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Abstract—A new technique of temperature scaling method combined with the conventional Gibbs Ensemble
Monte Carlo simulation was used to study liquid–vapor phase equilibria of the methane–ethane (CH4-C2H6)
system. With this efficient method, a new set of united-atom Lennard-Jones potential parameters for pure
C2H6 was found to be more accurate than those of previous models in the prediction of phase equilibria. Using
the optimized potentials for liquid simulations (OPLS) potential for CH4 and the potential of this study for
C2H6, together with a simple mixing rule, we simulated the equilibrium compositions and densities of the
CH4-C2H6 mixtures with accuracy close to experiments. The simulated data are supplements to experiments,
and may cover a larger temperature–pressure–composition space than experiments. Compared with some
well-established equations of state such as Peng-Robinson equation of state (PR-EQS), the simulated results
are found to be closer to experiments, at least in some temperature and pressure ranges.Copyright © 2002
Elsevier Science Ltd

1. INTRODUCTION

Phase separation is one of the most important mechanisms
controlling many geochemical processes associated with the
chemistry and thermodynamic behavior of liquid and vapor,
such as the evolution of geothermal fluids (Nicholson, 1993),
the transportation and deposition of minerals (Seward and
Barnes, 1997), the formation and fractionating of magma
(Litvinovsky, 1993), the trapping of fluid inclusions (Roedder,
1984; Bodnar and Sterner, 1987), the formation of basin fluids
(Goldstein and Reynolds, 1994), and the cryogenic processing
of natural gas (Al-Sahhaf et al., 1983). The knowledge of phase
equilibrium is usually obtained from experimental observation.
However, experimental data available are generally discrete
and limited because of special requirements of laboratory con-
ditions and the limited time or financing of the experimenters.
To calculate thermodynamic properties under arbitrary thermo-
dynamic conditions, empirical or semitheoretical models, e.g.,
equation of state (EOS), are used to interpolate or extrapolate
data from experiments. Some well-established EOS such as the
well-known Peng-Robinson EOS (Peng and Robinson, 1976),
the EOS of Anderko and Pitzer (1993), and the EOS of Duan
et al. (1992, 1996, 2000) can reproduce data with good accu-
racy in special systems and conditions. However, most of these
models depend too much on a range of experimental data to
evaluate the parameters.

A promising approach to study phase equilibrium is com-
puter simulation based on molecular modeling. This approach
can in principle predict vapor–liquid phase equilibrium (VLE)
of a fluid system under any thermodynamic conditions, which
is a remarkable advantage over the empirical or semiempirical
models. Recently great progress of simulation has been made.
Many novel algorithms have been proposed, such as the NPT�

test particle method (Kriebel et al., 1995; Vrabec and Fischer,
1995), the Gibbs-Duhem integration method (Kofke, 1993a, b),
and Histogram Reweighting Grand Canonical Monte Carlo
(Panagiotopoulos et al., 1998; Potoff and Panagiotopoulos,
1998). However, the prediction of phase transitions is not
simple because phase transitions are actually collective phe-
nomena that often occur over time and length scales that are not
directly accessible by molecular dynamics or simple constant-
volume Monte Carlo simulations (Panagiotopoulos, 2000). The
Gibbs Ensemble Monte Carlo method (GEMC) (Panagiotopou-
los, 1987; Panagiotopoulos et al., 1988) presents a simple way
to overcome this bottleneck and is widely used in the simula-
tion of phase behaviors of different systems.

The major factor impacting the accuracy of the predicted
thermodynamic properties by molecular-level simulations is
the selection of a set of appropriate parameters of molecular
interaction potentials. This inevitably involves a large number
of simulation and fitting with the experimental data and is
time-consuming. The scaling method is found to be of signif-
icant efficiency in this process. The basic idea of this method is
to extract useful information for different thermodynamic con-
ditions in a single simulation with non-Boltzmann sampling,
which is based on the work of Valleau (1993) and was later
extended to the Gibbs ensemble by Kiyohara et al. (1996).

