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Abstract

The importance of mode coupling in a viscoelastic self-gravitating spherical earth with lateral variations in linear or
nonlinear rheology is investigated with a finite-element model coupled to Poisson’s equation. Both the lateral viscosity
variations and the harmonic load are axisymmetric. The effects of self-gravitation, viscosity contrast and the location
of the abrupt lateral change in viscosity in a linear mantle are studied and are found to be significant in determining
the strength of mode coupling. It is demonstrated that a larger number of harmonics than generally assumed is
required to give accurate description of the induced deformation. Mode coupling is also found to be important in a
nonlinear mantle especially when the harmonic degree l is large. + 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well known that for the case of a non-
rotating spherically symmetric earth, a harmonic
load induces deformation of the same harmonic
degree l and order m. However, in the presence of
lateral viscosity variation or nonlinear rheology
(as we shall show below), not only is degree l
and order m excited ^ modes of other degrees
and orders are excited as well. This is called
mode coupling.

In the spectral formulation of loading problems
with lateral viscosity variation or nonlinear rheol-
ogy, it is important that the amplitudes of the

coupled modes be taken into account properly,
otherwise the shape and amplitude of the induced
deformations cannot be computed accurately (see
discussion of Fig. 7 below). However, mode cou-
pling makes the spectral formulation of loading
problems more complex because the amplitudes
of all the coupled modes are required as ‘known’
in the formulation and thus the problem must be
solved iteratively [1]. For example, D’Agostino et
al. [2] solved the surface loading problem with the
iterative approach which assumes that the radial
dependence of viscosity at mid-mantle is much
larger than the lateral variations. Their computa-
tion is for a non-self-gravitating earth where lat-
eral viscosity variation is due to a lithospheric
craton and mode coupling was assumed to exist
only up to a maximum order of 10. However, it is
not clear how many modes are involved in the
coupling, what causes the modes to couple and
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what a¡ects the strength of coupling. The purpose
of this paper is to study mode coupling in the
modeling of the glacial isostatic adjustment
(GIA) process.

What motivates this study is the recent interest
in mapping lateral heterogeneities of the mantle
and in understanding how lateral viscosity varia-
tions a¡ect the observations of GIA. Seismic to-
mography [3,4] reveals that lateral variation of
S-wave velocity is about 4% near the surface but
decreases to about 2% below 400 km depth. These
lateral velocity variations can be due to lateral
changes in temperature, chemical composition,
non-isotropic pre-stress [5] or some combination
of them. Since mantle creep law also depends on
the chemistry, the pressure and is thermally acti-
vated, lateral velocity variations imply lateral vis-
cosity variations. It has been estimated that the
observed 2% variation in S-wave velocity may im-
ply viscosity variations of about 2^4 orders of
magnitude (e.g. [6,7]) ! Recently, a number of
studies have investigated the e¡ects of lateral vis-
cosity variation on the observations of GIA [2,6^
15]]. However, except for the more recent works
[14,15], the earth models used are £at or non-self-
gravitating and only Kaufmann and Wolf [11]
studied mode coupling. Using sinusoidal lateral
viscosity variation in a £at earth, Kaufmann
and Wolf [11] found that mode coupling involves
only two wave numbers ^ one corresponding to
the load and the other to the lateral viscosity var-
iation ^ with the magnitude of the latter mode
being dependent on the magnitude of lateral vis-
cosity variation. However, sinusoidal variations in
viscosity are unrealistic. For a sharp change in
lateral viscosity, one can theoretically estimate
how many modes are coupled ^ but the Fourier
transform of a step function is complex. Thus, it
is unclear how many modes are involved or what
are their relative strengths if there is a sharp
change in lateral viscosity especially when the
earth is spherical and self-gravitating. Recently,
spectral models that can handle lateral viscosity
variations in a self-gravitating spherical earth
have been developed (e.g. [14,15]), but a study
of mode coupling with a self-gravitating earth
has not been published.

