megabytes. The CPU time for simulation over 403 time steps (corresponding to 1.0 s in a time response) is of the order of 110 min on a
Compaq XP1000, where the time step (δt) is 0.00248 s when maximum compressional wave velocity (α) in a domain is 3.15 km s−1.

4 E L A S T I C W A V E P R O P A G A T I O N

4.1 Test of absorbing boundary conditions

To test the efficiency of the attenuation terms in eqs (25) and (26) for the waves approaching the artificial boundaries, we check the absorption
of the displacement fields at the artificial boundaries in a 2-D homogeneous medium (Fig. 3) with compressional velocity 3.15 km s−1, shear
velocity 1.8 km s−1 and density 2.2 g cm−3.

Figure 3. Description of 2-D homogeneous elastic media used for a test of absorbing boundaries and for a modelling of elastic wave propagation in the
presence of a free surface (Lamb’s problem). Source S1 is a source position for a test of absorbing boundaries and S2 for a Lamb’s problem. Also, receivers R j ,
A j and D j are placed horizontally at each depth (h = 0, 1719 and 2500 m) in the medium to obtain time responses for numerical comparisons.
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Figure 4. Distribution of attenuation factors (Q j , j = x, y, z) on a 2-D medium with four absorbing boundaries when Ax =Az = 8 and Bx =Bz = −0.015
in (44).

The attenuation factors (Qx & Qz for P–SV wave case, Qy for SH wave case) are designed following conditions suggested by Sochacki et
al. (1987) so that these attenuation factors are bounded, twice continuously differentiable and their derivatives are sufficiently smooth on a
domain. In this study, we distribute attenuation factors on a domain by

Q j (ix , iz) = Ax

[
eBx i2

x + eBx (ix −Nx )2
]

+ Az

[
eBz i2

z + eBz (iz−Nz )2
]
, j = x, y, z, ix = 1, 2, . . . , Nx , iz = 1, 2, . . . , Nz, (44)

where Ak and Bk (k = x, z) are constants determined by considering the wave speeds in media, Nx is the number of grid points in the x
direction, Nz the total number of grid points in the z direction and (ix , iz) is a discretized grid position.A j controls the magnitude of attenuation
and B j modulates the width of the attenuation area. In this experiment, we set A j ( j = x, z) is to be 8 and B j to −0.015 (Fig. 4).

We apply a point source in the SH wave case and compressional and vertically-directed point forces for the P–SV wave case. Fig. 5 shows
the absorption of displacement fields at four absorbing boundaries with time. The direct phases are absorbed effectively at the boundaries,
spurious waves reflected from the boundaries are weak enough not to spoil the wavefields. To provide a quantitative check on the time responses
in the presence of absorbing boundaries, we consider three receivers placed horizontally at the 21st gridpoint below the top absorbing boundary
(A j , j = 1, 2, 3 in Fig. 3) where free surface receivers are placed in later experiments (Fig. 6). The major spurious waves are indicated by
arrows to compare with the main phases (P, S). We note that generally P phases are absorbed well at the boundaries, but small amounts of
S phases are reflected from the absorbing boundaries. Spurious waves develop following the S waves due to the differences in wavelengths
compared to the gradients in the attenuation factors. As shown in A and B in Fig. 6, this effect is more marked at four corners of domain
where the gradients in the attenuation factors are augmented (see Fig. 4).

4.2 Test of accuracy in unbounded media

In Figs 7 and 8 we consider a numerical test of wave excitation by a delta function source using the wavelet approach with comparison with
analytic solutions (Pilant 1979) for four receivers (R j , j = 1, . . . , 4 in Fig. 7) at 5938 to 8397 m from the source (Fig. 8).
Because the wavelet transform can provide a full description of the effects of a delta function, we get an excellent representation of the
wavefield excited by a vertically-directed force at each location. The slight discrepancies at later times come from the absorbing boundary
conditions. We also note that the high frequency waves before S waves (A in Fig. 8, B in Fig. 10) are related to the fact that the differentiation
of delta function (in a source region) using wavelets with a limited band of frequency produces small amplitude high frequency waves before
and after the exact solutions. This phenomenon also can be found in a Fourier method (Kosloff et al. 1984; Tal-Ezer et al. 1987).

