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SUMMARY

First-order elastic wave scattering theory, validated in general features by deep-borehole
seismic coda wave observations, is used to numerically simulate time-lapse borehole
seismic data aimed at monitoring oil–water substitution in heterogeneous hydrocarbon
reservoirs. A first-order perturbation solution of the vector wave equation leads to P–P
and S–S backscattered displacement vector motion expressed as the angular summation
of the second radial derivative of P- and S-wave velocity and density fluctuations ak /a,
bk /b, rk /r over expanding spherical wave fronts of radii j=at /2 and j=bt /2. P- and
S-wave velocity and density spatial heterogeneity is modelled as long-range correlated
random fluctuations consistent with the power-law-scaling character of crustal rock
physical properties measured by borehole logs. The spectra of model scattering displace-
ment seismograms for a power-law-scaling volumetric noise distribution duplicate
the frequency enrichment observed in the spectra of broadband earthquake coda waves
recorded in a deep well. Modelling of time-lapse scattering in power-law-scaling
permeability structures suggests that a stable borehole seismic source can locate oil–
water substitution in reservoir volumes tens of metres on a side at distances of up
to a few hundred metres from an observation well using currently available borehole
seismic technology. Time-lapse tracking of oil–water substitution and the monitoring of
reservoir stress conditions can lead to spatially well-constrained reservoir models,
despite large-scale, large-amplitude correlated random heterogeneity.
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1 INTRODUCT ION

This paper develops a numerical model of time-lapse borehole

seismic backscatter imaging using a source and sensors operating

in a single oilfield production well. The goal is to provide cost-

effective images of progressive oil–water substitution volumes

by using available borehole installations to map the large-scale

drainage structure of heterogeneous hydrocarbon reservoirs.

1.1 Time-lapse hydrocarbon reservoir seismic
monitoring

Hydrocarbon distribution and flow in heterogeneous rock

depends variously on dynamic fluid diffusion parameters—

flow rates, pressures, temperatures, relative permeabilities and

saturation—and on quasi-static rock structure—porosity, pore-

connectivity, large- and small-scale flow barriers, variable

lithology and microcrack alignment. Experience indicates that

the spatial variation of hydrocarbon distribution and flow is

usually too complex to model reliably using stochastic methods

constrained by small-scale well-core data (e.g. Francis &

Pennington 2001). Since inaccurate reservoir models lead to

inefficient and incomplete hydrocarbon recovery, the increased

demand for more efficient and complete hydrocarbon recovery,

particularly in offshore oilfields, fuels the need for better methods

to determine the large-scale flow-heterogeneity structure of

draining reservoirs (van Riel 2000; Oil & Gas Industry Task

Force 2001; Francis & Pennington 2001).

A direct way to address the reservoir drainage heterogeneity

problem is to observe the spatial position of changing reservoir

fluids through time-lapse seismics (Sparkman 1998; Christie

& Ebrom 2000; Jack 2001; Tura & Cambois 2001; Gutierrez,

Dvorkin & Nur 2001). Time-lapse seismic monitoring of hydro-

carbon production is well established in principle. Stable seismic

sources and sensors take repeat ‘snapshots’ of a crustal reservoir

containing gas, oil and/or water. As one fluid phase displaces

another during fluid injection or extraction, part of the reservoir

undergoes a change in elastic properties due to its changing pore

fluid content. Provided the sources and sensors are sufficiently

stable and ambient noise is sufficiently small, the significant

changes in the ‘snapshot’ seismograms are due to the changes
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in fluid properties within localized fluid substitution volumes.

By comparing a time sequence of stably sourced and sensed

seismograms, the reservoir drainage structure can be spatially

mapped from progressive changes in the amplitude and/or

phase of a few seismic backscatter wavelets.

Early demonstrations of the time-lapse seismic monitoring

principle are presented in Sheriff (1992). Specific examples

include surface seismic tracking of in situ combustion (Greaves

& Fulp 1987), oil–water substitution (Dunlop et al. 1988), and

steam-fronts in tar sands (Pullen et al. 1987; Matthews 1992).

In addition, cross-well acoustic tomography has successfully

surveyed enhanced recovery by heat-injection (Justice et al.

1989; Paulsson et al. 1994). Martin & Davis (1987) discuss

shear wave polarization changes due to changes in aligned

fractures during production; Talley et al. (1998) use time-lapse

seismics to monitor a CO2 flood for reservoir flow anisotropy

and permeability structure. With time, more extensive surveys

of large-scale production systems were essayed with repeat

surface seismic surveys, highlighting the importance of the

time-lapse images, but also the need for repeatable sources and

stable sensors in acquiring useful time-lapse images (Christie &

Ebrom 2000; Dumont et al. 2001). The case for permanently

instrumented oilfields is discussed by Ebrom et al. (2000).

