
GEOPHYSICS, VOL. 67, NO. 1 (JANUARY-FEBRUARY 2002); P. 271–281, 11 FIGS.
10.1190/1.1451799

Biot slow-wave effects in stratified rock

Steven R. Pride∗, Eric Tromeur‡, and James G. Berryman∗∗

ABSTRACT

The transmission of P-waves through the stratified
layers of a sedimentary basin is modeled numerically
using Biot theory. The effects on the transmissivity of
frequency, angle of incidence, layer thickness, perme-
ability and elastic compliance of the rocks are all con-
sidered. Consistent with previous analytical work, it is
found that the equilibration of fluid pressure between
the fine layers of a sedimentary sequence can produce
significant P-wave attenuation at low frequencies. For
this attenuation mechanism to act within the surface-
seismic band (say, 3–300 Hz), we find that there must
be layering present at the scale of centimeters to tens
of centimeters. If the layering is restricted to layers of
roughly 1 m thickness or greater, then for typical sand-
stone formations, the attenuation caused by the inter-

layer flow occurs below the seismic band of interest. Such
low-frequency interlayer flow is called Biot slow-wave
diffusion in the context of Biot theory and is likely to
be the dominant source of low-frequency attenuation in
a sedimentary basin, even for relatively tight and stiff
reservoir rock; however, the effect is enhanced in more
compliant materials. At higher frequencies, the genera-
tion of slow-waves at interfaces is also shown to signifi-
cantly affect the P-wave scattering so long as the layers
are sufficiently thin and sufficiently compliant. This ef-
fect on the P-wave scattering is shown to increase with
increasing angle of incidence. Our work is limited to per-
forming numerical experiments, with care given to mak-
ing realistic estimates of all the material properties re-
quired. No attempt is made here to define an equivalent
viscoelastic solid that allows for such slow-wave effects.

INTRODUCTION

Seismic waves propagating through fluid-saturated sedi-
ments or sedimentary rock induce a small amount of macro-
scopic fluid flow. Biot’s (1956a, b, 1962) theory of mechanical
wave propagation in porous materials is able to model such
wave-induced relative flow. A P-wave propagating through a
uniform sedimentary layer will create flow perpendicular to the
wavefront from regions of compression toward regions of di-
latation. The associated attenuation (as measured by an inverse
quality factor Q−1) is at a maximum at a relaxation frequency
ωvbl corresponding to when viscous boundary layers (vbl) first
begin to develop in the pores (i.e., when inertial forces of the
fluid in each pore first become important relative to the viscous
shear forces). The relative-flow model of Johnson et al. (1987)
predicts that

ωvbl = η

ρ f Fko
, (1)
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where η is fluid viscosity, ρ f is fluid density, F is the electrical
formation factor, and ko is the dc permeability. The permeabil-
ity model of Thompson et al. (1987) shows that Fko= `2/226,
where ` is the breakthrough pore diameter in a mercury-
invasion experiment. Thompson et al. (1987) measure `, F ,
and ko for 50 sandstones that span seven orders of magnitude
of permeability to demonstrate the remarkable validity of their
relation. Thompson’s 50 sandstones have relaxation frequen-
cies that lie in the range 10 kHz<ωvbl/2π < 104 kHz, with most
being on the order of a few hundred kilohertz. In the surface-
seismic band (frequencies less than a few hundred hertz) this
attenuation, which is known as “Biot-global-flow” attenuation,
is essentially negligible.

In the presence of heterogeneity at the porous continuum
scale, additional attenuation mechanisms are possible that
can lead to nonnegligible attenuation and dispersion in the
surface-seismic band. In sedimentary basins, the dominant
source of heterogeneity is the layering of the sediments. As first
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understood and modeled by White et al. (1975), a P-wave with
wavelengths longer than the layer thicknesses will compress (or
expand) many layers simultaneously. Since each layer has, in
general, different compressional properties, the fluid-pressure
changes in adjacent layers will be different, and the pressure
will try to equilibrate by fluid-pressure diffusion (i.e., by vis-
cous flow). Within the context of Biot’s theory, the process of
fluid-pressure diffusion is known as the “Biot slow-wave.” The
creation of slow-waves at an isolated interface through mode
conversion from an incident P-wave was first observed exper-
imentally by Plona (1980) [also see Chin et al. (1985) for a
successful comparison between theory and experiment].

Thus, when wavelengths are larger than layer thicknesses,
one may say that Biot slow-waves are always generated in or-
der to equilibrate the fluid pressure between the layers. The
fluid flow associated with this equilibration can lead to signifi-
cant attenuation and dispersion in the seismic band. Such slow-
wave-induced attenuation is at a maximum at a relaxation fre-
quencyωsw corresponding to when the fluid-pressure-diffusion
skin depth (penetration length) is on the order of the layer
spacing and that thus goes as

ωsw ≈ K f ko

ηφh2
, (2)

where K f is the fluid incompressibility, φ is a characteristic
porosity of the layering (e.g., the average porosity), ko is a
characteristic permeability, and h is a characteristic layer thick-
ness. For layer thicknesses on the order of a few centimeters
or more and for permeabilities on the order of 100 md or less,
equation (2) shows that the slow-wave effects are at a maxi-
mum for frequencies of a few tens of hertz or less; that is, at
least for sufficiently thin layering (1–10 cm), such slow-wave
effects will tend to be at a maximum in the surface-seismic
frequency band. Larger layer thicknesses will reduce ωsw/2π
to frequencies below 1 Hz. Equation (2) is formally based on
fluid-pressure diffusion through a stiff framework of grains;
however, in the opposite limit of an infinitely compliant frame,
we show below that ωsw will only be reduced by a few percent.

The central question we explore in this paper is whether
such Biot slow-wave effects are of sufficient importance that
exploration seismologists should consider them when attempt-
ing to invert surface seismic or vertical seismic profile (VSP)
data. The goal is not to define effective material properties, but
simply to determine the combination of material properties in
a sedimentary sequence that results in significant slow-wave
effects.