4.3 Homogeneous media with a free surface

4.3.1 SH waves

Since the SH wave equation is relatively simple and does not generate additional phases at the free surface, a SH wave front can be simulated
easily by introducing virtual image sources (Virieux 1984). But, in this study, we introduce a way of implementing a traction-free condition in
SH wave equation without use of a virtual image scheme. We introduce a point source just beneath a free surface and then model the response
of SH wave.

To treat a top boundary in the media as a free surface, we modify the attenuation factors (Q j , j = x, y, z) in eqs (25) and (26) so as not
to absorb the waves approaching to a free surface by a vertical shift in the distribution of the attenuation factors:
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Figure 5. Successive snapshots of SH and P–SV wave propagation in an homogeneous elastic medium where four artificial boundaries are treated by the
absorbing boundary condition. For a test of P–SV wave case, both compressional force and vertically-directed force are considered.
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Figure 6. Time responses of SH and P–SV waves (vertical component) at three receivers (A j , j = 1, 2, 3 in Fig. 3) in homogeneous media with four absorbing
boundaries. For a test in P–SV waves, both compressional force (CF) and vertically-directed force (VDF) are considered. Some spurious waves are indicated
by arrows. The features at A. B are discussed in the text.

Q j (ix , iz) = Ax

[
eBx i2

x + eBx (ix −Nx )2
]

+ Az

[
eBz (iz+20)2 + eBz (iz−Nz+20)2

]
, j = x, y, z, ix = 1, 2, . . . , Nx , iz = 1, 2, . . . , Nz . (45)

The numerical model has a width of 10 000 m and a height of 10 000 m, with a superimposed 128-by-128 grid. The shear wave velocity β is
1.8 km s−1 and the density in the medium is 2.2 g cm−3. The source is located at 1.5 km below the free surface (Fig. 3).

We compare numerical time responses with analytic solutions for three receivers with horizontal distances d = 0.3, 2.6, 4.5 km at depth
at depth 2500 m (D j , j = 1, 2, 3 in Fig. 3). The entire wavefields are composed of a direct phase (S ) and a reflected phase (SS ) from a free
surface (Fig. 9) and they exhibit a good match with analytic solutions (Fig. 10).

4.3.2 P–SV waves: Lamb’s problem

Lamb’s problem (Lamb 1904) to find the Green’s function for an isotropic elastic half-space with a traction-free boundary, is one of the
classical problems in elastic wave propagation. Lamb’s problem can be used to test the accuracy of numerical computation by checking
the excitation of strong Rayleigh waves in the free surface on the uniform half-space by a surface source. This test can also be used to check
the generation of coupled phases, head waves and Rayleigh waves at a free surface by implementing explosive source inside an homogeneous
medium (sometimes called Garvin’s (1956) problem). Kuhn (1985) studied the modelling of elastic wave propagation at various positions of
the receivers for two kinds of sources, a buried compressional source and a vertically directed load on the surface. When spherical waves
interact with a free surface boundary of a half-space, the incident waves are divided into three major types of waves: reflected waves from the
boundary, head waves travelling with a body wave speed and Rayleigh waves decaying exponentially with depth.

To compare the analytic solutions with numerical results, analytic solutions based on Cagniard’s technique (Burridge 1976; Pilant 1979)
are convolved with a source time function h(t). The applied source is an impulsive vertically directed force at depth 1.5 km. We use the same
model as the SH wave problem with a compressional wave velocity α is 3.15 km s−1 (Fig. 3), and compare the numerical results with the
analytic solutions for four receivers placed at the free surface. The epicentral distances for the receivers are 0.3, 1.5, 3.0 and 4.6 km (R j ,
j = 1, . . . , 4 in Fig. 3). The numerical time responses exhibit a good agreement with analytic solutions (Fig. 11). We note that the discrepancy
in the later part of Rayleigh waves (C in Fig. 11) appearing in the time responses at the farthest receiver (R4, d = 4.6 km) are related to the
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Figure 7. Description of a 2-D homogeneous unbounded medium and deployment of receivers (R j , j = 1, . . . , 4) with hypocentral distances from 5938 m
to 8397 m.
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Figure 8. Comparisons between numerical time responses of P–SV waves with analytic solutions for four receivers in an homogeneous unbounded medium.

phenomenon discussed in Section 4.1 associated with reflections at the corners of the domain due to the strong gradients in the attenuation
factors.