The purpose of this paper was to study the thermodynamic
properties of a relatively simple system using conventional
GEMC and Temperature Scaling Gibbs Ensemble Monte Carlo
(TSGE). Because TSGE can yield VLE for different tempera-
tures in a single simulation, it is used to simulate the phase
coexistence of pure system and optimize the potential param-
eters in this study. The GEMC was mainly adopted to study the
isothermal properties of the mixture system. The system meth-
ane–ethane (CH4-C2H6) was chosen for several reasons. First,
a substantial amount of experimental data is available for each
component and their mixtures. It is convenient to optimize the
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potential parameters and make a comprehensive comparison
between the simulated results and experiments. Second, as CH4

and C2H6 are the most important hydrocarbons of natural gas,
knowledge of their equilibrium properties is indispensable for
the low-temperature processing of natural gas. Third, the two
species are of considerable interest in the study of fluid-phase
equilibrium and have been extensively investigated by experi-
mental scientists.

In the next section, the simulation methods are briefly intro-
duced. The following section presents the simulation details. In
the subsequent section, the results are discussed and compared
with experimental data and those from other models. Finally,
some conclusions are drawn.

2. SIMULATION METHODS

Both of the simulation methods used in our study are de-
scribed in detail elsewhere (Kiyohara et al., 1996; Panagioto-
poulos, 1987; Panagiotopoulos et al., 1988); we summarize
only the main points.

2.1. Conventional Gibbs Ensemble Monte Carlo

The Gibbs ensemble method involves setting up two simu-
lation “boxes” (I and II), which are allowed to exchange vol-
umes and particles and stand for two phases of the system. To
simulate the equilibrium of the whole system, there are three
kinds of moves in a Monte Carlo (MC) step (cycle): (1) random
molecule displacements within each box to ensure equilibration
within each region; (2) changes in the volumes of the two
regions that result in the equality of the average pressures; and
(3) random transfers of molecules between regions that result in
the equality of the chemical potential of each component in the
two regions.

If the coordinates of particles of the system are written as rN,
the sampling distribution of Gibbs ensemble (constant NVT
version) is given by:

��rN� �
VI

NIVII
NII

NI!NII!
exp���EI � �EII� (1)

where E is the configurational energy, � is the reciprocal
temperature (� � 1/kBT, where kB is Boltzmann’s constant),
and VI and VII are the volumes of each box.

During the simulation, the conventional Metropolis method
is used (Allen and Tildesley, 1989). So the acceptance proba-
bility for either MC move from configuration j to j�1 is
expressed as min(1, Pj3j�1), where

Pj3j�1 �
��rj�1

N �

��rj
N�

(2)

The constant pressure version (NPT) GEMC is only different
with the sampling distribution, which has the following form:

��rN� �
VI

NIVII
NII

�
�

NI�!NII�!
exp���EI � �EII � �PVI � �PVII�

(3)

where P is the imposed system pressure, and NI� is the number

of molecules of species � in region I. VI and VII are independent
in this case.

2.2. Temperature Scaling Gibbs Ensemble Monte Carlo

In conventional GEMC, the thermodynamic average of any
property X at �i is

�X��i �

� X�rN���rN; �i�drN

� ��rN; �i�drN

(4)

When a non-Boltzmann sampling distribution �(rN) is intro-
duced, the average is determined from

�X��i �

���rN� X�rN�
��rN; �i�

��rN�
drN

���rN�
��rN; �i�

��rN�
drN

�

�X�rN�
��rN;�i�

��rN�
�

��rN�

���rN;�i�

��rN�
�

��rN�

(5)

where the � ��(rN) brackets above indicate an average overall
configurations sampled with distribution �(rN).