Much work has already been performed on this problem
and all the above comments have been understood (although
perhaps not appreciated by the seismic community at large)
since the initial work of White et al. (1975). In particular, White
et al. model the low-frequency fluid-pressure equilibration be-
tween alternating layers of gas and liquid saturated sediments,
while neglecting all scattering effects. Those authors obtain an
explicit expression for the attenuation and dispersion of the
P-wave caused by such interlayer fluid flow. Norris (1993) gives
an asymptotic treatment of the same problem that allows him
to decouple the fluid-pressure-diffusion (or slow-wave) pro-
cess from the compressional-wave propagation. The analysis
requires that the P-wave wavelengths are much greater than
the characteristic length over which the porous-continuum
material properties vary (and over which the effective material

properties are determined). Within this low-frequency asymp-
totic limit, Norris determines the exact leading order contribu-
tion to the compressional wave’s attenuation and dispersion
caused by the fluid-pressure equilibration between alternating
(periodic) layers. He reproduces the same attenuation and dis-
persion results of White et al. (1975), thus giving justification to
the more heuristic approximations initially made by White et al.

Gurevich and Lopatnikov (1995) extend the analysis to allow
for P-wave propagation in randomly layered sediments. Their
analytical results for the attenuation and dispersion caused by
interlayer flow (Biot slow waves) are obtained under the com-
bined requirements that (1) variations of material properties
between the various layers are small (a type of single-scattering
approximation known as the “Bourret approximation” in the
context of waves in random media) and (2) frequencies are
sufficiently small that all P-wave scattering effects from the in-
dividual layers are negligible. To obtain analytical results, their
approach requires assumptions to be made about the correla-
tion function associated with the random layering. When they
apply their theory to the special case of alternating layers, re-
sults very similar to those of Norris (1993) and White et al.
(1975) are obtained (Norris and White et al. place no restric-
tions on the material contrasts, but their analytical results are
limited to alternating layers).

Finally, Gelinsky and Shapiro (1997) and Gelinsky et al.
(1998) extend the analysis of P-waves in randomly layered sed-
iments to higher frequencies so that P-wave scattering from the
layer interfaces is treated in addition to the slow-wave inter-
layer flow. The central approximation of this work is again that
contrasts in material properties must be sufficiently small that
single-scattering truncations are valid. They also obtain ana-
lytic results once an integrable correlation function is chosen
for the random layering. Gelinsky et al. (1998) and Shapiro
and Müller (1999) demonstrate that their analytical results are
consistent with numerical results obtained using the so-called
OASES software (see references in their article) that mod-
els waves in stratified media. All of the analytical results ref-
erenced above are limited to normal incidence (purely 1-D)
plane-wave propagation.

The work discussed above has properly defined the physics
that controls the fluid-pressure equilibration between adjacent
layers and, most importantly, has provided analytical expres-
sions for the effective low-frequency attenuation and phase ve-
locity. Nonetheless, we feel that a systematic exploration of the
importance of such effects for a variety of realistic sedimentary-
layer sequences is lacking and that such a study could aid prac-
tical seismologists interested in whether such effects should be
included in their forward modeling.

For these reasons, we have developed for this paper a nu-
merical model of seismic waves in stratified porous materials
based on Kennett’s (1983) reflectivity approach that places no
restrictions on either the material-property contrasts, the fre-
quency, or the angle of incidence. We use the model to study
the way that the amplitude and phase of transmitted P-waves
are affected by the combined effects of Biot slow-wave gener-
ation, P-wave scattering, and intrinsic global-flow attenuation
in various sedimentary sequences that we feel are reasonable
representations of real-world conditions. In order to aid in the
separation of slow-wave effects from P-wave scattering effects,
we always run two numerical models: one that uses the full
set of Biot equations, and another that retains the global-flow
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attenuation and dispersion of the Biot theory but that com-
pletely neglects the generation and diffusion of slow waves.

To outline the paper, first we present the physical model in
the next section. Then, some details of the numerical model
are presented (the full algorithm is given in the Appendix),
followed by a section enumerating our examples and the re-
sults obtained using the layer code. We summarize our main
conclusions in the final section.

THE PHYSICAL MODEL

The governing equations for this study are those control-
ling wave propagation in uniformly saturated isotropic porous
materials (Biot, 1962) with an assumed e−iωt time dependence:

∇ · τ = −ω2(ρu+ ρ f w) (3)

−∇ p = −ω2ρ f u− iω
η

k(ω)
w (4)

τ = [(H − 4G/3)∇ · u+ C∇ · w]I

+G

[
∇u+ (∇u)T − 2

3
∇ · u I

]
(5)

−p = C∇ · u+ M∇ · w. (6)

Here, τ is the total average stress tensor acting on each sample
of sedimentary rock, p is the average fluid pressure, u is the
average displacement of solid grains, and w is the average rela-
tive fluid-solid displacement defined so that−iωw corresponds
to the Fourier transform of the Darcy filtration velocity. The
bulk density ρ of the rock is ρ= (1−φ)ρs+φρ f , where φ is the
porosity, ρ f is the density of the pore fluid (always taken to be
water in this study, so that ρ f = 103 kg/m3), and ρs is the aver-
age density of the grains in the rock (always taken as quartz,
so that ρs= 2.7× 103 kg/m3).

Biot’s (1962) three incompressibility moduli (H − 4G/3,
C, and M) can be expressed in terms of the three mod-
uli that have the clearest laboratory definitions; namely, (1)
the undrained bulk modulus KU controlling the volumetric
changes of a sealed sample, (2) the drained bulk modulus KD

controlling the volumetric changes of a sample under condi-
tions where the fluid pressure does not change (sometimes
called the “frame” modulus), and (3) Skempton’s (1954) co-
efficient B, which is the ratio between the fluid-pressure and
applied-confining-pressure increments for a sealed sample.
These generally valid relations are

H − 4G/3 = KU (7)

C = BKU (8)

M = B2

1− KD/KU
KU , (9)

being independent of the possible presence of anisotropy at
either the sample or grain scale and of whether the grains mak-
ing up the rock have different mineralogies. The modulus G is
the shear modulus of a sample and will be taken here as be-
ing independent of the fluid properties. Note that upon taking
the divergence of equation (4) and inserting equation (6), the
fluid-pressure diffusion equation is obtained (Dp∇2 p+ iωp=
source terms), where

Dp = Mk/η (10)

is the fluid-pressure diffusivity and defines the physical role
played by M in the context of this study.