To compare the phase patterns, we collect time responses from receivers placed horizontally from x = 0.94 to 8.75 km at the free surface
and at depth 2.5 km. For the receivers placed on a free surface, the recorded phases are the direct P, S waves, head waves (represented as H)
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Figure 9. Snapshot of SH wave propagation in an homogeneous medium with a free surface at t = 2.5 s. The entire wavefields are composed of direct (S) and
reflected (SS) phases.
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Figure 10. Comparisons of numerical time responses of SH waves with analytic solutions for three receivers (D j , j = 1, 2, 3 in Fig. 3) in an homogeneous
medium with a free surface. The receivers are placed horizontally at depth 2.5 km with distances d = 0.3, 2.6 and 4.5 km.

and Rayleigh waves (R) as shown in Fig. 12(a). When a depth of receivers is increased, the time responses become complex due to a phase
coupling at the free surface. The discernible phases are P, S, PP, PS, SP, SS (Figs 12b and 13).

4.4 Two-layered heterogeneous media

The first model we consider for heterogeneous media cases is a two-layered media problem which has often been considered in the modelling
of elastic wave propagation (Virieux 1986; Kelly et al. 1976). The medium has a horizontal internal boundary that divides it into two layers.
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Figure 11. Comparison between numerical time responses of P–SV waves and analytic solutions for Lamb’s problem at four free-surface receivers (R j ,
j = 1, . . . , 4 in Fig. 3) with epicentral distances d = 0.3, 1.5, 3.0 and 4.6 km. H represents head waves and R Rayleigh waves.

The compressional wave velocity (α1) is 3.15 km s−1, the shear wave velocity (β1) is 1.8 km s−1 and the density is 2.2 g cm−3 in the top
layer. The velocities in the bottom layer are twice those in the top layer (α2 = 6.3 km s−1, β2 = 3.6 km s−1) and the density is 3.3 g cm−3

(Fig. 14). The width and height of the model are all 10 000 m and an internal boundary is placed at depth 3000 m. The point force is applied at
x = 3750 m, z = 1500 m. We apply a point source in the SH wave case and a compressional point source for the P–SV wave case to simplify
the wavefields in media.

For a check of numerical accuracy in the media, we present a comparison between numerical time responses for SH wave case with
analytic solutions (Aki & Richards 1980) in the absence of free surface to avoid multireflected phases from a free surface. Since, however, it
is difficult to obtain an ‘exact’ analytic solution for P–SV wave case due to a phase coupling at boundaries, we consider numerical modelling
and features of elastic wave propagation in the media with a free surface.

4.4.1 SH waves

First, we check the numerical accuracy of a wavelet-based method in a two-layered heterogeneous medium with four absorbing boundaries
at the edges of the domain. The numerical time responses at three receivers deployed horizontally at depth 1030 and 1970 m with horizontal
distances d = 310, 1480, 2270, 3050, 3830 m (R j , j = 1, . . . , 5 in Fig. 14) are compared with analytic solutions. The phases in the time
responses are direct S, reflected S and head waves. The comparisons in Fig. 15 show a good match for head waves and direct phases (S), head
waves (represented as H in the Figure) and reflected phases (Sr in the Figure).

The entire wavefields in two-layered media without a free surface are composed of direct S phases, opposite-phase reflected phases (Sr),
in-phase transmitted phases (St), head waves (H) and interface waves (I, Pilant 1972) at the internal boundary (Fig. 16). The head waves
develop from the internal boundary by connecting a transmitted phase to a reflected phase, and propagate to the upper layer with velocity β1.
Also, the interface waves develop at the internal boundary where the physical parameters are changed suddenly, and propagate following the
interface. The interface waves show the non-dispersive waveform and decay exponentially with depth like surface waves.
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Figure 12. Numerical time responses (vertical components) of P–SV elastic wave propagation in an homogeneous medium recorded at 21 receivers placed
horizontally (a) on a free surface and (b) at depth 2500 m, the main seismic phases are indicated.
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Figure 13. Snapshot of P–SV wave propagation in an homogeneous medium with a free surface (Lamb’s problem) at t = 2.0 s.