�(rN) is selected to be a linear combination of the conven-
tional GEMC sampling distributions (Valleau, 1993), that is

��rN� � �
i

W�i��rN; �i� (6)

Metropolis sampling algorithm with the same three Monte
Carlo moves as GEMC is also used in TSGE. The acceptance
probability for either MC move in TSGE from configuration j
to j � 1 is:

Pj3j�1 � min�1,
��rj�1

N �

��rj
N� � (7)

As �(rN) should sample configurations relevant to all the
configurations with equal frequency, the weights of thermody-
namic states �i and �j should satisfy the following equation:

W�j

W�i

�

���rN; �i�

��rN�
�

��rN�

���rN; �j�

��rN�
�

��rN�

(8)

Eqns. 6 and 8 suggest that to get an appropriate set of
weights, a process of iteration can be carried out, which will be
introduced in detail in the next section.

Once the weights of Eqn. 6 have been determined, a prop-
agation of the Markov chain is followed, which is the same as
conventional GEMC except for the calculation of the sampling
distribution. At the end of each simulation, the equilibrium
density or composition can be calculated by Eqn. 5.
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3. SIMULATION DETAILS

3.1. Potential Models

The Lennard-Jones (LJ) 12-6 potential was adopted in this
study because of its simplicity and predictability for pure
systems and for supercritical mixtures. The potential has the
form:

u�rij� � 4�ij���ij

rij
� 12

� ��ij

rij
� 6� , (9)

where u is the potential energy between units (molecules or
pseudoatoms) i and j, and rij, �ij, �ij are the separation, energy,
and size parameter, respectively.

To describe the intermolecular interactions, we used differ-
ent approaches for CH4 and C2H6 molecules. The CH4 mole-
cule was approximated as a united atom with only one LJ term
at the center of the carbon atom. This approach is not appro-
priate for the C2H6 molecule, which is instead modeled as a
two-center molecule with a special elongation. The intermolec-
ular interaction unit is the methyl group (CH3-). So the poten-
tial between two C2H6 molecules can be calculated by

uij � �
�,��1

2

u�ri�j�� (10)

where � is the identity (1 or 2) of the interaction units in
molecule i and � is that of another molecule j.

In this study, two methyl groups in a C2H6 molecule were
connected by a bond with a fixed length (i.e., without fluctua-
tion), so the intramolecular potential within a C2H6 molecule
could be omitted.

For binary mixture parameters, the Lorentz-Berthelot com-
bining rule was used:

�ij � k1,ij	�i�j (11)

�ij � k2,ij��i 	 �j�/ 2 (12)

k1,ij and k2,ij are the mixing coefficients for the combining rule.
As described above, there are two LJ parameters �ij, �ij and

an additional parameter, bond length, for C2H6. The simulation
results are sensitive to the selection of these parameters. A
number of parameters have been published by earlier workers,
e.g., those by Fischer et al. (1984), the popular OPLS potential
model by Jorgensen et al. (1984), and TraPPE (transferable
potentials for phase equilibria) force field by Martin and Siep-
mann (1998).

As shown in Table 1, we adopted OPLS for CH4 in this
study, because our computer program with the OPLS parame-
ters of CH4 could generate sufficiently accurate results. Among

the previous models for C2H6, TraPPE (Martin and Siepmann,
1998) generally yields the most accurate results, but it cannot
yield saturated vapor densities with sufficient accuracy. There-
fore, we tried to improve the ability of prediction for vapor-
saturated densities while maintaining its excellent predictability
for liquid densities in this study. In principle, we must perform
a lot of simulations and search over the parameter space to look
for a better fit to the experimental data. For the sake of effi-
ciency, our search started from the model parameters of
TraPPE.

As described in the paper of Jorgensen et al. (1984), for a
two-center molecule there is some compensation relation be-
tween � and bond length. Following the method adopted by
Fischer et al. (1984), we fixed the ratio L, L � lbond/�. In this
study L was selected to be that of TraPPE (0.4107).

We performed simulations with parameters of TraPPE using
the TSGE method and obtained the equilibrium liquid and
vapor densities of C2H6, some of which are listed in Table 2.
We reduced these densities and temperatures with parameters
of TraPPE as:

T* � kBT/� (13)


* � 
�3 (14)

At the same time, we calculated the simulated reduced crit-
ical properties: T*c � 3.097, 
*c � 0.2181. The experimental
data were then reduced with new values of � and � according
to Eqns. 13 and 14. � � 98.59 K, � � 3.747 Å are obtained by
minimizing the deviation between the reduced experimental
data and the fitted curve of the simulation points (including
subcritical densities and critical point). So the new bond length
is, lbond � L * � � 1.539Å.