We next impose the restriction that the grains in each rock
sample are both isotropic and homogeneous. Under such
monomineral restrictions (and only under such conditions),
the relations of Biot and Willis (1957) are valid. These relations
give the explicit dependence of the porous-material moduli on
the pore-fluid and solid-grain bulk moduli K f and Ks, and can
be written

B = 1/KD − 1/Ks

1/KD − 1/Ks + φ(1/K f − 1/Ks)
, (11)

KU = KD

1− B(1− KD/Ks)
. (12)

After some algebra, the following forms for the moduli prove
to be instructive:

KU = KD + [1− (1+ φ)KD/Ks]K f /φ

1+1 , (13)

C = (1− KD/Ks)K f /φ

1+1 , (14)

M = K f /φ

1+1, (15)

where 1 is a dimensionless parameter defined as

1 = 1− φ
φ

K f

Ks

(
1− KD

(1− φ)Ks

)
. (16)

The usefulness of writing the poroelastic moduli this way is
that1 is always a very small number. In an extreme stiff-frame
limit defined by KD→ (1−φ)Ks [which actually lies above the
Hashin-Shtrikman (1961) upper bound], we have that 1→ 0.
The opposite limit of an infinitely compliant frame KD→ 0
occurs when the grains no longer form connected paths across
the sample. In sediments, this percolation threshhold occurs
when φ≈ 0.5, with the precise value depending on details of
the grain-size distribution and packing configuration. We thus
have that 1 takes its largest value of K f /Ks when there is
an infinitely compliant frame and that 1 is never outside the
range 0<1< K f /Ks for any material type. This means in parti-
cular that the modulus M is bounded as 1/(1+ K f /Ks)<
φM/K f < 1. Since K f /Ks≈ 10−1 when the fluid is a liquid [all
examples in this paper are calculated with Ks= 36 GPa
(quartz) and K f = 2.2 GPa (water)], the pressure diffusivity of
equation (10) is always well approximated as Dp≈ K f ko/(ηφ),
which is the estimate used to obtain equation (2). However, we
will make no such approximations in the numerical modeling
that follows.

The drained modulus is a strong function of the microge-
ometery of the sample, and no universal law exists that relates
it to, say, porosity. Nonetheless, in lower-porosity materials, the
drained modulus is larger than in higher-porosity materials, and
we propose that the simple rules

KD = Ks
1− φ

1+ aφ
, (17)

G = Gs
1− φ

1+ bφ (18)

are adequate for our purposes with a and b varying with lithol-
ogy. Here, Gs is the shear modulus of the grain material (Gs=
44 GPa for quartz). Effective medium theories (e.g., Korringa
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et al., 1979; Berryman, 1980a, b) yield expressions of this form
and predict that a and b depend on the shape of the assumed
pores and on the ratio Ks/Gs; we assume here that Ks/Gs is
a constant for all rocks and, indeed, it is close to one for most
sand grains of interest. Depending on the degree of consoli-
dation (i.e., the degree to which compliant, high-aspect-ratio
porespace is present in and around the grain contacts), one
can expect the approximate range 2<a, b< 20 for sandstones
(2 being well consolidated and 20 poorly consolidated). How-
ever, an unconsolidated sand in this model can require aÀ 20.
With these assumptions, the free parameters that fix the elas-
tic properties are φ, a, and b. To remove a free parameter, we
will somewhat arbitrarily take b= 3a/2 in all of our modeling
(effective-medium theories predict b>a, and a factor of 3/2 is
reasonable for consolidated sediments).

The last material property of the model is the dynamic per-
meability k(ω). Here, we use the previously mentioned result
of Johnson et al. (1987):

k(ω)
ko
=
[√

1− i
ω

ωvbl

4
n
− i

ω

ωvbl

]−1

, (19)

where ko is the dc permeability of the material, ωvbl is the
viscous-boundary-layer transition frequency defined in equa-
tion (1), and n is a dimensionless number that depends only on
pore-geometery terms

n = 32

Fko
. (20)

Here, F is again the electrical formation factor, while 3 is a
weighted pore-volume to grain-surface-area ratio with the
weight emphasizing constricted parts of the connected pore
space. There is anectodal evidence suggesting that n≈ 8 for
relatively clean sandstones and sediments. However, in rock
with significant secondary clay growth, n is likely to decrease
below this value; in other words, it is likely that n should not,
in general, be considered a universal constant. Nonetheless, in
order to reduce the number of free parameters, we will simply
take n= 8 for all sediments modeled in this study. Finally, the dc
permeability will be determined using the model of Thompson
et al. (1987):

ko = `2

226F
, (21)

with Archie’s law (F =φ−m) being used for the forma-
tion factor. The Archie exponent typically lies in the range
1.5<m< 2.2 for sedimentary rock, with variations due to dif-
ferences in the microgeometery of rock. In order to eliminate
yet another free parameter, we take m= 1.7 for all our sedi-
ments. Thompson et al. (1987) measured ` for their 50 sand-
stones and, with the exception of a single impermeable sample
(having a permeability less than their experimental limit of
roughly 1 µd), all the ` values lie in the range 0.3 µm <`<

90 µm, with the variation depending on both the degree of
secondary clay growth and the initial detrital grain sizes. This
range in ` combined with the simultaneous variations in F cor-
responds to more than seven orders of magnitude in perme-
ability variation.

Thus, in this work, a sedimentary sequence is defined by fix-
ing the three physical properties of φ (porosity), a (the frame-
compliance factor), and ` (the mercury-breakthrough pore

diameter) for each layer of the sequence. In the examples sec-
tion, we discuss our strategy for selecting these three numbers.