Since Kaufmann and Wolf [11] only used linear

rheology in their study, it is unclear what will
happen when rheology in the mantle becomes
nonlinear. Creep experiments of mantle rocks in-
dicate that both linear (di¡usion) and nonlinear
(dislocation) creep laws can operate in the mantle.
Depending on mantle conditions, either can be-
come the dominant creep mechanism (e.g.
[16,17]). Recent modeling of the GIA process in
and around Laurentia [18^22] indicates that the
creep law in the top 300 km of the upper mantle
and in the lower mantle may be nonlinear. The
important point is that lateral viscosity variations
can be induced if mantle rheology is nonlinear [1].
This is because the e¡ective viscosity for nonlinear
rheology is dependent on the stress level (see Eq. 1
below), and when the surface (or internal) load
magnitude changes laterally, so does the stress
level and e¡ective viscosity. Thus, for a harmonic
load with degree l and order m= 0 (axisymmetric
load), one would expect that the induced lateral
viscosity variation in a uniform nonlinear mantle
should also be described by the same harmonic
degree l and order m. Because of this, it is unclear
from the work of Kaufmann and Wolf [11]
whether there is any mode coupling when mantle
rheology is nonlinear.

A related question is whether the poloidal and
toroidal modes are coupled in the GIA process.
For geoid studies with lateral viscosity variations,
these modes are found to be coupled [1,23]. For
GIA studies with an axisymmetric load, D’Agos-
tino et al. [2] assumed that there is no excitation
of the toroidal and non-zonal poloidal modes.
Although this assumption is reasonable for a lin-
ear earth [24], its validity does not appear to have
been tested for nonlinear rheology.

In the present study, mode coupling on a spher-
ical, self-gravitating, viscoelastic earth due to ax-
isymmetric harmonic loads is studied. Both linear
and nonlinear rheologies will be considered. Wu
[22] has demonstrated that the e¡ect of self-grav-
itation (SG) is important, especially for nonlinear
rheology. Thus SG will be turned on or o¡ in this
paper to study its e¡ects on mode coupling. Un-
like the studies by Kaufmann and Wolf [11] and
D’Agostino et al. [2], where the spectral theory is
employed and the amplitude of lateral viscosity
variation cannot be arbitrarily large, the ¢nite el-
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ement (FE) method is used here. The advantage
of the FE method is that lateral viscosity varia-
tions can be arbitrarily large. Furthermore, there
is no need to assume that there is no excitation of
the toroidal and non-zonal poloidal modes, or to
set a limit to the maximum order of coupling
(although in reality the maximum degree and or-
der resolved by the FE grid is dependent on the
number of FEs on the spherical surfaces, which is
limited by the computer resources available). Fur-
thermore, the FE method is suited for the study
of nonlinear rheology because the principle of
superposition (assumed in the spectral method
or linear perturbation theory) no longer applies.
However, the inclusion of SG in a non-spectral
FE code is not trivial. Recently, however, I have
successfully coupled Poisson’s equation to the FE
code (see Wu [25] for details).

The purpose of this study is: (1) to study the
e¡ects of SG on mode coupling; (2) to verify that
the excitation of the toroidal and non-zonal po-
loidal modes is negligible when mantle rheology is
linear or nonlinear provided that the load and
lateral viscosity variation are both axisymmetric ;
(3) to study the physical cause for the modes to
become coupled together; (4) to determine the
extent of mode coupling when there is lateral vis-
cosity variation; (5) to demonstrate that there is
mode coupling when mantle rheology is nonlin-
ear.

2. The model

A FE earth model coupled with Poisson’s equa-
tion is used for the calculations here [25]. The
earth model is assumed to be a non-rotating,

spherical, self-gravitating, incompressible, Max-
well earth. The rheology in the mantle is assumed
to be described by the steady state creep law:
DtOij

C =A*cPn31
E cPij where O

C
ij are the ijth compo-

nents of the creep strain, A* is the creep param-
eter, n is the stress exponent, taken to be 3 for
power-law and 1 for linear rheology. Here,
cPE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2Þc 0

ijc
0
ij

p
is the equivalent deviatoric

stress, cPij are the deviatoric stress components
and the e¡ective viscosity is given by [26] :

R eff ¼
1

3A � c 0ðn31Þ
E

ð1Þ

For nonlinear rheology, Eq. 1 shows that large
stress levels will lead to small e¡ective viscosities.
Since the stress induced by surface load varies in
both space and time (e.g. ¢gure 4 in Wu [26]), the
e¡ective viscosity for a nonlinear mantle will be
laterally heterogeneous and time dependent. In
our treatment of nonlinear rheology, we shall ne-
glect the interaction between load-induced stress
and the ambient tectonic stress since the strain
magnitude due to postglacial rebound is orders
of magnitude smaller than that due to tectonics
[27].