Current experience shows, however, that stable time-lapse

surface seismic and/or acoustic tomographic infrastructure can

be costly, and data acquisition and processing can be time-

consuming (Oil & Gas Industry Task Force 2001). Costs may

be particularly significant for offshore hydrocarbon reservoir

monitoring requiring seafloor installations. A potentially efficient

scheme for time-lapse reservoir monitoring is to exploit

production wells in order to place seismic sources and sensors

in closer proximity to reservoir fluid fronts. The required

imaging infrastructure reduces to a sensor string placed outside

the production tubing at reservoir depth, and a compact,

benign and stable seismic source deployed periodically in the

well at reservoir depth. Processing and interpreting the seismic

backscatter ‘reflection snapshots’ is straightforward, speedy

and low cost.

As with most time-lapse seismics, the essential issue is

the source signal strength. The signal strength of time-lapse

seismic backscatter images acquired with a source and a sensor

string in a production well must be assessed before practical

attempts can be made to implement the scheme. Signal strength

must meet two criteria: (1) the absolute backscattering signal

must exceed uncorrelated random background seismic noise in

the sensor string; and (2) the relative time-lapse signal must

exceed observational noise levels due to variations in seismic

backscattered waves arising from a variable source wavelet.

An accurate assessment of the time-lapse backscattering signal

strength requires folding the source and sensor performance

data into suitable physical models of fluid-filled reservoir rock

and the seismic scattering process. A data-driven reservoir

heterogeneity model is discussed in Sections 1.2 to 1.4, and the

appropriate first-order seismic backscattering formalism is

derived in Sections 2.1 to 2.4 (see Appendix A for a full list of

the notation used). Sections 3.1 and 3.2 calibrate the resulting

model backscattering seismograms against deep-well obser-

vations of earthquake-generated scattering data. Recent bore-

hole source performance data are used in Section 4 to illustrate

the strength and stability of the time-lapse backscatter image

signals available with current technology at small source–sensor

offsets. Section 5 extends the backscattering imaging formalism

to the wide source–sensor offsets deployed for multisource,

multisensor static imaging data. The modelling results are

summarized in Section 6.

1.2 Generic reservoir fracture heterogeneity

An accurate estimate of the seismic scattering in reservoir

rock requires good physical control of elastic property spatial

variation. Borehole logs provide a rich source of physically

accurate data on the spatial variation of reservoir-rock physical

properties (Leary 1991; Turcotte 1992; Al-Kindy 1999). A large

number of logs and well-core sequences indicate that reservoirs,

and crustal rock in general, are characterized by a generic

stochastic spatial heterogeneity associated with fracture and

fluid percolation (Leary 1997, 1998). In particular, Leary &

Al-Kindy (2002) find from well-core porosity and permeability

sequences of a producing North Sea oilfield that: (1) porosity

and log (permeability) fluctuations are 80 per cent spatially

cross-correlated in hydrocarbon-bearing sandstones; and (2) the

well-core porosity and permeability fluctuations have the same

power-law-scaling random spatial correlation as seen extensively

in borehole logs. It follows that reservoir flow heterogeneity is

physically intimately associated with the spatial heterogeneity

recorded in hundreds of well logs.

Fig. 1 encapsulates the physical model for computing back-

scattering seismograms, and illustrates the importance of the

time-lapse imaging of draining reservoirs. The left-hand column

shows two examples of random spatial property fluctuations.

The 2-D spatial distributions are slices from a single 3-D

model spatial distribution controlled by well-log and well-core

fluctuation statistics. That is, the two left-hand distributions

of Fig. 1 are such that any borehole log drilled along the

slice would produce spatial fluctuations that are statistically

consistent with spatial fluctuations observed in situ.

The central and right-hand columns of Fig. 1 partition the

left-hand column distributions by scale-length range to show the

essential physical features of crustal rock stochastic fluctuation

distributions: the significant stochastic spatial fluctuations are

associated with large scale-lengths (centre column) rather than

small scale-lengths (right-hand column).

The central column distributions extract from the left-hand

column the spatial fluctuations that occur over large scale-

lengths (Fourier spatial frequencies 1–8), while the right-hand

column distributions show the small-scale-length fluctuations

(Fourier spatial frequencies 9–128). The large-amplitude, large-

scale stochastic spatial flow variability of the central column

captures the spatial drainage fluctuation properties of the left-

hand distributions, but the small-amplitude, small-scale spatial

fluctuations of the right-hand columns carry no information

about the large-scale spatial random structures that control the

reservoir drainage pattern. Since individual well-core samples

contain only small-scale spatial information about reservoir

structure, it follows from Fig. 1 that the important large-scale

heterogeneous reservoir structure cannot be reliably inferred

from small-scale fluctuation data. The large-scale structures

of the central column are, however, the essential drainage

structures that a reservoir model should seek to incorporate.

The Fig. 1 central column structures are, consequently, the

target of high-resolution time-lapse borehole seismic imaging.

The small-scale structures of the right-hand column provide

seismic scattering background noise, whose contribution to the

scattering seismograms also needs to be computed.
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1.3 Numerical simulation of seismic scattering at
stochastic spatial fluctuation structures

Because of the stochastic origin of much reservoir structural

complexity, the seismic scattering simulations designed to

deal with reservoir complexity are inherently numerical. The

realistic simulation of stochastic structures such as reservoir

rock requires large model volumes to capture the fluid flow-

path connectivity that varies over a large range of spatial

wavelengths. Traditional ‘effective medium’ spatial averaging

of rock heterogeneity models is valid only for the right-hand

column distributions of Fig. 1, and hence misses the essential

reservoir spatial complexity distribution illustrated by the

central column.

