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SUMMARY

We propose a model for the elastodynamical component of frictional interaction
between two rough surfaces in contact. We consider the antiplane geometry and obtain
the exact solution for stress within the contact of two asperities as a function of time,
which includes elastic waves. The dynamical reaction of the elastic medium surrounding
the asperity combined with a limited strength of the contact (characterized in the model
by a modified Irwin’s criterion), result in a velocity weakening friction. The origin of
velocity weakening is explained by the form of the stress in the asperity as a function
of time. The friction law is not imposed in the model but is obtained as the ensemble
average of the frictional stress over a population of asperities. Numerical evaluation of
such effective friction laws over four decades of variation of the slip velocity V leads to a
1/V-type velocity weakening friction.
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INTRODUCT ION

The frictional force is a product of a number of various

physical phenomena that take place at the interface of sliding

surfaces (Kragelsky 1965). However, in the first approximation

it is possible to describe friction in terms of a simple relationship

between the normal stress s and the shear stress t: t=ms, where
m is the coefficient of friction. Friction is known to depend

on the state of surfaces (their roughness, material properties,

presence of a lubricant, etc.), as well as on the conditions of the

experiment, in particular on the slip velocity. A more realistic

description should therefore include a dependency of friction

on the velocity m(V), which is usually termed the friction law.

The simplest example is the classical Coulomb’s friction law,

in which the coefficient m takes only two values: one for zero

velocity (static friction ms) and another for all non-zero velocities

(kinematic friction mk, which is always smaller than ms). In the

case of non-stationary sliding, more sophisticated empirical

friction laws were suggested, which take into account the pre-

vious evolution of slip and introduce the ‘memory effect’ by

means of so-called state variables (Dieterich 1978; Ruina 1983).

The velocity dependence of friction is of particular interest,

since the decrease of the frictional resistance with the slip rate,

called velocity weakening, is one of the parameters controlling

the stability of sliding (Ruina 1983). Under certain conditions,

in particular when the loading stiffness is small enough, velocity

weakening friction may result in unstable stick–slip motion,

which is often referred to as the physical analogue of the

recurrence of earthquakes on a seismic fault (Dieterich 1972). The

origin of the velocity weakening friction is still not fully under-

stood, and a number of models were suggested that attribute it

to different physical mechanisms (Dieterich 1979).

One of the possible explanations of velocity weakening is

based on so-called contact strengthening. This effect consists in

increasing shear resistance of the contact between the rough

surfaces with duration of the static contact. It was observed for

a variety of materials such as steel (Kragelsky 1965), granite

(Dieterich 1972), PMMA (Berthoud & Baumberger 1998) and

for contact durations ranging form 1 s to dozens of hours, that

static friction was increasing with time approximately as log t.

If we assume now that the same kind of strengthening occurs

during the lifetime of an individual contact while the surfaces

are sliding, this effect can lead to a velocity weakening friction.

This can be illustrated in the following way: the lifetime of a

contact tc is inversely proportional to the slip velocity tc=d/V,

where d is some characteristic distance d (of the order of the size

of an asperity). Hence the higher the slip velocity V, the shorter

the average lifetime of contacts, and consequently the smaller

the average contact resistance that contributes to the friction.

The basic underlying physical mechanism of this ageing effect

is the inelastic flow in the tips of asperities, which leads both to

increasing the contact area and to formation of new contacts

(Kragelsky 1965). This implies that the contribution of this

mechanism to velocity weakening may be important only at

low slip velocities: an ‘order-of-magnitude’ estimation taking

d=10 mm (a typical value for rough surfaces used in friction

tests) and tc=1 s [for shorter contact durations no significant

strengthening was observed in an ageing test with Westerly

granite (Dieterich 1972)] gives V=10 mm sx1. This value is

within the range of typical velocities of laboratory friction tests

(Kilgore et al. 1993); however, it is orders of magnitude below

the slip velocities that can occur in a fault during seismic

rupture (Heaton 1990). Thus the contact ageing mechanism of

velocity weakening may play its destabilizing role during the
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nucleation of the seismic rupture, but not during its dynamical

propagation.