All the earth models consist of a uniform
100 km thick elastic lithosphere overlying a strati-
¢ed viscoelastic mantle and an inviscid £uid core.
The elastic structure of all our models is given by
Model SG5 (Table 1).

Two FE models are used in this study. The ¢rst
is a 3D spherical model, which is composed of 20
layers. Each layer consists of two rows of 72 six-
node elements around the poles (one row at the
north pole and one at the south pole) and 34U72

Table 1
Elastic structure of Model SG5

Layer Radius of the top Density Rigidity Gravity
(km) (kg m33) (GPa) (m s32)

Lithosphere 6 371 4 120 73 9.71
Upper mantle 6 271 4 120 95 9.66
Transition zone 5 950 4 220 110 9.57
Lower mantle 5 700 4 508 200 9.51
Core 3 480 10 925 0 10.62
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eight-node elements in between the polar ele-
ments. This model is used to verify that the ex-
citation of the toroidal or non-zonal poloidal
mode is negligible for linear and nonlinear rheol-
ogy. However, even for this coarse spatial resolu-
tion (5‡), the model is computationally very inten-
sive. Thus, after the veri¢cation that the motions
are axially symmetric with no toroidal and non-
zonal poloidal modes, the second FE model,
which is computationally more e⁄cient, is used
for the rest of the paper. This second model is
an axisymmetric spherical model, which gives a
spatial resolution of 0.5‡. The details of the mod-
els can be found in [25].

Except for Fig. 7, where an axisymmetric uni-
form disc load is used, the surface loads used for
the rest of the paper are all harmonic loads with
order m= 0 (axisymmetric load). These loads are
applied on the earth’s surface and left there, so
the responses computed are Heaviside responses.
To implement these loads on a FE grid, the aver-
age load over the surface of the elements is ap-
plied (i.e. the load is integrated over the surface of
the FEs and divided by the surface area).

The validity of the FE method is demonstrated
in Fig. 1, where the computed Heaviside re-
sponses for a degree l= 2 harmonic load over a
uniform linear mantle and inviscid £uid core are
compared to the analytical solutions. The agree-
ment between the numerical and the analytical

methods is well within 1%. This is adequate for
our present purpose. If better accuracy is re-
quired, ¢ner elements with better spatial resolu-
tions are needed, but that would put more de-
mand on computer resources.

In the following, lateral viscosity variations in
both linear and nonlinear mantles will be consid-
ered. For nonlinear rheology, the mantle is as-
sumed to be uniform and lateral viscosity varia-
tions are completely induced by the load. For
linear rheology, two axisymmetric models with
sharp viscosity contrasts will be used. The ¢rst
model, used with harmonic loads, is shown in
Fig. 2a. Note that there is no radial variation in
mantle viscosity below the lithosphere and mantle
viscosity from the north pole to co-latitude i has
R1 = 1021 Pa s, while mantle viscosity from i to
180‡ is higher and has value R2. The second mod-
el, to be used with a uniform disc load of 15‡
angular radius is shown in Fig. 2b. Below the
lithosphere, this earth model has a high viscosity
(R2 = 1022 Pa s) root which extends to depth D
underneath the load. Outside the high viscosity
root, the viscosity of the mantle is R1 = 1021 Pa
s. For both earth models, mode coupling induced
by lateral viscosity variations has large e¡ects on
the radial and tangential displacements and the
potential perturbations. However, for the purpose
of this paper, only the radial displacements will be
considered.

Fig. 1. Comparing theoretical (lines) to numerical results (symbols) for a Heaviside l= 2 harmonic load over a self-gravitating
two-layer earth (with uniform mantle over uniform inviscid £uid core). U, V, P are the harmonic coe⁄cients for radial displace-
ment, tangential displacement (units in m) and gravitational potential perturbations (units in (m/s)2) at the earth’s surface, respec-
tively.
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3. Results

When the 3D spherical FE model is used to
compute the deformation in the linear model
(Fig. 2a) with axisymmetric lateral viscosity var-
iation (i= 45‡ and R2 = 1023 Pa s), it is found that
the toroidal and non-zonal poloidal components
of displacements are so small that they are within
numerical uncertainties. The same is true when
nonlinear rheology is employed. Thus, the axi-
symmetric earth model is used for the rest of
the calculations.