THE NUMERICAL MODEL

Our sedimentary sequence consists of a stack of L porous
layers sandwiched between two porous half-spaces and hav-
ing a total thickness H = ∑L

`=1 h`, where the h` are the layer
thicknesses. The naming convention for the layers and inter-
faces is shown in Figure 1. In general, there are downward-
incident plane waves of any type [fast compressional waves
(P), slow waves (slow), or vertically polarized shear waves
(SV)] at the top of the stack, and we are interested in how
these waves reflect from and transmit through the stack. If the
downward-incident wave amplitudes are placed in a first-order
array d= [dP, dslow, dSV]T (these incident amplitudes can all be
taken as unity), we determine here the complex reflected-wave
“amplitudes” r = [rP, rslow, rSV]T at the top of the stack and the
transmitted-wave amplitudes t = [tP, tslow, tSV]T that emerge at
the bottom of the stack. Such linear response can be written

r = R0 d and t = T0 d, (22)

where R0 and T0 are called the “total-reflection” and “total-
transmission” matrices. In this paper, we use Kennett’s reflec-
tivity method (Kennett and Kerry, 1979) to calculate R0 and
T0. The algorithm and all the required formulas are given in
Appendix A.

For a unit-amplitude downward P-wave incident at the top
of the stack d= [1, 0, 0]T , we focus specifically on the complex
transmission through the stack tP(ω, p) where p is the purely
real horizontal slowness (ray parameter) that is constant in all
layers. Expressing tP in terms of amplitude and phase,

tP(ω, p) = e−ωqI (ω,p)H eiωqR(ω,p)H , (23)

then defines the effective complex vertical slowness qR(ω, p)+
iqI (ω, p) for the entire stack of thickness H , where qR and
qI are both real. Because there is a finite delay for the re-
sponse at z= H to be recorded when a temporal point source
acts at z= 0, it is a standard excercise (e.g., Aki and Richards,
1980) to show that tP(ω) is free of both singularities and zeros
in the upper half ω plane. This fact then guarantees that

FIG. 1. The naming convention of the interfaces and layers of
the sedimentary sequence.
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ln tP= −ωqI (ω)H + iωqR(ω)H is also free of singularities in
the upper half ω plane, and such analyticity in turn guarantees
that qR(ω) and qI (ω) are Hilbert transforms of each other. All
of this holds independently of what happens to the P-wave in
the stack, so long as what happens there both respects the laws
of physics and remains linear with respect to the incident-wave
amplitudes.

Following the authors cited in the Introduction, we elect to
present qR and qI as a function of frequency and in the following
representation:

v = 1/qR and Q−1 = 2qI /qR, (24)

where Q is an effective quality factor for the stack, and v is an
effective vertical phase velocity. However, we emphasize that
the stack properties v and Q−1, so determined, are in no way
intended to define effective-medium properties for use in seis-
mic forward modeling. Effective-medium properties in wave
problems are meaningfully defined only when the heterogene-
ity over which one averages to obtain them is smaller than the
pulse length of the wave. The goal of this study is to quantify the
extent to which slow waves can affect the P-wave transmission
process regardless of the relation between heterogeneity size
and wavelength. The stack properties v and Q−1 are simply a
familiar way to represent the filter tP.

In order to quantify the role of the slow wave, we also cal-
culate the response determined using the usual elastodynamic
equations for a nonporous solid. The eigenvectors of an elastic
solid (that are required in the reflectivity scheme) are easily de-
termined and can be found, for example, in Aki and Richards
(1980). For these calculations, we use the complex phase slow-
nesses sP and sSV of the Biot theory (see Appendix A) and
call the results so determined the “viscoelastic” response. Such
response includes all P-SV scattering and Biot global-flow
intrinsic attenuation, but neglects entirely the generation and
diffusion of Biot slow-waves.

In what follows, the properties of the two semi-infinite
bounding spaces are taken to be identical and are re-
quired to have the following average properties of the stack:
K hs

D = 1/〈K−1
D 〉, Ghs= 1/〈G−1〉, khs

o = 1/〈k−1
o 〉, and φ=〈φ〉,

where the brackets denote depth averaging over the stack.

EXAMPLES

We now carry out the above scheme. To do so requires that
the numbers φ, a, and ` have been selected for each layer of
a studied sequence. We determine these numbers and thus de-
velop lithological sequences in two different ways.

The Blackhawk-sandstone formation

First, the sandstone data of Thompson et al. (1987) is used.
These authors measureφ, `, and P-wave velocity on their cores,
and we select the frame-compliance factor a of equation (17)
so as to match their measured P-wave velocity. In particular,
Thompson et al. studied a set of 36 cores all taken from the
same well in the Blackhawk sandstone formation in Utah. We
took the measured properties of these 36 cores and made a
lithological sequence of 72 layers having random thicknesses.
The cores were taken from several different depth sections and,
in our layer model, we preserve the relative positioning of cores
coming from the same depth section. The layer thicknesses
were calculated using

h = yhmin + (1− y)hmax, (25)

where y is a random number that varies uniformly between
0 and 1, with hmin and hmax thus constraining the thinnest and
thickest layers in the sequence.

Figure 2 shows three key material properties as a function
of depth when hmin= 10 cm and hmax= 1 m. Figure 3 shows the
associated transmission response (v, Q−1); also shown is the
relative difference between the viscoelastic Q−1

v and poroe-
lastic Q−1

p attenuation. Three primary frequency regimes are
observed: (1) a low-frequency regime (<10 Hz) in which the
attenuation is controlled by the slow-wave diffusion; (2) a
middle-frequency regime (10–105 Hz) in which P-wave scat-
tering is the principal loss mechanism; and, finally, (3) a high-
frequency regime (>105 Hz) in which viscous boundary layers
finally begin to develop in the pores with an associated peak
(at roughly 3 MHz) in the global-flow viscous attenuation. The
difference between the poroelastic and viscoelastic results is
entirely due to the generation of slow waves. In this example,
the generation of slow waves is seen to have no noticeable ef-
fect on the P-wave scattering process. The P-wavelengths be-
came smaller than all layer thicknesses at a frequency of about
35 kHz. After careful testing, we believe that the small spikes in
the difference of attenuation plots (1− Qp/Qv) are true slow-
wave effects and not just numerical artifacts. In a later example,
it will be seen that slow-wave effects can be very important in
the P-wave scattering regime if the layer spacing is thin enough
and if the material is both compliant and permeable.