Table 1. Parameters of different potential models.

Interaction
Unit

Fischer OPLS TraPPE This study

�/kB(K) �(Å) L �/kB(K) �(Å) L �/kB(K) �(Å) L �/kB(K) �(Å) L

CH4 149.92 3.7327 — 147.9 3.73 — 148 3.73 — 147.9 3.73 —
CH3

(C2H6)
139.81 3.512 0.67 104.1 3.775 0.4053 98 3.75 0.4107 98.59 3.747 0.4107

Table 2. Part of simulation results of C2H6 with the parameters of
TraPPE.

T(K)

Density of liquid
(kg/m3)

Density of vapor
(kg/m3)

Exp.a TraPPE Exp.a TraPPE

293 339.93 335.4 85.922 90.579
273 400.92 393.6 46.077 52.108
258 432.94 423.1 29.923 35.645
238 468.36 460.6 16.434 22.682
208 513.12 506.8 5.782 8.216
168 564.31 560.3 0.822 1.094

a Smoothed experimental data of Friend et al. (1991).
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3.2. Gibbs Ensemble Simulation

At first, the initial conditions for the two simulation boxes
were set up independently. The coordinates of the CH4 and
C2H6 particles were initiated from the face-centered cubic
lattice structure. Some (about twice as many as total number of
molecules) random exchanges of initial positions of different
components were helpful in reducing equilibrium time. The
orientations of C2H6 molecules were initially set to be parallel
to the z-axis of the Cartesian coordinate system. The total
molecule number of the two boxes was 512 in our simulations.
There was little difference in the results if we increase the
number to 1000.

In the following process, three MC moves (mentioned
above) were used to sample phase space, and there were two
kinds of molecule displacement for C2H6: translations and
rotations. We used the method suggested by Jansoone (1974) to
change the orientation of a C2H6 molecule. Each Monte Carlo
step (cycle) constituted by these MC moves consists of 3 to 5
times the total number of molecules of attempted displacements
(with equal probability of translation and rotation), 1 to 2
attempted volume changes, and 50 to 200 attempted inter-
changes. The maximum displacement of translations, rotations,
and volume moves was adjusted at the end of every 10 steps to
yield acceptance rates of 50%. Whether or not the system has
reached equilibrium is judged by monitoring the densities (or
configuration energy) of the two phases vs. simulation steps
(e.g., Fig. 1). If the densities (or configuration energy) fluctuate
around certain values, the system is considered as reaching
equilibrium. The total number of steps in a simulation was
usually 6000 to 8000, with �2000 to 3000 cycles of preequi-
librium and 4000 to 5000 steps of data collection. However, the
successful interchanges decrease dramatically with lowering
temperatures. Therefore, more running cycles were needed for
low temperatures.

The cutoff distance for intermolecular interactions was set to
be half of the box length. If the distance between any two
interaction units was less than 0.8 * �, the configuration would
be immediately rejected. The long-range corrections ULRC and
PLRC were added to the configuration energy and internal
pressure (Allen and Tildesley, 1989):

ULRC �
16�

V �
i

N �
i	j

N

ninj�ij�ij
3�1

9 � �ij

rcut
� 9

�
1

3 � �ij

rcut
� 3� (15)

PLRC �
32�

V2 �
i

N �
i	j

N

ninj�ij�ij
3�2

9 � �ij

rcut
� 9

�
1

3 � �ij

rcut
� 3� (16)

where i and j are identities of two interacting molecules, N is
the total number of molecules in the simulation box, so Eqns.
15 and 16 are the summations of all pair-interactions in the box.
V is the volume of the box, rcut is the cutoff distance, n is the
number of interaction centers of a specific molecule. For CH4,
n � 1, whereas for C2H6, n � 2.