4.4.2 P–SV waves

An explosive point source which generates only P waves is applied in the two layered heterogeneous media with a free surface for convenience
in identification of phases. As a result of phase coupling at the boundaries, the wavefields are complicated and the entire wavefields are
composed of direct P waves, reflected P and S waves from the internal boundary (represented as PPr and PSr in Fig. 17) and the free surface
(PP, PS), transmitted P and S waves at the internal boundary (PPt, PSt), head waves (Ht, Hrp, Hrs) and interface waves. Note that various
head waves are generated at the free surface and the internal boundary. At the internal boundary, the head waves connect the reflected phases
with transmitted phases (e.g. Hrp, Hrs) or both transmitted (or, reflected) phases each other (e.g. Ht), and they propagate to upper or lower
layer with a body wave velocity from the internal boundary.

4.5 Media with a general linear gradient in seismic properties

As a further, more complex example we consider a model with a slanted linear gradient in seismic properties (Fig. 18). We construct the
model by setting the velocities and the density to increase linearly in both the vertical and horizontal coordinates. This linear gradient model
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Figure 14. Description of two-layered heterogeneous elastic media with a planar internal boundary at depth 3000 m. The elastic wave velocities in a bottom
layer are twice of those in a top layer. Five receivers (R j , j = 1, . . . , 5) are placed horizontally at depth 1030 and 1970 m to collect time responses of SH waves
for comparisons with analytic solutions.
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Figure 15. Comparisons between numerical time responses of SH waves and analytic solutions for two-layered media problem at five receivers (R j , j = 1, . . . , 5
in Fig. 14) with horizontal distances d = 310, 1480, 2270, 3050 and 3830 m at depth 1030 and 1970 m. H stands for head waves and Sr for reflected waves
from a internal boundary.

provides a good test of the wavelet-based scheme in a model without symmetries in the expected wave front behaviour. The top layer is set to
be homogeneous and the artificial boundary over the top layer is considered as a free surface (Fig. 18). The compressional wave velocity (α)
ranges from 3.15 to 7.88 km s−1, the shear wave velocity (β) from 1.8 to 4.5 km s−1, the density (ρ) from 2.2 to 3.85 g cm−3, and the angle
of the slanted velocity structure is 38.7◦ (Fig. 18). We consider P–SV wave propagation in this model with a vertically-directed force applied
at (3750 m, 1500 m).
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Figure 16. Snapshot of SH wave propagation in two-layered media at t = 1.8 s. The entire wavefields are composed of direct waves (S), reflected waves (Sr),
transmitted waves (St), head waves (H) and interface waves (I) at the boundary.

As the velocities increase with both depth and distance, the shape of wavefields becomes elliptic towards the bottom right in Fig. 19.
Since the velocity in media increase gradually, there are no significant reflected phases or head waves at the internal boundary. Therefore,
entire wavefields are composed of direct phases (P, S) and reflected phases from a free surface (PP, PS, SP, SS), head waves (H) and Rayleigh
wave (R in Fig. 20), like Lamb’s problem in Section 4.3.2. The time responses at receivers on a free surface and at depth 2500 m in Fig. 20
show that the phases arrive faster than those in Lamb’s problem (Fig. 12).

We also note that the composite waves of S and Rayleigh waves in Fig. 20(a) exhibit larger amplitude of waves compared to those in
homogeneous medium in Fig. 12(a) because the wave velocities of media in Fig. 18 are increased gradually from x = 7500 m at the free
surface and the phases are not attenuated with distance much compared to an homogeneous medium case.

4.6 Random heterogeneous media

Up to now, we have tested the wavelet-based method in simple models and shown that the method could generate good numerical responses.
However, the ‘real’ Earth has a significant variation in its mineral composition and grain size distribution due to chemical activity with depth
or tectonic processes, e.g. folding, faulting (Sato & Fehler 1998). As a result, these variations form strongly heterogeneous media in the
lithosphere with the spatial variation of physical properties such as velocities and density. These wide spatial variation of elastic properties
in the lithosphere was revealed by various geophysical and seismic studies. Also, the irregular heterogeneity in a region about 200 km thick
above the core–mantle boundary was revealed through seismic records (Kennett 1983).