In this and all the following examples, the onset of the scat-
tering regime is characterized by a first band of attenuation
variation (between 5 and 50 Hz in Figure 3) that consistently
has a peak when the average P-wavelength is roughly four

FIG. 2. Our representation of the porosity, permeability, and
drained bulk modulus of the Blackhawk sandstone formation
in Utah. The properties of each of the 72 layers are derived
from the laboratory measurements of Thompson et al. (1987).
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times the total stack thickness H (about 20 Hz in Figure 3).
As stated, we have chosen the half-spaces to contain the aver-
age elastostatic properties of the stack. If the half-spaces are
allowed to have arbitrary properties, this attenuation due to
the destructive interference at the scale of H is significantly
enhanced.

From a surface-seismic perspective, the slow waves are
not playing an important role in this example. Because the
Blackhawk formation has a rather low average permeability,
the regime of interlayer flow occurs at frequencies below the
surface-seismic band. Equation (2) indicates when such inter-
layer flow is important.

In a second example (Figure 4), we preserve everything
about the Blackhawk sequence of Figure 2 except that the in-
dividual layer thicknesses are allowed to range between 60 cm
and 6 m (six times greater than in Figure 2). As expected, the
main effect of increasing the layer thickness is to shift the band
where interlayer flow occurs to still lower frequencies. The
magnitudes of both the interlayer-flow attenuation and scat-
tering losses are essentially unchanged relative to the previous
example; only the frequency at which these mechanisms occur
has been significantly altered.

The more important case of having thinner layers will be
considered in the next section.

Synthetic sequences

In order to study the effects of altering material proper-
ties other than layer thickness, we produce a series of purely
synthetic lithological sequences. Our approach here is to fix

FIG. 3. Phase velocity, Q−1, and the relative difference
(Q−1

p − Q−1
v )/Q−1

p (p= poroelastic and v= viscoelastic) for the
Blackhawk formation as presented in Figure 2. The observed
difference between the poroelastic attenuation and the vis-
coelastic attenuation is entirely due to slow waves in this model.

a benchmark sequence and then make changes relative to the
benchmark. In these examples, we investigate the sensitivity of
the transmissivity to permeability, frame compliance, and angle
of incidence. We conclude with an example having fine layering
and an interesting constant Q behavior in the seismic band.

To generate the values of φ, a, and ` in our synthetic se-
quences, we note that these numbers are not entirely indepen-
dent since they all will tend to change depending on the degree
of secondary mineral growth. If x is a random number uni-
formly lying between 0 and 1 and representing the “shalyness”
of a rock layer (with 0 repesenting the least secondary growth
and least consolidation), we build a sequence of random layers
using a random number generator for x and the following rules:

φ = xφmin + (1− x)φmax, (26)

a = x1+εaamin + (1− x1+εa)amax, (27)

` = x1−ε``min + (1− x1−ε`)`max. (28)

These rules were chosen for their simplicity. Note that because
our interest here is with layering at scales finer than the 1-m
resolution usually provided by well logs, we don’t feel justified
in using statistics derived from well logs. Exponents on x that
are greater than one tend to favor the upper end of a given
range, whereas exponents less than one favor the lower end
(εa and ε` are both positive). Thus we use x1−ε` for the break-
through pore diameter ` so as to favor lower permeabilities
and x1+εa for the consolidation factor a in order to favor
weaker frame moduli, the logic being that secondary clay
has a relatively larger effect in bringing down permeability

FIG. 4. The same Blackhawk formation as in Figure 2, except
layer thicknesses range from 60 cm to 6 m instead of 10 cm
to 100 cm. The low-frequency interlayer-flow attenuation has
now been shifted to frequencies well below the seismic band
of interest.
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than in strengthening the framework of grains. Different
lithological sequences can be made by altering the minimum
and maximum values of φ, a, and ` for the sequence and/or
by altering the exponents εa and ε` of the shalyness coefficient
x. In all the following examples, we somewhat arbitrarily
take εa= ε`= 1/3. Layer thicknesses h are again taken from
equation (25) with y being a different random number than x.

This model produces a sequence in which the material prop-
erties change in a physically consistent manner; however, there
are endless possible generalizations, some of which might in-
clude: allowing for the effects of secondary quartz as distinct
from secondary clay (for the same effect on porosity, sec-
ondary quartz can dramatically increase the rock strength as
compared to secondary clay); allowing explicitly for separate
pure shale layers; choosing the shalyness coefficients (or other
properties) from a more complicated probability density func-
tion; building in trends with depth (e.g., overburden-induced
effective-pressure dependence of the material properties); al-
lowing for fluid overpressure zones; allowing for various mixes
of gas/oil/water; allowing for fractal layer thicknesses; etc.
Nonetheless, our simple model is sufficient for our limited pur-
poses here.

The benchmark sequence.—We first establish the bench-
mark sequence by defining the following range of our three
lithological parameters: 0.05<φ< 0.25, 2µm<`< 20µm, 3<
a< 6. This sequence is just slightly more compliant and signifi-
cantly more permeable than the Blackhawk sequence. The key
physical properties of this benchmark sequence are shown in
Figure 5, and the associated v and Q−1 are shown in Figure 6.
Normally incident waves have again been used, and the layer

FIG. 5. The porosity, permeability, and drained bulk modulus
of the “benchmark” synthetic sequence against which the fol-
lowing two examples (see Figures 6 and 7) will be compared.

thicknesses again lie between 10 cm and 1 m. For this bench-
mark sequence, interlayer-flow attenuation begins to be impor-
tant in the lower end of the surface-seismic band.

We have only taken 30 layers for this and all the following
examples so that run times are kept reasonable. Note that in
order to determine qR(ω) [and, therefore, the vertical phase ve-
locity v(ω)] from the transmissivity given in equation (23), one
must vary frequency on essentially a linear scale once wave-
lengths drop below the stack thickness H so that every cycle of
2π in the transmission’s phase variation is accounted for. Our
displayed plots typically require a few hundred thousand sep-
arate frequency evaluations, and it is therefore desirable to
keep the run time low for each evaluated frequency. In ad-
dition, nothing particularly new about the questions we are
addressing here is learned by increasing the number of layers.