3.3. Temperature Scaling Gibbs Ensemble Simulation

In TSGE simulations, it is crucial to get an appropriate set of
weights to achieve good sampling. So an iteration process of
Eqns. 6 and 8 was adopted. First, all of the sampling weights
were set to be 1.0. Then a short simulation (4000 to 6000 steps)
with the sampling distribution derived from Eqn. 6 was per-
formed. Instantaneous (every 10 steps or so) and average values

Fig. 1. The density change during a GEMC simulation for C2H6 at
258 K.

Fig. 2. An example of sampling in the course of the exploratory
simulations of weights in a TSGE simulation (in the temperature range
from 270 K to 280 K): (a) poor sampling; (b) good sampling.
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of density in the two phases were plotted in one graph. From
this graph, we can tell whether or not the thermodynamic states
of the whole temperature range (e.g., 270 to 280 K in Fig. 2)
have been sampled well. If the small dots (which stand for
instantaneous density values) are distributed uniformly around
the average values of the whole temperature range, the average
values are calculated from a good sampling. If not, the ther-
modynamic states under some temperatures are poorly sampled
and thus the calculated average values are unreliable. In this
step, usually the states of lower temperatures were sampled
well whereas those of high temperatures were not, as shown in
Figure 2a. Then the weights of those thermodynamic states that
were well sampled were changed with Eqn. 8. In the next
simulation, the new weights were adopted and this process was
repeated with increased number of steps (5000 to 8000 steps) to
sample a wider range of states. This process continues until a
set of weights of Eqn. 6 is determined that sufficiently explores
all relevant configurations, as illustrated in Figure 2b.

In principle, we should iterate the weights many times until
they are convergent to obtain a perfectly uniform sampling.
However, from Eqn. 5, the average value of a thermodynamic
property X is irrelevant to the sampling distribution in theory.
In practice, a sampling that has visited each of the thermody-
namic states with sufficient frequency is enough, and strict
uniformity of sampling is quite unnecessary. Usually, after all
of the thermodynamic states are sampled with adequate fre-
quency, 2 to 3 times more iterations are enough to get an
appropriate set of weights. If the temperature range is wide,
more iterations are needed. In this case, it is useful to divide the
whole range into several subranges.

In the process of searching for the weights of �(rN), it is
useful to discuss the relationship between weights W�i

and the
potential (excess) parts of Helmholtz free energy A�i

ex because in
canonical ensemble,

exp��jA�j

ex�

exp��iA�i

ex�
�

� drN��rN;�i�

� drN��rN;�j

�

� drN��rN�
��rN;�i�

��rN�

� drN��rN�
��rN;�j�

��rN�

�

���rN;�i�

��rN�
�

��rN�

���rN;�j�

��rN�
�

��rN�

(17)

From Eqns. 17 and 8, we get

W�i � C exp��iA�i

ex� (18)

where C is a constant.
As A�i

ex is usually a smooth function of temperature, so in
practice we can fit the weights for the well-sampled regions
with the form:

W�i � C exp� f��i�� (19)

where f(�i) is usually a polynomial function of temperature.
Eqn. 19 is also valid in other ensembles. With this function, we
can predict the weights for the regions not sampled well. In this

way the exploratory simulations for weights can be signifi-
cantly shortened.

In this study we tried to cover most of the liquid–vapor phase
transition temperature ranges of pure systems and divided these
ranges into 4 to 6 subranges. In the vicinity of critical points,
the subtemperature ranges of TSGE were narrower, usually 10
to 15 K.

Table 3 presents an example of TSGE simulation of C2H6 in
a region of 270 to 280 K. As discussed above, the logarithms of
weights ln(W�i

) vs. temperature differences 
T � T � Tmin

were plotted in Figure 3. Actually, we could find a good linear
relationship between these two quantities, with the form:

ln�W�i� � �0.0222�
T�2 	 2.3211
T 	 0.0003 (20)

With this set of weights, in the following process of �9000
steps of propagating the Markov chain, instantaneous values
inside the brackets of numerator and denominator of Eqn. 5 for
the densities of two phases were summed up. With Eqn. 5 the
densities of two phases under different temperatures could be
calculated, which were also listed in Table 3. The simulated
results are consistent with the corresponding results of GEMC.