Few experimental data are available on friction of rock at

relatively high slip velocities, which is mainly caused by tech-

nical limitations on such laboratory measurements. Thus the

friction laws used in both discrete (Burridge & Knopoff 1967;

Carlson & Langer 1989) and continuous (Rice 1993; Cochard

& Madariaga 1996) models of seismic faults are ‘extrapolated’

to high slip velocities, implicitly assuming that they show the

same kind of velocity weakening behaviour as that observed

experimentally at low velocities. Another important difference

between the friction laws obtained from laboratory experiments

and those used in models of seismic faults, are the dimensions

of the corresponding physical system. In the former case the

size of samples is typically a few centimetres, whereas in the

latter case a fault may be as long as dozens of kilometres. Thus

another important assumption of dynamical models of seismic

faults is that such a scale transformation preserves the form

of velocity weakening friction laws. The problem of correct

re-scaling of friction laws measured in laboratory tests to the

slip velocities of earthquake rupture and to the scales of seismic

faults, remains essentially unresolved.

In this paper we propose to follow the approach that con-

sists in relating microscale behaviour of elementary contacts

between rough surfaces to their macroscopic characteristics, in

particular to the friction law, by means of an ensemble average.

The constitutive relation for the frictional interface obtained

through this procedure is not based on any a priori hypothesis

on the form of the friction law and can be re-scaled taking into

account the distribution functions of microscopic parameters

of the model.

We propose a model that describes the dynamical frictional

interaction of two rough surfaces. It is highly simplified in that

the only physical mechanisms that are taken into account are

the dynamical reaction of the elastic medium surrounding an

asperity, and the limited strength of the contact between two

asperities. We consider the antiplane geometry and obtain an

explicit solution for stress on asperity as a function of time. The

model predicts a velocity weakening friction law, the origin of

which can be explained by the form of the stress in the asperity

as a function of time.

THE MODEL

We set the problem in the antiplane geometry (Fig. 1), which

means that all the tractions are directed along the y axis and are

constant along this direction. The unique displacement com-

ponent uy defines the two non-zero components of the stress

tensor

qyx ¼ Luy=Lx , qyz ¼ Luy=Lz , (1)

thus allowing us to consider only shear waves in this geometry.

Consider two elastic half-spaces with rough surfaces separated

by an interface zone within which contacts between asperities

may form during a relative motion of the half-spaces in the y

direction. A contact of two asperities is assumed to fix together

two adjacent parts of the interface (interval [x1, x2] in Fig. 1),

and thus transmit tractions between the two surfaces. This is

the central assumption of the model that simplifies the boundary

conditions and reduces the problem to that of the dynamical

loading of a plane interface, while the rough topography is

assumed to determine the locations of contacts and their strength.

The validity of this assumption depends on the properties of

the topography: such representation of the contact of rough

surfaces is reasonable if their topography can be approximated

by small perturbations with respect to the reference plane.

Dynamical loading of a single asperity

In this section we consider the problem of dynamical loading of

a single asperity owing to the relative motion of the half-spaces.

Consider two half-spaces moving at a constant speed V relative

to one another in the antiplane direction, as shown in Fig. 1. At

time t=0, parts of the free surfaces of the half-spaces within the

interval x1jxjx2 are fixed together (this interval is referred to

as contact hereafter), while outside this interval the surfaces

remain free. This configuration is assumed to represent in the

model the formation of a contact caused by the collision of two

asperities. In the mobile reference in which both half-spaces move

with the same absolute velocity V/2 in opposite directions, the

fixed part of the interface remains at rest owing to the sym-

metry of the problem with respect to the plane z=0. Therefore,

in the initial reference associated with the lower half-space,

the boundary condition is equivalent to a traction with the

constant rate of displacement V/2 applied inside the asperity.

Thus the following boundary conditions are applied to the

lower half-space at z=0:

* _uy ¼ V=2 x1ƒxƒx2

Ty ¼ qyznz ¼ 0 x < x1 and x > x2 ,

(
(2)

where Ty is the surface traction in the y direction and nz is

the normal to the interface (hereafter we shall omit coordinate

subscripts and use the notation u=uy, T=Ty and t=tyz).