Next, the radial displacements of the linear
earth model (Fig. 2a) due to l= 2 and 5 harmonic
loads are calculated with the axisymmetric FE
earth model with and without the inclusion of
SG for i= 45‡ and 90‡ and R2 = 1023 Pa s. The
amplitudes of these harmonic loads are obtained
from the decomposition of a point load with a
mass of 2.9U1019 kg. The radial displacements
are then decomposed into their harmonic compo-
nents and their spectral peaks are plotted in Fig. 3.
An inspection of this ¢gure shows that the elastic
deformations (t= 0) due to these loads produce no

mode coupling because the elastic structures of
these earth models are laterally homogeneous.
However, as time t increases and the viscoelastic
mantle starts to relax, the radial response is able
to detect the lateral viscosity variation, thus mode
coupling becomes more and more important. If
we normalize the radial displacement spectrum
of Fig. 3 with the amplitude at l, the harmonic
degree of the load, then we will ¢nd that the
relative amplitudes at neighboring degrees lP will
grow rapidly in time during the ¢rst 1 ka. How-
ever, this growth in relative amplitudes stopped
soon after 1 ka, so that the normalized amplitudes
for both the SG and NSG curves at, say, 4 and
15 ka are about the same. Comparing the curves
with and without the inclusion of SG in Fig. 3,
one sees that the e¡ect of SG is signi¢cant only at
l, the harmonic degree of the load.

In Figs. 4 and 5, the origin of mode coupling
and the e¡ects of i on mode coupling are inves-
tigated for R2 = 1023 Pa s (see Fig. 2a) and i= 45‡,
90‡, 135‡ and 180‡ (the last one corresponds to a
laterally homogeneous mantle). In Fig. 4, a degree
l= 2 and m= 0 harmonic load is applied at the
surface while in Fig. 5 the harmonic load has
l= 5 and m= 0. In Figs. 4a and 5a, the normalized
radial displacements at t= 15 ka are plotted as a
function of co-latitude a. The radial displacement
curves for the laterally homogeneous model are
purely harmonic, with the same degree as the sur-
face load. With lateral heterogeneity introduced,
Figs. 4a and 5a show that the deformation over
the high viscosity part of the mantle is delayed
and thus has its amplitude reduced at t= 15 ka.
For example, in Fig. 4a the model with i= 135‡
(dashed line) gives almost the same displacement
as the laterally homogeneous earth for a6 135‡.
But outside, the displacements are reduced by al-
most 50%. Clearly, to represent the radial defor-
mation of the laterally heterogeneous earth, har-
monic degrees other than that for the load are
required. This gives us a physical understanding
of the origin of mode coupling in laterally hetero-
geneous earth models. If this is the physical cause
of mode coupling, then one can understand why
an axisymmetric load will not induce the toroidal
and non-zonal poloidal components. This is be-
cause a poloidal load only induces poloidal dis-

Fig. 2. (a) An axisymmetric linear rheology model where
mantle viscosity from the north pole to co-latitude i has val-
ue R1 = 1021 Pa s, while mantle viscosity from i to 180‡ is
higher and has value R2. There is no radial variation of man-
tle viscosity and the model is used for harmonic loads. (b) An
axisymmetric linear rheology model with high viscosity
(R2 = 1022 Pa s) root underneath the load. The root extends
to depth D. Outside the high viscosity root, R1 = 1021 Pa s.
Elastic structures of both models are given by Model SG5 in
Table 1.
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placements and an axisymmetric load only in-
duces axisymmetric deformations if the lateral vis-
cosity variation is also axisymmetric [24]. How-
ever, if lateral viscosity variation is not
axisymmetric, then one can expect that the cou-
pling involves both harmonic degree l and order
m because the deformation requires all these com-
ponents to describe it.

In Figs. 4b and 5b, the amplitude spectrum is
normalized by the amplitude at l, the harmonic
degree of the load. These ¢gures show that
mode coupling at l= 5 is stronger than that at
l= 2. For example, in Fig. 4b with i= 135‡, the
largest coupling amplitude is about 13% at lP= 3,

but for Fig. 5b and i= 135‡, the largest coupling
amplitude is 25% at lP= 6.

Figs. 4b and 5b also show that mode coupling
is dependent on the angle i. For large i, mode
coupling is strongest near the degree of the load l
but it decreases rapidly away from l. For example,
in Fig. 5b where i= 135‡, the amplitudes at lP= 4
and 6 are 21% and 25%, respectively, but for
lPs 11, mode coupling decreases to less than
5%. For smaller i, mode coupling becomes even
more important. For example, with i= 45‡, the
largest coupling amplitude in Fig. 5b is about
52% at lP= 6 and at lP= 15, the amplitude is still
about 12%.