Even if the numerical results exhibit good agreements with analytic solutions in simple models, one can’t guarantee that the method can
generate the reliable numerical responses in ‘real’ Earth with often large variations of physical parameters because numerical methods based
on discretized grid points, such as finite difference and finite element methods, are not affected much in accuracy in regularized heterogeneous
media (e.g. two-layered media). Sato & Fehler (1998) indicated that the grid-based schemes approximate the responses of the waves through
averages over many gridpoints in calculating spatial derivatives. As an evidence, they provided a phenomenon in finite-difference simulation
that the numerical responses do not exhibit correct phase amplitudes in heterogeneous media, while display accurate phase-arrival times.
Therefore, the method becomes unstable in highly perturbed media.

Therefore, we introduce a highly perturbed medium with maximum 20 per cent perturbation on physical parameters which can be
expected in ‘real’ Earth and the usual grid-based methods often fail to compute responses. By testing the stability of the wavelet-based method
which can compute spatial derivative exactly and stably, we show the possibility of the method as a tool for the ‘real’ Earth. For the construction
of a perturbed medium, we follow a scheme in Roth & Korn (1993). For more details, we refer to Roth & Korn (1993) and Sato & Fehler
(1998).

Fig. 21 shows the stochastic perturbation of P and S wave velocities added to background homogeneous medium with α = 3.15 km s−1,
β = 1.8 km s−1 and ρ = 2.2 g cm−3. The systematic spatial perturbation in medium is considered by implementing the Von Karman autocor-
relation function with a correlation distance a = 10 km. We implement a compressional point force inside a medium at (3750 m, 5500 m).
The entire wavefields are composed of direct phase (P), reflected waves (PP, PS) from a free surface and various complex back-scattered
waves (Fig. 22). Also, due to the generation of back-scattered waves, the main phases exhibit the apparent attenuation during propagation in
the media. The numerical responses in the random medium are compared with those in the homogeneous medium in Fig. 23. The numerical
responses with large amplitudes of back-scattered waves are stable throughout computation (Fig. 23).

These numerical calculations using the wavelet scheme illustrate the resilience of both P and S wave fronts in the presence of strong
heterogeneity. Significant coda waves are shed and there are local perturbations of the wave fronts, but the dents are soon infilled by ‘wave
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Figure 17. Snapshot of P–SV wave propagation in two-layered media with compressional point force inside a top layer at t = 0.5, 1.0, 1.5 and 2.0 s. The
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shear wave velocity from 1.8 to 4.5 km s−1 and the density from 2.2 to 3.85 g cm−3.
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Figure 20. Numerical time responses of P–SV waves (vertical components) in linear gradient velocity media recorded at 21 receivers placed horizontally (a)
on a free surface and (b) at depth 2500 m.

front healing’ (see Igel & Gudmundsson 1997). There is some redistribution of amplitude, but the major phases are recognizable in Figs 22,
23 despite the substantial variations in medium properties (Fig. 21).

5 D I S C U S S I O N A N D C O N C L U S I O N S

The wavelet-based method has been introduced for numerical modelling of an elastic wave propagation in 2-D media problems. The scheme
represents spatial differentiation operators through wavelet bases and the resulting second-order differential equations for time are treated by
a displacement-velocity formalism and a semi-group approach.

The wavelet method for a spatial differentiation is not a grid-based scheme in the physical domain like a Fourier method although
sampling is needed at given points. Therefore, we can maintain an accuracy of computation of spatial derivative uniformly throughout a whole
domain in contrast to usual grid methods such as the FD scheme that cumulates numerical errors during computation of derivative terms from
grid to grid.

The displacement-velocity formulation recasts the elastic wave equations in a form where the semi-group approach precisely developed
for a parabolic PDE can be employed. Using a Taylor expansion, a recursive discrete solution can be computed by approximating an exponential
function with a linear operator matrix in the exponent. The traction-free boundary is treated by an equivalent force term in the semi-group
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Figure 21. A representation of a Gaussian random perturbation of velocities using a Von Karman autocorrelation function.
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approach, leading to a stable implementation of the boundary conditions. We expect that other boundary conditions which are needed in
complex models, such as a cavity inside media, can be considered in a similar stable way using the semi-group approach. The inclusion of
attenuation factors for treating artificial boundaries in elastic wave equations reduced the cost of computation by allowing the use of smaller
domains.