At time t=0 when the contact between the asperities is

formed, the problem can be seen in an alternate way as that of

an infinite elastic medium containing two semi-infinite anti-

plane cracks at z=0, as shown in Fig. 2. The boundary con-

ditions Du̇=constant inside the asperity and T=0 outside, do

not correspond to those usually considered for crack problems,

namely the traction T prescribed on crack, and zero displace-

ment discontinuity Du=0 in the intact medium. However, we

can construct the dynamic solution for stress inside the asperity

as a combination of solutions of the two following crack

problems. First consider an instantaneous laterally uniform

X

Y

Z

X1 X2

Figure 1. The antiplane geometry of the model. The interval [x1, x2]

mimics the asperity, which fixes together the adjacent parts of the two

elastic half-spaces.
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dislocation on the surface of a half-space

* _u ¼ VHðtÞ , �? < x < ? , (3)

where H(ṡ) is the Heaviside function and V is the dislocation

velocity. Such dislocation produces the traction on z=0

TðtÞ ¼ � k
2b

* _u ¼ �ZVHðtÞ , �? < x < ? , (4)

where Z=m/2b is the elastic impedance of the medium and b is

the shear wave velocity. In the following we set Z=1 without

loss of generality for our purposes.

The second problem used in our construction is that of two

semi-infinite cracks instantly loaded with constant tractions:

T ¼ VHðtÞ x < x1 and x > x2

* _u ¼ 0 x1ƒxƒx2 :

(
(5)

If we now superpose the boundary conditions of these two

problems, we see that outside the asperity the tractions are

cancelled (free surface condition), and that the asperity is loaded

by a dislocation with constant rate of displacement. Thus we

find the boundary conditions of our initial problem in which the

stress in the asperity is due to: (i) the instantaneous dislocation

Du̇=VH(t) and (ii) the wavefield created by discontinuities of

traction at the edges of the asperity.

Let us now obtain the solution of the problem (5). It can

be obtained as a superposition of solutions for two antiplane

cracks and for the uniform dislocation. The stress produced

by one semi-infinite crack occupying the interval (x?, x1) is

given by the following integral (Kostrov 1966):

qLðx, tÞ ¼ 1

n
ffiffiffiffiffiffiffiffiffiffiffiffi
x�x1

p
ðx1

x�t

TLðm, t�x þ mÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
x1�m

p

x�m
dm , x>x1 :

(6)

Similarly, for the crack extending over (x2, ?),

qRðx, tÞ ¼ 1

n
ffiffiffiffiffiffiffiffiffiffiffiffi
x2�x

p
ðx2

xþt

TRðm, t þ x�mÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
m�x2

p

x�m
dm , x<x2 ,

(7)

where T(x, t) is the distribution of traction on crack for ti0,

and subscripts L and R refer to the left and to the right crack,

respectively. We introduce the following notation:

qLðx, tÞ ¼ KL

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � x1

p , qRðx, tÞ ¼ KR

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x

p , (8)

and calculate the integrals KL and KR with

TLðx, tÞ ¼ VHðtÞHðx1 � xÞ ,

and

TRðx, tÞ ¼ VHðtÞHðx � x2Þ : (9)

The result is (see the Appendix for details of the calculation)

KLðt, xÞ ¼2VHðt � x þ x1Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t þ x1 � x
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � x1

p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t þ x1 � x

x � x1

r �
, x > x1 , (10)

and

KRðt, xÞ ¼2VHðt þ x � x2Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t þ x � x2

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x

p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t þ x � x2

x2 � x

r �
, x < x2 : (11)

The solution for stress obtained by simple superposition

qðx, tÞ ¼Hðx � x1ÞHðx2 � xÞ½qLðx, tÞHðt � x þ x1Þ

þ qRðx, tÞHðt þ x � x2Þ� (12)

does not take into account the reflections of waves at the

asperity boundaries, and hence is only valid in the region of the

space–time plane shown in grey in Fig. 3. Thus, the complete

solution for the dynamical stress in an asperity instantly loaded

with a constant rate displacement V is

qðx, tÞ ¼V

�
1

2
þ Hðt � x þ x1Þ

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � x1

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t þ x1 � x
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � x1

p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t þ x1 � x

x � x1

r �

þ Hðt þ x � x2Þ
n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t þ x � x2

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x

p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t þ x � x2

x2 � x

r ��
, x1 < x < x2 ,

(13)

crack 1 crack 2

X1 X2

Z

X

Figure 2. An equivalent representation of the asperity as two semi-

infinite cracks in the elastic material extending over [x?, x1] and

[x2, ?].