Fig. 3. Spectral amplitude of the radial displacement at t= 0 and 15 ka after the application of a harmonic load with degree l= 2
(top) and l= 5 (bottom). Curves labeled SG have self-gravitation included but those labeled NSG do not include self-gravitation.
Two earth models with di¡erent i (see Fig. 2a) are used.
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As pointed out in Section 1, D’Agostino et al.
[2] assumed that mode coupling exists only up to
degree 10. In Fig. 6, the e¡ect of neglecting the
coupling of the higher degree modes on the accu-
racy of the solution is investigated. Here the earth
model of Fig. 2a with i= 45‡ is loaded by a de-
gree ¢ve harmonic load. The solid line is the ac-
tual solution at t= 15 ka (same as the one in
Fig. 5), while the dashed and the dotted lines
are computed by coupling the ¢rst 10 and 16
modes, respectively. An inspection of Fig. 6 shows
that the neglect of the higher degree modes results

in a loss of accuracy of the computed solution.
Even with 16 modes, the computed solution still
di¡ers from the actual solution by more than 50%
within the range 30‡6 a6 60‡.

The e¡ect of viscosity contrast on mode cou-
pling is shown in Fig. 7. There, the load has har-
monic degree l= 5, the angle i in the earth model
(see Fig. 2a) is ¢xed at 45‡, and R2 is taken to be
1021, 1022, 1023 and 1024 Pa s. As the viscosity
contrast increases, the spectral amplitudes for
the l= 5 component increases relative to the other
harmonics. Thus, as demonstrated in Kaufmann

Fig. 4. (a) Normalized radial displacements of the four earth models with di¡erent i (see Fig. 2a; note that the laterally homoge-
neous earth corresponds to i= 180‡) are plotted as a function of co-latitude a. (b) Normalized spectral amplitude of the radial
displacement at t= 15 ka after the application of a degree l= 2 harmonic load.
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and Wolf [11], mode coupling becomes more im-
portant as the viscosity contrast increases. But
beyond a factor of 100 increase in viscosity, the
changes are not as signi¢cant at this time (t= 15
ka) so that the curve for 1000 stays close to the
curve for 100. Of course, given enough time for
the mantle to relax, all the models give the same
amplitude spectrum.

Up to now, only harmonic loads have been
considered because they show quite plainly the
e¡ects of mode coupling. However, harmonic
loads are not realistic and it is not clear whether

the presence of other harmonics in a real load will
a¡ect mode coupling. Furthermore, a viscosity
contrast that extends throughout the mantle
(Fig. 2a) is also not realistic. Thus, we conclude
our discussion on mode coupling with linear
rheology by considering the more realistic case
shown in Fig. 2b. Here the angular radius of the
load and of the high viscosity root (R2 = 1022 Pa s)
is i= 15‡. The values of D considered are 0 km
(i.e. laterally homogeneous case), 420 km and
2891 km (in the latter case, the root extends to
the core^mantle boundary). Outside the high vis-

Fig. 5. Same as Fig. 4 except that the load has harmonic degree l= 5.
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cosity root, the viscosity of the mantle is R1 = 1021

Pa s. In Fig. 8, the amplitude spectrum of the
load and the surface displacements at 15 ka after
Heaviside loading are plotted. Now a positive
load induces a negative radial displacement,
thus, for comparison purposes, the spectral ampli-
tude of the load is multiplied by negative 1034

before being plotted in Fig. 8. A comparison of
this modi¢ed load spectrum (chain dash in Fig. 8)
with the radial displacement on a laterally homo-

geneous mantle (solid line) shows that they are in
phase with each other (the peaks, troughs and
zeros match each other), indicating that there is
no mode coupling. The spectral amplitudes of the
radial displacement are dependent on the viscosity
structure of the mantle and the reduction in am-
plitude at large angular degree l is due to the
presence of the lithosphere. In the presence of
lateral viscosity variations, mode coupling causes
the spectral amplitude of the displacements to get

Fig. 7. E¡ect of viscosity contrast on the normalized spectral amplitude of the radial displacements at t= 15 ka when the load
has harmonic degree l= 5. The earth model used is the same as that in Fig. 2a and has i= 45‡.