Larger permeabilities.—This example investigates the effect
of increasing the permeability of the benchmark sequence. To
do so, we now let ` lie in the range 8 µm <`< 80 µm, which
corresponds roughly to increasing the permeabilities by a fac-
tor of 16. In Figure 7, we see that the peak in interlayer-flow
attenuation has indeed been shifted by roughly a factor of
16 [as equation (2) predicts]. The result is merely a shift in cen-
ter frequency; the magnitude of the interlayer-flow attenuation
has not been altered by increasing the permeability. At higher
frequencies, the slow-wave effects on the P-wave scattering are
a bit more pronounced because the amplitude of a slow wave
generated at an isolated interface increases with permeability.

Larger frame compliances.—This example investigates the
effect of increasing the compliance of the framework of grains.

FIG. 6. Phase velocity, Q−1, and the relative difference (Q−1
p −

Q−1
v )/Q−1

p for the benchmark synthetic sequence correspond-
ing to the properties shown in Figure 5.
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To do so, we increase the range of the frame-compliance fac-
tor to 12<a< 24, while keeping all other properties as in the
benchmark sequence. The results are displayed in Figure 8. As
expected, the location of the center frequency of the interlayer-
flow attenuation is unaltered, but the level of this attenu-
ation has been increased (Skempton’s coefficient is larger).
Slow-wave effects at higher frequencies are again more pro-
nounced than in the benchmark example, which again is due to
the fact that the amplitude of a generated slow-wave increases
with rock compliance.

Dependence on the angle of incidence.—Next, we consider
the effect of angle of incidence for the benchmark sequence. In
the upper part of Figure 9, we show the fully poroelastic attenu-
ation at four different angles of incidence. Except at the largest
angle of 80◦ for which postcritical incidence holds at all inter-
faces in the stack, we see that the interlayer-flow attenuation
is largely independent of the angle of the incidence. Interest-
ingly, the high-frequency attenuation is strongly affected. In
the lower part of the figure we compare the poroelastic atten-
uation at θ = 60◦ to the viscoelastic attenuation at θ = 0◦, 30◦

and 60◦. We see that the high-frequency viscoelastic attenua-
tion is roughly independent of angle of incidence. The large
slow-wave effect being observed at high frequencies is due to
the fact that the amplitude of generated slow-waves at isolated
interfaces steadily increases with increasing angle of incidence.

A thin-layered sand sequence.—As a final example, we move
away from the benchmark sequence and consider a stack hav-
ing thinner, more compliant, and more permeable layers. Such

FIG. 7. Phase velocity, Q−1, and the relative difference (Q−1
p −

Q−1
v )/Q−1

p for a high-permeability variant of the benchmark
synthetic sequence. The mercury-breakthrough pore diame-
ters ranged from 8 to 80 µm, corresponding to permeabilities
roughly 16 times larger than that in Figure 5. The dominant
effect is that the interlayer-flow attenuation peak is shifted to
higher frequency.

a sequence might correspond to a shallow-sand sequence in a
sedimentary basin with subtle layering effects being caused by
variations in the sediment flux and grain sizes at time of burial.
Stratification in many sandstones can be observed down to the
centimeter scale or even smaller.

In this example we thus let the layers vary between 1 and
10 cm in thickness and let the lithological properties vary as
0.10<φ< 0.30, 20µm<`< 80µm, 10<a< 24. This range still
corresponds to consolidated sediments. The sequence proper-
ties are shown in Figure 10, and the attenuation and dispersion
are shown in Figure 11. An interesting effect in this example is
that Q−1 is virtually constant across the surface-seismic band.
Such a constant Q effect is entirely due to the interlayer flow,
that is, Biot slow waves. It is somewhat robust with respect
to different sequences of random numbers and also rather ro-
bust to variations in the permeability and compliance ranges.
However, as should be expected from equation (2), it requires
a wide range of layer thicknesses. If the range of layer thick-
nesses is restricted, for example, to just a few centimeters, the
constant Q effect disappears. Finally, because the sands of this
example are both compliant and permeable relative to, say,
the well-consolidated Blackhawk formation, we find that there
are significant slow-wave effects throughout the entire range
of frequencies.

CONCLUSIONS

We have numerically modeled P-wave propagation in strat-
ified sediments using Biot’s (1962) theory. As understood and
analytically modeled by previous authors, the equilibration of
fluid pressure between adjacent layers in a stack can cause

FIG. 8. Phase velocity, Q−1, and the relative difference
(Q−1

p − Q−1
v )/Q−1

p for a larger-frame-compliance variant of
the benchmark synthetic sequence. The compliance factors a
of equation (17) are taken to lie in the range 12 to 24. The
low-frequency attenuation has been increased in magnitude
but unaltered in frequency relative to the benchmark.
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FIG. 9. The effect of angle of incidence on the transmitted am-
plitudes. The upper panel shows just the effects on the poroe-
lastic attenuation; the lower panel shows the poroelastic at-
tenuation at θ = 60◦ compared to the viscoelastic attenuation
at θ = 0◦, 30◦, and 60◦. The interesting poroelastic effect is the
increase of attenuation at very high frequencies due to the
fact that slow waves are more easily generated at larger an-
gles of incidence. The viscoelastic attenuation shows no such
high-frequency increase with angle of incidence.

FIG. 10. The material properties corresponding to thin layers
of sand having variable grain sizes. The layer thicknesses range
from 1 to 10 cm.

significant attenuation in the surface-seismic band. Thinner lay-
ers and/or higher permeabilities shift the center frequency for
these effects to higher frequencies as dictated by equation (2).
In a typical sandstone formation, if the layer thicknesses are all
taken to be greater than, say, 1 m, the interlayer-flow attenua-
tion is pushed to frequencies below the surface-seismic band of
interest. Sedimentary rocks have variations down to the cen-
timeter scale, and it is likely that such slow-wave equilibration
is the dominant source of low-frequency attenuation in a sedi-
mentary basin. Because well logs usually only provide resolu-
tion of material properties down to the scale of about 1 m, they
should not be used to generate the layer models for studying
this effect. The slow-wave effects are enhanced in more compli-
ant sediments due to the enhanced value of Skempton’s coeffi-
cient. In a synthetic (but nonetheless reasonably realistic) sand
sequence, virtually constant Q was observed across the entire
surface-seismic band. Another new observation is that because
slow-waves generated at an isolated interface have amplitudes
that increase with both frequency and angles of incidence, they
can significantly alter the predicted P-wave scattering. This can
be up to a 50% effect in the normal-incidence examples consid-
ered here and as much as an order of magnitude at nonnormal
incidence.
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p for the thin layers of the sand model in Figure 10.
The interesting feature here is the constant Q across the seismic
band caused by the interlayer flow.