O
L R

L+R

x

t

x11 x12

(x0,t0)

L R
Figure 3. Space–time domain of calculation of the stress in the

asperity at a given observation point (x0, t0). The contributions to

the dynamical stress field from the left (L) and right (R) edges of the

asperity propagate with the speed of elastic waves. The grey region

delimits the domain of validity of eq. (13).

Elastodynamical mechanism of rate-dependent friction 501

# 2002 RAS, GJI 148, 499–505



assuming that the observation point (x0, t0) is located within

the grey region in Fig. 3. The stress field given by this solution

as a function of time and of space coordinate is shown in Fig. 4.

It shows an instantaneous jump at t=0 due to the ‘collision’ of

asperities (dislocation effect) and 1=
ffiffiffi
x

p
-type singularities (stress

concentrations) at the edges of the asperity, in accordance with

the ideally elastic continuous medium theory.

By taking the integral of stress t(x, t) over x at a fixed time t

we obtain the force exerted by the asperity

FðtÞ ¼
ðx2

x1

qðx, tÞ dx , (14)

which can be seen as the instantaneous contribution of the

asperity to friction.

In order to complete the formulation of our friction model

we shall now set the fracture criterion and calculate the average

frictional resistance of a single asperity.

Fracture criterion

The conditions under which fracture occurs in brittle elastic

solids are generally described in terms of a specific fracture

criterion. The most widely accepted are Griffith’s and Irwin’s

criteria (Freund 1989). Griffith’s criterion is based on the energy

balance of a crack, and hence characterizes the state of the

crack globally, which makes it not quite convenient for our

model. According to Irwin’s criterion, rupture occurs if the

stress intensity factor K, which represents the ‘weight’ of the

singularity of the stress field, exceeds some critical value Kcr.

We can readily apply this fracture criterion to our problem,

since the integrals KL and KR calculated above are in fact the

stress intensity factors for the left- and for the right-hand edges

of the asperity, respectively. However, Irwin’s criterion takes

into account only the singular stress component produced by

the discontinuity of the boundary condition. Hence all non-

singular terms of the full stress field eq. (13), including the wave

emanating from the opposite edge of the asperity, are neglected.

This is an important shortcoming since physically the whole

stress field contributes to the nucleation of the fracture.

The singularity of the stress field on the asperity edge

arises from the discontinuity of the boundary condition treated

within the continuous medium formalism. An idealized con-

tinuous elastic solid has no internal scale, and therefore such a

boundary condition results in a singular stress concentration. In

reality this singularity is ‘regularized’ (smoothed) at the smallest

scale of natural discontinuities of the medium (e.g. at the scale

of microcrystals or rock grains), which means that below this

scale the continuous stress field is not well defined and one

should rather operate with forces on the boundaries of dis-

continuities. This small-scale cut-off is physically equivalent to

averaging of the stress field over some characteristic distance d:

qdðx, tÞ ¼ 1

d

ðxþd=2

x�d=2

qðx0, tÞ dx0 : (15)

The resulting integrated stress field td is free of singularities and

at the same time includes contributions from all stress terms.

We can then compare the averaged stress with a critical threshold

value and use it as a new local fracture criterion, which takes

into account all stress components. Note that in our model,

the fracture threshold is a characteristic of a contact of two

asperities and not that of the material itself, thus it may depend

on other parameters, such as normal load, asperity height, etc.

Since the 1=
ffiffiffi
x

p
-type singularities are integrable, we can

obtain the expression for the smoothed stress td at the asperity

edge by integrating eq. (13) over the heterogeneity scale para-

meter d (this is done in the Appendix). Fig. 5 shows the

integrated stress td at the asperity edge as a function of time.

The solid line shows the full stress field, including the arrival of

wave from the opposite edge of the asperity (clearly visible

at t=2), while the dashed line gives the stress due only to the

left-hand edge, similar to the stress intensity factor criterion.