The TSGE method shows its advantage of significant effi-
ciency over conventional GEMC when a large number of
thermodynamic states at different temperatures are interested.
When a few points of different temperatures or isotherm be-
haviors are interested, GEMC simulation would be preferable.

Table 3. An example of Temperature Scaling Gibbs Ensemble
simulation.

Temperature
(K) Weights

Densities

Liquid
(kg/m3)

Vapor
(kg/m3)

280.0 28037606 371.97 58.04
278.0 501668 378.51 55.22
276.0 7562 385.09 52.50
274.0 95 391.73 49.80
272.0 1 398.30 46.96

Fig. 3. The relationship between weights and temperature inter-
vals.
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So in this study, we used TSGE to study the phase behavior of
pure systems under a number of subcritical temperatures,
whereas GEMC was adopted to simulate the isotherm phase
behavior of mixtures.

4. RESULTS AND DISCUSSION

4.1. Pure Systems

The liquid–vapor equilibrium densities and the latent heats
of CH4 simulated in this study are partially listed in Table 4. It
can be seen that the experimental data (Setzmann and Wagner,
1991) are approximately within the uncertainty of the simula-
tion results. As for the saturated liquid densities, the largest
error is less than 1.1%, which is a remarkable accuracy. For
saturated vapor densities the relative errors are a little larger,
the maximum of which is �7.1%. The average deviation of
simulated latent heat from experiments is less than 1.2% except
in the vicinity region of critical point, where the largest relative
error was �5.8%. The comparisons are more evident in Figure
4.

Figure 5 shows the simulated and experimental coexistence
line of C2H6. The simulations have virtually generated the same
results as experiments (Friend et al., 1991). To draw a com-
parison between the results obtained with different models, the

simulated equilibrium liquid densities, vapor densities, and
latent heats are presented in Figures 6, 7, and 8, respectively.
The simulations of this study are found to have the same
accuracy with TraPPE for liquid, but are more precise for vapor
and latent heat. The simulated results with Fischer et al. (1984)
are in good agreement with experiments only in the region
below 240 K and OPLS below 210 K.

With the simulated results, we can calculate the critical
properties of CH4 and C2H6 by fitting the simulated data with
the following equations:


l � 
v � B�T � Tc�
� (21)


l 	 
v

2
� 
c 	 A�T � Tc� (22)

where 
l and 
v are the densities of saturated liquid and vapor,
respectively. A and B are fitting constants.

In this research, � was selected to be 0.33. It is usually
reasonable to select any value between 0.32 and 0.34 for
nonionic fluids.

The critical points of different models listed in Table 5 are all
calculated with our own program, and the results with other
models are found to agree with the original publications. Ob-
viously, the critical properties of CH4 using OPLS and C2H6

Table 4. Simulated CH4 saturated densities and latent heats vs. experimental data.

T(K)

Density of liquid (kg/m3) Density of vapor (kg/m3) Latent heat (KJ/mol)

Exp.a Simulated Exp.a Simulated Exp.a Simulated

180 276.23 279.24(5.93)b 61.375 57.944(4.182) 3.9607 4.189(.2043)
165 324.10 326.27(3.97) 31.448 31.344(2.417) 5.5847 5.647(.0483)
150 357.90 355.55(3.59) 16.328 17.310(1.339) 6.6190 6.558(.0581)
140 376.87 372.75(2.89) 10.152 9.427(.443) 7.1413 7.071(.0466)
120 409.90 407.69(2.469) 3.262 3.390(.152) 7.9350 7.930(.0597)

a Smoothed experimental data by an equation of state of Setzmann and Wagner (1991).
b The numbers in the parentheses are the uncertainties in the simulation. For example, 3.390(.152) means 3.390 � 0.152.