280 Pride et al.

Lawrence Livermore National Laboratory under contract No.
W-7405-ENG-48 and supported specifically by the Geosciences
Research Program of the DOE Office of Energy Research
within the Office of Basic Energy Sciences, Division of En-
gineering and Geosciences.

REFERENCES

Aki, K., and Richards, P. G., 1980, Quantitative seismology: W. H.
Freeman & Co.

Berryman, J. G., 1980a, Long-wavelength propagation in composite
elastic media I. Spherical inclusions: J. Acoust. Soc. Am. 68, 1809–
1819.

——— 1980b, Long-wavelength propagation in composite elastic me-
dia II. Ellipsoidal inclusions: J. Acoust. Soc. Am. 68, 1820–1831.

Berryman, J. G., and Thigpen, L., 1985, Linear dynamic poroelastic-
ity with microstructure for partially saturated porous solids: ASME
J. Appl. Mech., 52, 345–350.

Biot, M. A., 1956a, Theory of propagation of elastic waves in a fluid-
saturated porous solid. I. Low-frequency range: J. Acoust. Soc. Am.,
28, 168–178.

——— 1956b, Theory of propagation of elastic waves in a fluid-
saturated porous solid. II. Higher frequency range: J. Acoust. Soc.
Am., 28, 179–191.

——— 1962, Mechanics of deformation and acoustic propagation in
porous media: J. Appl. Phys., 33, 1482–1498.

Biot, M. A., and Willis, D. G., 1957, The elastic coefficients of the theory
of consolidation: J. Appl. Mech., 24, 594–601.

Chin, R. C. Y., Berryman, J. G., and Hedstrom, G. W., 1985, General-
ized ray expansion for pulse propagation and attenuation in fluid-
saturated porous media: Wave Motion, 7, 43–66.

Deresiewicz, H., and Skalak, R., 1963, On uniqueness in dynamic
poroelasticity: Bull. Seis. Soc. Am., 53, 783–788.

Gelinsky, S., and Shapiro, S. A., 1997, Dynamic-equivalent medium ap-
proach for thinly layered saturated sediments: Geophys. J. Internat.
128, F1–F4.

Gelinsky, S., Shapiro, S. A., Müller, T., and Gurevich, B., 1998, Dynamic
poroelasticity of thinly layered structures: Internat. J. Solids Struct.,
35, 4739–4751.

Gurevich, B., and Lopatnikov, S. L., 1995, Velocity and attenuation of
elastic waves in finely layered porous rocks: Geophys. J. Internat.,
121, 933–947.

Gurevich, B., and Schoenberg, M., 1999, Interface conditions for Biot’s
equations of poroelasticity: J. Acoust. Soc. Am., 105, 2585–2589.

Hashin, Z., and Shtrikman, S., 1961, Note on a variational approach
to the theory of composite elastic materials: J. Franklin Inst., 271,
336–341.

Johnson, D. L., Koplik, J., and Dashen, R., 1987, Theory of dynamic
permeability and tortuosity in fluid-saturated porous media: J. Fluid
Mech., 176, 379–402.

Kennett, B. L. N., 1983, Seismic wave propagation in stratified media:
Cambridge Univ. Press.

Kennett, B. L. N., and Kerry, N. J., 1979, Seismic waves in a stratified
half space: Geophys. J. Roy. Astr. Soc., 57, 557–583.

Korringa, J., Brown, R. J. S., Thompson, D. D., and Runge, R. J.,
1979, Self-consistent imbedding and the ellipsoidal model for porous
rocks: J. Geophys. Res., 84, 5591–5598.

Norris, A. N., 1993, Low-frequency dispersion and attenuation in par-
tially saturated rocks: J. Acoust. Soc. Am., 94, 359–370.

Plona, T. J., 1980, Observation of a second bulk compressional wave
in a porous medium at ultrasonic frequencies: Appl. Phys. Lett., 36,
259–261.

Pride, S. R., and Haartsen, M. W., 1996, Electroseismic wave properties:
J. Acoust. Soc. Am. 100, 1301–1315.

Shapiro, S. A., and Müller, T., 1999, Seismic signatures of permeability
in heterogeneous porous media: Geophysics, 64, 99–103.

Skempton, A. W., 1954, The pore-pressure coefficients A and B:
Geotechnique, 4, 143–147.

Thompson, A. H., Katz, A. J., and Krohn, C. E., 1987, The microge-
ometry and transport properties of sedimentary rock: Advances in
Physics, 36, 625–694.

White, J. E., Mikhaylova, N. G., and Lyakhovitsky, F. M., 1975,
Low-frequency seismic waves in fluid-saturated layered rocks:
Izvestija Academy of Sciences USSR, Phys. Solid Earth, 11, 654–
659.

APPENDIX A
THE REFLECTIVITY SCHEME

Kennett’s reflectivity method (Kennett and Kerry, 1979)
builds up theR0 and T0 matrices of equation (22) iteratively by
starting at the top of the lower half-space and adding on one
layer per iteration until the total-stack response is constructed.
The recursion is obtained by simple intuitive reasoning and is
exact. Imagine that we have a stack of layers in which the top-
most interface is called ` and that we know the total-reflection
matrix R` and the total-transmission matrix T` for this stack.
Another layer is then added to the top of the stack so that the
topmost interface is now `− 1. If downward plane waves are
incident on this topmost layer and if the reflection and trans-
mission at interface `− 1 as well as all internal reverberations
within layer ` are included, one obtains the following recursion
relations:

R`−1 = Rd
`−1 + Tu

`−1R̄`
(
I − Ru

`−1R̄`
)−1

Td
`−1 (A-1)

T`−1 = T̄ `
(
I − Ru

`−1R̄`
)−1

Td
`−1 (A-2)

R̄` = E`R`E` (A-3)

T̄ ` = T`E`. (A-4)