EFFECT IVE FR ICT ION LAWS

We assume that in our model an asperity represents the

‘elementary scale’ of the interface between the rough surfaces,

and consequently its behaviour cannot be described in terms

of a friction law. Therefore, we need to establish the relation-

ship between the dynamical contribution to friction of a single

Figure 4. Evolution of the dynamical stress field in the asperity

extending over [0, 5] calculated according to eq. (13). The stress is

singular at the edges of the asperity and was truncated for the purpose

of the graphical representation by shifting the graph mesh with respect

to the asperity edges. Note the instantaneous jump of the stress at t=1

when the asperity is abruptly loaded at constant displacement rate.

Figure 5. Integrated stress td at the asperity edge as a function of time

calculated according to eq. (15). The dashed line shows the stress taking

into account only one edge of the asperity, the solid line corresponds to

the full solution where the elastic wave emanating from the other edge

of the asperity (arriving at t=2) is also taken into account.
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asperity at a microscopic scale, on one hand, and a friction law

for the contact between rough surfaces containing a large

number of such asperities on the other hand. This can be

achieved by assuming some form of distribution of the physical

parameters of contacts between asperities, and by performing

an ensemble average over the population of contacts (which

implies the assumption of homogeneity of those distributions

over the whole surface). This is quite similar to the approach

taken in the molecular kinetic theory of gases, except that in

our case instead of molecules we deal with contacts between

asperities, which form, exist for some time and disappear due to

the sliding of the rough surfaces.

The input parameters of the model can thus be directly

related to the properties of the contact between the rough

surfaces. The topography of the surfaces and an adequate

contact model will determine an ensemble of N contacts

between asperities with their locations, x(i), their widths

w(i)=x2
(i)xx1

(i), and the corresponding rupture thresholds

tcr
(i), i=1, 2, . . . , N.

Here we consider the simplest case of non-interacting

contacts. Since we neglect the elastic interactions between the

asperities in this case, their locations will determine only the

occurrence of contacts in time, which will be uncorrelated in

this case. Therefore, the frictional resistance of an ensemble of

such contacts can be estimated through a simple time average

of the force exerted by a single contact:

SFT ¼ lim
T??

1

T

ðT

0

ðx2

x1

qðm, t0Þ dm dt0 : (16)

Since each asperity undergoes a sequence of identical loading

and breaking cycles, we can calculate the time average over one

such cycle and normalize it using the density of contacts:

SFT ¼ 1

T

ðtc

0

ðx2

x1

qðm, t0Þ dm dt0 , (17)

where the integration over time was limited by tc, since the

asperity contributes to the frictional resistance only during the

lifetime of the contact tc. It is clear that for all sliding velocities

V, the normalizing time interval T must correspond to the same

slip L, where 1/L is the linear contact density. Thus we finally

obtain:

SFT ¼ V

4

ðtc

0

ðx2

x1

qðm, t0Þ dm dt0 (18)

Expression (18) allows us to calculate the dependence of the

average frictional resistance of an ensemble of non-interacting

asperities as a function of the slip velocity nFm(V), which

henceforth we call the effective friction law. The dependence

of the average frictional force on the velocity is non-linear

since the contact duration tc depends on the velocity in a non-

linear manner. Two effective friction laws nFm(V) evaluated

numerically according to eq. (18)) and averaged over 5r106

independent asperities are shown in Fig. 6. The first of them

() signs on the graph) was calculated using an ensemble of

identical contacts [w(i)=w and tcr
(i)=tcr], while the second

corresponds to an ensemble of contacts with a uniform distri-

bution of width w(i) (with the same mean value as in the first

case and the spread equal to 50 per cent of the mean) and a

Gaussian distribution of strength thresholds tcr
(i). Both curves

are remarkably close to a 1/V dependence over four decades of

the slip velocity variations. A somewhat stronger scatter of the

estimated values of the effective friction laws around the 1/V fit

at the right-hand end of the graph is caused by the decreasing

precision of the numerical evaluation of the time integral in

eq. (18) for short contact durations tc at high slip velocities.

The 1/V-type friction laws were used in models of seismic

faults by a number of authors in rate-dependent (Shaw et al.