Fig. 4. Comparison of experimental liquid–vapor phase equilibria of
CH4 with the simulated results of this study. The solid line represents
smoothed experimental data from Setzmann and Wagner (1991), and
the dashed line is the extrapolation from experiment.

Fig. 5. Comparison of experimental liquid–vapor phase equilibria of
C2H6 with the simulated results of this study. The solid line represents
smoothed experimental data from Friend et al. (1991), and the dashed
line is the extrapolation from experiment.
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using parameters of this study and TraPPE are very well
predicted, whereas those predicted by OPLS and Fischer for
C2H6 have a distinct deviation from experimental data (Friend
et al., 1991).

It is useful to have a more detailed discussion of Figure 8.
Even though the largest error is less than 10% when the
parameters of TraPPE and the parameters of this study are used,
the deviations are noticeable in the region of low temperatures.
It is interesting that the results using OPLS and Fischer show
opposite trends with temperature. The curves of different mod-
els in Figure 8 are approximately parallel with each other. It is
possible that the three-parameter united-atom potential model
cannot predict all of the quantities, such as the coexistence line
and energy, with very good agreement with experiments simul-
taneously.

4.2. Mixtures

Möller et al. (1992) have presented a set of binary mixture
parameters for the CH4-C2H6 system from a number of com-

plex calculations. According to their study, the mixing coeffi-
cients in Eqns. 11 and 12 are: k1,ij � 1.0009, k2,ij � 1.0025. In
fact, with the analyses of our simulation results, coefficients
with so little deviation from 1.0 almost do not affect the results
because the error from the simulation noise is probably larger
than this effect. In this study, both of the mixing coefficients
were set to be 1.0.

The results listed in Table 6 are part of our simulated results,
which cover a wide range of thermodynamic conditions. The
numbers in parentheses are statistical standard deviation when
each run is divided into 10 blocks discarding the preequilibrium
cycles. Figure 9 displays the comparison of the simulated
equilibrium composition with the corresponding experimental
data (180 K from Miller et al., 1977; 210 K from Wei et al.,
1995; 250 K from Davalos et al., 1976; 280 K from Gupta et
al., 1980). It is satisfying that the largest deviation is less than
0.05 in mole fraction.

Figure 10 shows equilibrium compositions generated by our
simulations and the predictions of the well-known EOS of Peng
and Robinson (1976). Both sets of results are compared with
experimental data (Gupta et al., 1980). It is found that simula-
tions can yield a little more accurate data than PR-EOS. Figure
11 compares the simulated densities with the data extrapolated
from those of Bloomer et al. (1953), showing that the equilib-
rium densities of the mixtures are well predicted.

Fig. 6. Comparison of different models in the prediction of C2H6

liquid densities at equilibrium.

Fig. 7. Comparison of different models in the prediction of C2H6

vapor densities at equilibrium.

Fig. 8. The latent heat of C2H6: different models vs. experimental
data (Friend et al., 1991).

Table 5. The simulated critical points of different models.

Species Models/Exp. Tc(K)

c

(kg/m3)

CH4 Exp.a 190.56 162.66
This study (OPLS) 192.00 161.58

C2H6 Exp.b 305.33 206.58
Fischer 316.42 196.58
OPLS 325.45 196.43
TraPPE 303.35 206.17
This study 304.71 206.28

a Extrapolated from experiment by Setzmann and Wagner (1991).
b Extrapolated from experiment by Friend et al. (1991).
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5. CONCLUSION

The temperature scaling method combined with Gibbs En-
semble Monte Carlo was used to study the vapor–liquid equi-
librium properties of CH4 and C2H6. With the efficient TSGE,
a new set of potential parameters for C2H6 was presented.
Compared with previous potential parameters, the parameters
of this study generally yield better results than those of Fischer

et al. (1984) and OPLS (Jorgensen et al., 1984) in phase
coexistence and have equivalent accuracy to TraPPE (Martin
and Siepmann, 1998) in saturated liquid densities. However,
this study has improved the abilities of predicting vapor prop-
erties and critical point in comparison to TraPPE. On the basis
of the study of pure systems, we performed GEMC simulations
for the phase equilibria of the CH4-C2H6 system. Comparison
of the simulated results with experimental data indicates that

Table 6. Simulated phase equilibrium results in the system CH4-C2H6.