Fig. 6. The e¡ect of mode truncation on the accuracy of the solution is studied for the earth model in Fig. 2a that has i= 45‡
which is forced by a degree l= 5 harmonic load. The solid line is the actual solution, while the dashed line is computed with cou-
pling of 10 modes and the dotted line includes 16 modes.
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out of phase with the modi¢ed load spectrum.
With the high viscosity root extending down to
420 km (dotted line), Fig. 8 shows that mode
coupling (phase shift) becomes important for an-
gular degree greater than about l= 30. Below this
angular degree, the long wavelength deformations
‘see’ deeply into the mantle and thus become less
a¡ected by the shallow root. For D= 2891 km,
even the long wavelength deformations become

a¡ected ^ their amplitudes decrease due to the
high viscosity root and the phase shift at low an-
gular degree l increases. Thus, we see that mode
coupling remains important even for a disc load
over a shallow high viscosity root.

Finally, we investigate the e¡ects of nonlinear
rheology on mode coupling. The creep law in the
uniform mantle is taken to be A* = 3U10335 Pa33

s31 and n= 3 (to be consistent with the sea-level

Fig. 9. Normalized spectral amplitude of the radial displacement at t= 15 ka for a nonlinear mantle with creep parameter
A* = 3U10335 and n= 3. Three harmonic loads with degree l= 2, 5 and 9 are used.

Fig. 8. Amplitude spectrum of the load and the radial displacements at t= 15 ka for the models in Fig. 2b. The angular radius
of the disc load and the high viscosity root is i= 15‡. The high viscosity root has thickness D and the values of D considered
are D= 0 (laterally homogeneous case), 420 and 2891 km.
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curves found around Laurentia [19]). Lateral var-
iations in e¡ective viscosity are induced by the
load. The normalized spectral amplitudes are
plotted in Fig. 9. Again, the deformation only
contains components with m= 0. For harmonic
load l= 2, only components with even degrees
(lP) are nonzero. Mode coupling for degree 2 is
not very strong ^ the amplitude at degree lP= 4
is only 4% of the amplitude at l= 2, and the am-
plitude of the higher modes decreases so rapidly
that they are totally negligible for lPs 10. For odd
harmonic loads l= 5 or 9, only components with
odd degrees are nonzero. The even harmonics are
zero because the lateral viscosity is induced by the
load, which has odd harmonics. For l= 5, the
amplitude of degree lP= 7 is 10% while that for
degree lP= 3 is 5%, thus there is asymmetry of
amplitude at about l= 5. For l= 9, the coupling
increases to 12% for lP= 11 and 10% for lP= 7.
Thus we see that with nonlinear rheology, mode
coupling becomes more important as l increases.
Comparing the curves with and without the inclu-
sion of SG for the nonlinear case, it is found that
just like Fig. 3, the e¡ect of SG is signi¢cant only
at l, the harmonic degree of the load.

4. Conclusion

In this study, an axisymmetric harmonic load
with degree l is applied to a spherical, self-grav-
itating viscoelastic earth whose lateral viscosity
variation is also axisymmetric. It is found that:

1. The excitations of the toroidal and non-zonal
poloidal modes are completely negligible. This
is because the lateral viscosity variation is ax-
ially symmetric, so that only modes with m= 0
are excited. However, if the lateral viscosity
varies in the azimuth direction, it is predicted
that modes with ms 0 will be excited.

2. SG is found to have a strong e¡ect on the
amplitude of the harmonic degree l deforma-
tion, but the e¡ects of SG on the other coupled
modes are found to be small.

3. For the linear rheology model of Fig. 2a, mode
coupling is dependent on the harmonic degree
of the load l, the location of the viscosity con-

trast (angle i in Fig. 2a) and the magnitude of
the viscosity contrast. For models with small i
angles, it is important to allow for mode cou-
pling up to a larger number of harmonics than
just 10 (D’Agostino et al. [2]). This also means
a large coupling matrix in Normal Mode
theory [14]. Mode coupling remains important
for a uniform disc load over a high viscosity
root (Fig. 2b).

4. For uniform mantle with nonlinear rheology,
mode coupling is not very important for l= 2
but its e¡ect becomes important as l (the an-
gular degree of the load) increases. Further-
more, a load with even harmonics will couple
with other even harmonics and a load with odd
harmonics will couple with other odd harmon-
ics.
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