1994) and in more general rate- and state-dependent formu-

lations (Rice 1993). The important feature of such models is the

unstable regime of slip that is provided by a sufficiently steep

decrease of friction with velocity, independent of the particular

form of this functional dependence. However, such velocity

weakening friction laws were introduced into those models

on a purely empirical basis. Indeed, no direct measurements of

friction on seismic faults are available, and the extrapolation

of friction laws observed in laboratory tests on rock samples

to fault scales is a delicate problem. Friction tests on rock

samples performed over a wide range of conditions (see, e.g.,

Kilgore et al. 1993) show a variety of behaviour, including

velocity strengthening and velocity weakening, depending on

the velocity range, normal load, temperature etc. Thus at least

for some subset of experimental conditions, one can assume

velocity weakening friction in faults on observational grounds.

Unfortunately, the range of slip velocities in classical laboratory

friction tests is quite limited owing to technical constraints, and

typically does not exceed a few mm sx1. Such slip velocities are

orders of magnitude below slip velocities in a fault during an

earthquake, which can be inferred from near-field seismic

records (Heaton 1990). A simple extrapolation of laboratory

friction laws to higher slip rates can hardly be justified, since

dynamical effects should play an increasingly important role at

high velocities. Therefore, the elastodynamical velocity weak-

ening microscopic mechanism of friction and the ensemble

average approach discussed in the present work may provide

an alternative way of introducing friction into large-scale fault

models, since they are not based on any particular a priori form

of friction law.
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Figure 6. Effective friction laws for an ensemble of 5r106 independent

identical () signs) and heterogeneous (+ signs) asperities with a random

uniform distribution of widths and a Gaussian distribution of strengths;

solid line represents a 1/V fit. The frictional force is normalized to its

value at the minimal velocity. Note the universal 1/V velocity weakening

friction and the relative insensitivity of the discussed friction mechanism

to the particular form of distribution of the asperity parameters.
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CONCLUS IONS

Dynamical friction involves a complex combination of a number

of different physical mechanisms that may have a strengthen-

ing (stabilizing) or weakening (destabilizing) effect and the

importance of which depends on the slip velocity. We intro-

duced a model in which we isolated one of these mechanisms,

namely the dynamical breaking of asperities, and studied its

contribution to friction. It was found that this mechanism leads

to velocity weakening friction over a wide range of velocities,

practically up to the speed of elastic waves. It is remarkable

that the effective friction law predicted by this model for an

ensemble of non-interacting asperities has a very simple 1/V

form, while it derives from a quite complex evolution of stress

in each asperity at the microscopic level. The form of the

effective friction law was found to be not very sensitive to a

particular distribution of contact widths and strengths (that

can be related to the roughness of surfaces). This suggests that

the studied mechanism of velocity weakening is essentially

caused by the elasto-dynamical effects, since it is produced by

the model even in the case of non-interacting identical asperities.

The described mechanism of velocity weakening friction

can thus support certain models of seismic rupture in which a

weakening factor is needed at high slip velocities, where other

mechanisms based on slow inelastic processes are inefficient.
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APPENDIX A : EXPRESS IONS FOR THE
STRESS INTEGRATED OVER THE
ASPER ITY WIDTH [X 1 , X 2 ]
( FR ICT IONAL FORCE )

We denote

x2 � x1 ¼ D:

The edge dislocation component of the stress field is then

Fe ¼
ðx2

x1

V dx ¼ VD : (A1)

A1 First case: tjD

The contribution from the left-hand edge of the asperity (xix1

and tixxx1) yields:

FLðtÞ ¼
2V

n

ðx1þt

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t þ x1 � x

x � x1

r
dx

� 2V

n

ðx1þt

x1

arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t þ x1 � x

x � x1

r
dx ¼ 2V

n
ðI1 � I2Þ :

(A2)

Denoting

x � x1 ¼ R , and dx ¼ dR ,

we obtain

I1 ¼
ðt

0

ffiffiffiffiffiffiffiffiffiffiffi
t � R

R

r
dR ¼ n

2
t , (A3)

and

I2 ¼
ðt

0

arctan

ffiffiffiffiffiffiffiffiffiffiffi
t � R

R

r
dR ¼ n

4
t : (A4)