The iteration begins with `= L ,RL = Rd
L , andTL = Td

L , and then
counts backwards (adds layers) to `= 1. It uses the upward and
downward reflection and transmission matrices Ru,d

` and Tu,d
`

for each isolated interface ` as well as the phase-advancement
diagonal matrix E` for each layer ` defined as

E` = diag{eiωqPh`, eiωqslowh` , eiωqSVh`}, (A-5)

where the various qξ are the complex vertical slownesses for
each wave type ξ = P, slow, SV. Although the index ` is sup-
pressed, the qξ will be different in general for each layer. The
vertical slownesses are related to the complex phase slownesses
sξ and the real horizontal slowness p as

q2
ξ + p2 = s2

ξ . (A-6)

The qξ always have Im{qξ }> 0 and, as such, the elements of
E` always have amplitudes less than one, so that the above
recursion is numerically stable. The matrix I is the identity ma-
trix, and the inverse matrix (I − Ru

`−1R̄`)−1 when expanded in
series is seen to correspond to all the internal reverberations
of the layer `.

The reflection and transmission matrices at an isolated in-
terface are determined from the boundary conditions that
hold at a porous interface. Pride and Haartsen (1996) [c.f.,
Deresiewicz and Skalak (1963), Berryman and Thigpen (1985),
and/or Gurevich and Schoenberg (1999)] have shown that for
open and even partially sealed interfaces, the field components
in the array

b = [ux, uz, wz, τxz, τzz,−p]T (A-7)

must be continuous. Thus, the boundary condition at interface
` is simply

b` = b`+1. (A-8)

Deresiewicz and Skalak (1963) introduced the notion of an
interface permeability which can be given some justification



Slow-wave Effects in Stratified Rock 281

when there exists a thin layer of transition material separat-
ing two porous materials and when it is desired to allow for
such a thin layer implicitly using an “effective” boundary con-
dition. But in this case, all the components (not just the fluid
pressure) can suffer jumps at the interface, and this fact was not
properly considered by Deresiewicz and Skalak. In the present
work, such thin layers are modeled explicitly so that no such
effective boundary conditions are required.

The response b at a given point in a given layer is the sum
of all the various upgoing and downgoing plane waves that are
present at that point. Following Kennett and Kerry (1979), the
first-order arrayw is defined to contain the various plane-wave
amplitudes

w = [uP, uslow, uSV, dP, dslow, dSV]T , (A-9)

and can be written in the partitioned form w= [u, d]T . Simi-
larly, the matrix D is defined to have columns that contain the
normalized response of each of the six types of plane waves in
a uniform material

D = [bu
P, b

u
slow, b

u
SV, b

d
P, b

d
slow, b

d
SV

]
, (A-10)

where each bu,d
ξ vector has the physical components defined by

equation (A-7). Thus, the total material response b at a given
point is simply

b = Dw. (A-11)

The columns of D are often called the eigenvectors of the gov-
erning equations (3)–(6), while the ωqξ are the eigenvalues.
Pride and Haartsen (1996) determined such plane-wave re-
sponse exactly for porous media, and we simply state their
results here.

For the longitudinal-wave response bu,d
ξ with ξ = P, slow, we

have

bu,d
ξ =



p/sξ
±qξ /sξ
±qξβξ /sξ
±2iωGpqξ /sξ

iωsξ
(
H − 2Gp2

/
s2
ξ + βξC

)
iωsξ (C + Mβξ )


, (A-12)

where βξ is an auxiliary term defined as

βξ = −
Hs2

ξ − ρ
Cs2

ξ − ρ f
. (A-13)

The two longitudinal-wave phase slownesses are given by

2s2
P,slow = γ ∓

√
γ 2 − 4

ρρ̃ − ρ2
f

M H − C2
, (A-14)

where γ is another auxiliary term

γ = ρM + ρ̃H − 2ρ f C

M H − C2
, (A-15)

and where

ρ̃ = i

ω

η

k(ω)
(A-16)

defines the effective inertia of the fluid in relative motion. The
transverse-wave response bu,d

SV is

bu,d
SV =



±qSV/sSV

−p/sSV

−(ρ f /ρ̃)p/sSV

iωG
(
q2

SV − p2
)/

sSV

∓2iωGqSV p/sSV

0


, (A-17)

where the transverse-wave phase slowness is

s2
SV =

ρ − ρ2
f

/
ρ̃

G
. (A-18)

All of these plane-wave responses have been normalized with
respect to the solid displacements.

Finally, to obtain the required isolated-interface reflection
and transmission matrices, we use the notation of Kennett and
Kerry (1979) and write the eigenvector matrix in the parti-
tioned form

D` =
[

Mu
` Md

`

Nu
` Nd

`

]
,

(A-19)

where the M partitions correspond to the displacements
and the N partitions to the stresses. The downward reflec-
tion/transmission matrices are obtained by imposing down-
ward waves incident from above on an isolated interface `.
We thus write the plane-wave amplitudes just above the in-
terface in the partitioned form w`= [u, 1]T and the amplitudes
just below the interface as w`+1= [0, d]T , so that the down-
ward reflection/transmission matrices are defined by u= Rd

` · 1
and d= Td

` · 1. The upward reflection/transmission matrices are
similarly defined by imposing upward waves incident from
below at the same interface. Using the continuity condition
b`= b`+1 and the representation b= Dw then gives

Rd
` = −

[
Nu
` − Nd

`+1

(
Md
`+1

)−1
Mu
`

]−1

×
[
Nd
` − Nd

`+1

(
Md
`+1

)−1
Md
`

]
, (A-20)

Td
` =

(
Md
`+1

)−1[
Md
` + Mu

` Rd
`

]
, (A-21)

Ru
` = −

[
Nd
`+1 − Nu

`

(
Mu
`

)−1
Md
`+1

]−1

×
[
Nu
`+1 − Nu

`

(
Mu
`

)−1
Mu
`+1

]
, (A-22)

Tu
` =

(
Mu
`

)−1[
Mu
`+1 + Md

`+1 Ru
`

]
. (A-23)

All formulas have now been given that are used to determine
the reflection from and transmission through a stack of porous
layers as a function of (ω, p).
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