For classical 2-D problems, we have compared the numerical results with analytic solutions and we studied the accuracy of the method.
The method is not only stable during numerical computation, but also has achieved quite good results in various comparisons. Also, we
introduced two simple heterogeneous models and highly perturbed random media to test the capability of the method. The wavelet-based
method works well not only in the case of sudden variation of physical parameters at a boundary, but also for linear gradients where physical
parameters are changing continuously. Moreover, the method provided the stable time responses in a highly perturbed medium. We expect
the method can be extended to complex stochastic media problems where accurate treatments of spatial derivatives are essential for stable
modelling.
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A P P E N D I X : D I S C R E T E T I M E S O L U T I O N I N T H E S O U R C E R E G I O N

Following eq. (21), we discretize the solution of elastic wave equations for the explicit case in a recursive form:

Un+1 = eδtLh Un + δtβ0Fn, (A1)

where Un is a variable vector at a discretized time tn , δt is a time step and β0 = (eδtLh − I)(δtLh)−1. eδtLh and β0 can be estimated using a
Taylor expansion as shown in eq. (22). Using a linear matrix operator Lh in eq. (20), L2

h and L3
h are given by
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and
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Therefore, eδtLh in eq. (22) can be written as

eδtLh =
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2
Lh

zx

δt3

6
Lh

zx I + δt2

2
Lh

zz δt I + δt3

6
Lh

zz

δtLh
zx

δt2

2
Lh

zx δtLh
zz I + δt2

2
Lh

zz




. (A4)
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When γ = 0 (explicit case), M = 1 and the Lh
i jLh

kl terms (i, j, k, l = x, z) are ignored,

β0=(eδtLh − I)(δtLh)−1=I + 1

2
δtLh + 1

6
δt2L2

h + 1

24
δt3L3

h + · · · =




I + δt2

6
Lh

xx

δt

2
I + δt3

24
Lh

xx

δt2

6
Lh

xz

δt3

24
Lh

xz

δt

2
Lh

xx I + δt2

6
Lh

xx

δt

2
Lh

xz

δt2

6
Lh

xz

δt2

6
Lh

zx

δt3

24
Lh

zx I + δt2

6
Lh

zz

δt

2
I + δt3

24
Lh

zz

δt

2
Lh

zx

δt2

6
Lh

zx

δt

2
Lh

zz I + δt2

6
Lh

zz




.

(A5)

Therefore, eq. (21) can be approximated for the explicit case using (A4) and (A5):


un+1
x

vn+1
x

un+1
z

vn+1
z


 = eδtLh




un
x

vn
x

un
z

vn
z


 + δtβ0

1

ρ




0

f n
x

0

f n
z


 . (A6)

A P P E N D I X : D I S C R E T E T I M E S O L U T I O N I N T H E M A I N R E G I O N

When we consider the P–SV wave equations in the main region in which we include the body force effects through boundary conditions, we
can write the governing equations as

∂2ux

∂t2
= 1

ρ

(
∂σxx

∂x
+ ∂σxz

∂z

)
,

∂2uz

∂t2
= 1

ρ

(
∂σxz

∂x
+ ∂σzz

∂z

)
,

(B1)

where σi j (i, j = x, z) is a stress in (12). When eq. (B1) can be expressed in the first-order differential equation from as

∂t U = LU, (B2)

where L is a 4-by-4 matrix operator given by

L =




0 I 0 0

Lxx 0 Lxz 0

0 0 0 I

Lzx 0 Lzz 0


 , (B3)

and Li j (i, j = x, z) is a scalar linear operator in (14). In this case, the discretized solution using a semi-group approach recursively is given
by


un+1
x

vn+1
x

un+1
z

vn+1
z


 = eδtL




un
x

vn
x

un
z

vn
z


 , (B4)

where eδtL can be expanded using a Taylor series:

eδtL =




I + δt2

2
Lxx δt I + δt3

6
Lxx

δt2

2
Lxz

δt3

6
Lxz

δtLxx I + δt2

2
Lxx δtLxz

δt2

2
Lxz

δt2

2
Lzx

δt3

6
Lzx I + δt2

2
Lzz δt I + δt3

6
Lzz

δtLzx
δt2

2
Lzx δtLzz I + δt2

2
Lzz




. (B5)
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A P P E N D I X : C O E F F I C I E N T S O F N S - F O R M O F O P E R A T O R ∂