The contribution from the right-hand edge of the asperity

(xjx2 and tix2xx) yields

FRðtÞ ¼
2V

n

ðx2

x2�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t þ x � x2

x2 � x

r
dx

� 2V

n

ðx2

x2�t

arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t þ x � x2

x2 � x

r
dx ¼ 2V

n
ðI3 � I4Þ ,

(A5)

where

x2 � x ¼ W ¼ D � R and dx ¼ �dW :

Then

I3 ¼ �
ð0

t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t � W

W

r
dW ¼

ðt

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t � W

W

r
¼ I1 , (A6)
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and

I4 ¼
ðt

0

arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t � W

W

r
dw ¼ I2 : (A7)

The total force produced by the asperity is then (when tjD):

FðtÞ ¼ VD þ 2V

n
ðI1 � I2Þ þ ðI3 � I4Þ½ �

¼ VD þ Vðt=2þ t=2Þ ¼ VD þ Vt : (A8)

A2 Second case: t>D

The contribution from the left-hand edge of the asperity (xix1

and tiD) yields

FLðtÞ ¼
2V

n

ðx2

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t þ x1 � x

x � x1

r
dx

� 2V

n

ðx2

x1

arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t þ x1 � x

x � x1

r
dx ¼ 2V

n
ðI1 � I2Þ , (A9)

with

I1 ¼
ðD

0

ffiffiffiffiffiffiffiffiffiffiffi
t � R

R

r
dR

¼ n
4

t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðt � DÞ

p
þ t

2
arctan

2D � t

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðt � DÞ

p
 !

, (A10)

and

I2 ¼
ðD

0

arctan

ffiffiffiffiffiffiffiffiffiffiffi
t � R

R

r
dR ¼ n

8
t � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðt � DÞ

p

þ D arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
t � D

D

r
� t

4
arctan

2D � t

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðt � DÞ

p
 !

: (A11)

The contribution from the right-hand edge of the asperity

(xjx2 and tiD) yields

FRðtÞ ¼
2V

n

ðx2

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t þ x � x2

x2 � x

r
dx � 2V

n

ðx2

x1

arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t þ x�x2

x2�x

r
dx

¼ 2V

n
ðI3 � I4Þ , (A12)

with

I3 ¼ �
ð0

D

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t � W

W

r
dW ¼

ðD

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t � W

W

r
¼ I1 , (A13)

and

I4 ¼
ðD

0

arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t � W

W

r
dW ¼ I2 : (A14)

The total force on the asperity (when t>D) is then

FðtÞ ¼ VD þ 4V

n
ðI1 � I2Þ

¼ VD þ 4V

n

 
n
8

t þ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðt � DÞ

p

� D arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
t � D

D

r
þ t

4
arctan

2D � t

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðt � DÞ

p
" #!

:

(A15)

APPENDIX B : EXPRESS ION FOR THE
STRESS AT THE EDGE OF THE
ASPER ITY AVERAGED OVER THE
SMALL - SCALE PARAMETER

We only consider here the case tid, since the small-scale

parameter d can always be chosen smaller than the integration

time-step.

qdðx1, tÞ ¼ V 1þ 1

d

ðx1þd

x1

qLðx, tÞ dx þ qRðx1, tÞ
� �

¼ V 1þ 2

nd

ðd

0

ffiffiffiffiffiffiffiffiffiffiffi
t � R

R

r
dR �

ðd

0

arctan

ffiffiffiffiffiffiffiffiffiffiffi
t � R

R

r
dR

 !"

þ 2

n
Hðt � DÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
t � D

D

r
� arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
t � D

D

r !#

¼ V 1þ 2

nd
I5 � I6ð Þ

�

þ 2

n
Hðt � DÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
t � D

D

r
� arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
t � D

D

r !#
, (B1)

where H(.) is the Heaviside function, and

I5 � I6 ¼
n
8

t þ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðt � dÞ

p

� d arctan

ffiffiffiffiffiffiffiffiffiffiffi
t � d

d

r
þ t

4
arctan

2d � t

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðt � dÞ

p
" #

: (B2)
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