T(K) P(bar) xCH4
1 xCH4

v v1 (cm3/mol) vv (cm3/mol)

160.0 5.98 .340(.011) .943(.013) 49.0(.22) 2048.5(56.60)
160.0 7.93 .443(.004) .937(.017) 48.0(.36) 1532.5(32.91)
160.0 9.93 .597(.003) .969(.007) 47.0(.24) 1209.1(64.18)
160.0 13.38 .865(.002) .985(.001) 47.3(.37) 805.7(36.51)
180.0 15.67 .519(.004) .932(.013) 51.1(.19) 774.8(55.88)
180.0 21.28 .662(.004) .968(.006) 50.6(.34) 545.6(13.12)
180.0 24.82 .834(.005) .980(.003) 51.7(.77) 441.3(16.06)
180.0 28.28 .912(.002) .986(.001) 53.3(.68) 368.8(17.35)
210.0 16.00 .198(.009) .750(.010) 58.4(0.30) 955.6(30.58)
210.0 26.50 .408(.005) .840(.019) 57.5(0.55) 513.1(18.32)
210.0 38.50 .625(.017) .915(.010) 60.5(1.07) 326.0(19.43)
210.0 52.00 .770(.010) .924(.015) 63.5(1.10) 200.6(30.78)
230.0 33.64 .334(.018) .738(.013) 62.7(0.46) 426.8(27.57)
230.0 43.59 .446(.012) .767(.019) 63.7(0.65) 294.3(15.40)
230.0 51.15 .572(.005) .811(.013) 66.9(1.01) 241.4(11.17)
230.0 60.85 .675(.008) .806(.039) 70.2(1.33) 137.1(30.60)
250.0 55.93 .410(.037) .655(.017) 75.3(5.41) 226.3(12.24)
250.0 66.57 .529(.012) .653(.021) 79.9(4.15) 146.3(16.73)
260.0 19.13 .022(.001) .080(.002) 74.0(1.24) 894.8(5.40)
260.0 21.89 .047(.004) .189(.006) 71.9(1.31) 777.9(23.45)
260.0 35.15 .170(.020) .421(.013) 74.6(0.92) 461.4(10.43)
260.0 41.13 .221(.012) .470(.014) 76.5(1.73) 376.6(10.9)
260.0 50.97 .289(.018) .538(.030) 75.6(3.52) 283.1(9.49)
260.0 55.91 .368(.009) .596(.030) 79.7(4.80) 249.8(32.9)
260.0 60.19 .388(.019) .585(.025) 80.9(5.79) 206.3(19.93)
280.0 40.38 .104(.011) .255(.009) 82.0(1.45) 404.8(17.78)
280.0 47.12 .161(.021) .300(.010) 91.3(5.22) 307.4(15.17)
280.0 50.41 .171(.010) .327(.011) 90.4(2.58) 287.9(17.75)
280.0 60.87 .267(.013) .384(.014) 100.8(7.20) 199.3(8.21)
280.0 61.31 .280(.011) .355(.021) 106.9(9.84) 181.7(9.56)

The numbers in parentheses are the uncertainties in the simulation. For example, .980(.003) means 0.980 � 0.003.

Fig. 9. Liquid–vapor phase equilibria of the mixture system CH4-
C2H6. Experimental data at 180 K are from Miller et al. (1977), 210 K
from Wei et al. (1995), 250 K from Davalos et al. (1976), 280 K from
Gupta et al. (1980).

Fig. 10. Equilibrium compositions of the CH4-C2H6 at 280 K.
Comparison of our simulated results with the experimental data (Gupta
et al., 1980) and the prediction of PR-EOS (Peng and Robinson, 1976).
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the equilibrium compositions and densities have been well
predicted with accuracy close to experiments.
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