When an operator T (e.g. derivative operator, convolution operator) is defined in L2 space, it can be represented in the tensor product bases
(ϕ, ψ) and can form a matrix operator (in a standard form) expressing the operator T. With additional projection of the operated spaces on to
the set of subspaces, Beylkin (1992) could express the operator as a non-standard form (NS-form) of matrix operator. The NS-form matrix
operator can reduce the computational cost and makes the system including the operator simple to handle. For more detail of consideration
of the operator in wavelet bases, we refer to Beylkin (1992).

In this study, we consider the derivative operator on wavelet bases and the coefficients of the NS-form of derivative operator (∂) can be
obtained using (4.3) and (4.4) in Beylkin (1992). The coefficients (r 1

l , −38 ≤ l ≤ 38) of the first-order derivative operator are given by

r 1
0 = 0

r 1
1 = −0.9512202581628088168953291670953363741158

r 1
2 = 0.40924669691064934226928544889776754033222

r 1
3 = −0.21220235235817125241138778371057557905874

r 1
4 = 0.111744829849172352806450390465697094157023

r 1
5 = −0.056556353467479882685416345619940050241633

r 1
6 = 0.0267993677469349072431038290840941788984621

r 1
7 = −0.0117020280740302048063843632582841486389714

r 1
8 = 0.0046541791950217809322488119661888414149408

r 1
9 = −0.00166934220231212180073645966992405276065193

r 1
10 = 0.00053477115388658414862943774657691290096661

r 1
11 = −0.000151435647804042899701427151471572879414476

r 1
12 = 0.000037462012791052941935281785598199396928948

r 1
13 = −7.9806261237317771745141187865142359860246 × 10−6

r 1
14 = 1.43762532893493484270793311169125366450063 × 10−6

r 1
15 = −2.13704593950842754674837800413055144138844 × 10−7

r 1
16 = 2.53268333347132439070706272057383802194626 × 10−8

r 1
17 = −2.27480544299216844330375805979327460020808 × 10−9

r 1
18 = 1.44426541827778857728365870765027842747995 × 10−10

r 1
19 = −6.4418054540880497376102707094163608532222 × 10−12

r 1
20 = 3.44564905561654405278246862627745978223022 × 10−13

r 1
21 = −1.70810862289007463312530040733908803206041 × 10−14

r 1
22 = −5.0669011245078448936245959607994213867125 × 10−15

r 1
23 = 1.07728737053070114073883574318345357655184 × 10−15

r 1
24 = −2.06003417891317764387363040119484140295314 × 10−17

r 1
25 = −1.12743679605993942989302217522997280836838 × 10−17

r 1
26 = 4.710602973118394143531256119996469563019 × 10−19

r 1
27 = 5.8570005057404587722549701560290047426849 × 10−19

r 1
28 = 9.5286432963244412815358765268948885542051 × 10−22

r 1
29 = 2.20904986897211722029223908701950496319178 × 10−24

r 1
30 = 3.33571145835072113774507056021389203595443 × 10−26

r 1
31 = −7.4336231434888703297882185230485225497906 × 10−28

r 1
32 = 6.3994877436235609991592269588157459338184 × 10−30

r 1
33 = −2.73557349984210029408405391458398409911042 × 10−32

r 1
34 = −1.04765720469823213817922778531469877580904 × 10−36

r 1
35 = 3.4721190547343456809901262124187162033694 × 10−40

r 1
36 = 1.27967643177469868693835368282035919724671 × 10−44

r 1
37 = −1.62422490373905792231749611455567746048172 × 10−52
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r 1
38 = 7.5979725818395493818388650700711955570933 × 10−65

r− j = −r j , 1 ≤ j ≤ 38, (C1)

where the coefficient r 1
l satisfies the relationship

r 1
l =

∫ ∞

−∞
ϕ(x − l)

d

dx
ϕ(x) dx, −38 ≤ l ≤ 38, (C2)

where ϕ(x) is a scaling function. The coefficients of the second order derivative operator can also be computed in the same way.
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