The 3-D reservoir spatial structures illustrated in Fig. 1

contain approximately 100 spatial frequencies and approxi-

mately 4 million scattering elements. The large number of

spatial frequencies and scattering elements in such stochastic

fluctuation structures requires that numerical simulation of

seismic imaging data is computationally efficient. Efficient com-

putation is achieved by approximating the scattering amplitude

in terms of a point-scatterer at each location in the data

cube. Each point-scatterer amplitude is rapidly computed from

the second-order spatial derivatives of the 3-D stochastic

fluctuations at that point.

Summation over 3-D point-scatterer distributions with y200

nodes on a side accurately simulates vector seismograms with

five octaves of seismogram frequency. For a data cube with 200

nodes on a side, the 32 seismogram frequencies span seismic

wavelengths of lmin#3 data-cube nodes (needed to define

second-order spatial derivatives in the data cube) to lmax#100

data-cube nodes (the half-width of the data cube).

A five-octave spectral bandwidth of 32 frequencies is com-

parable to the best-controlled-source seismic data. In a typical

borehole seismic sourcing and sensing configuration, the range

of backscattering observation radii extends from jmin#10 m,

as constrained by using model plane waves for scattering

dynamics, to jmax#200 m, as constrained by source power and

stability and by sensor ambient noise levels. Scattering seismo-

grams computed for a data cube of a notional 2 m node

spacing in a medium with a P-wave velocity of ay3 m msx1

have frequencies that span the five octaves from 15 to 500 Hz

typical of actual borehole seismic sources.

Scattering computations for spherical surfaces embedded in

a data cube with y200 nodes on a side sum approximately

4 million numerical scattering amplitudes. With this number of

scattering contributions to each seismogram, wideband simu-

lated seismic motion yields robust frequency spectra charac-

teristic of the scattering medium fluctuation statistics. In

particular, the present numerical simulations duplicate the 1/t

amplitude decay and df spectral enrichment of seismic coda

waves in the five-octave frequency band 5–160Hz recorded at a

depth of 2.5 km (Leary & Abercrombie 1994a,b).

1.3 Signal-to-noise ratios in time-lapse seismic imaging
of heterogeneous reservoirs

In modelling time-lapse seismic images of hydrocarbon reservoirs

to distinguish high-flow from low-flow reservoir regions as in

Fig. 1, it is necessary to estimate the background scattering

Figure 1. 2-D slices of random spatial noise controlled by the fluctuation statistics of rock observed in borehole logs. (Left) Two sections of 7-octave

(spatial frequencies 1–128) spatial fluctuations. (Centre) Three octaves of low-frequency, high-amplitude fluctuations (spatial frequencies 1–8).

(Right) Four octaves of high-frequency low-amplitude fluctuations (spatial frequencies 9–128). High-amplitude, low-frequency spatial fluctuations

determine the overall structure of the section, while low-amplitude, high-frequency spatial fluctuations are structurally irrelevant. The low-frequency

stochastic structure cannot be determined from small-scale sampling of the data cube, and hence efficient production of reservoirs requires measuring

of the low-frequency flow structure by direct observation. The numerical distributions provide the elastic property model spatial fluctuations from

which to compute the model seismic scattering seismograms.
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noise level. Consider a seismic scattering seismogram X(t) to be

the result of convolving a source wavelet S(t) with an earth

structure E(t); that is, X(t)=S(t)*E(t). A subsequent survey can

be expressed as

XðtÞ þ *X ðtÞ ¼ ½SðtÞ þ *SðtÞ�1½EðtÞ þ *EðtÞ� ,

for increments DS(t), DE(t), and DX(t) representing changes in,

respectively, the seismic source wavelet, the earth structure due

to oil–water substitution in a portion of the reservoir, and the

seismic survey signal. It follows that the change in the seismic

survey signal DX(t) has contributions from changes both in the

earth structure DE(t) and in the source wavelet DS(t):

*X ðtÞ&*EðtÞ1SðtÞ þ *SðtÞ1EðtÞ :

If the change in source wavelet due to experimental noise is

large, then the change in earth structure is obscured and the

survey technique is inadequate.

The size of the experimental noise is estimated from the

stability of the seismic source DS(t) and the whole-reservoir

scattering response E(t) computed by summing seismic back-

scatters over the entire model volume. At the same time, the

target scattering signal DE(t) is computed from scattering at the

active reservoir subvolume undergoing oil–water substitution.

A method for computing physically accurate estimates of scatter-

ing amplitudes represented by E(t) and DE(t) is developed in

Section 2.

2 F IRST -ORDER BACKSCATTER ING
FORMALI SM FOR HETEROGENEOUS
MEDIA

A seismic wave propagating in a non-absorbing but spatially

heterogeneous medium is naturally treated in terms of (1) a

source pulse which remains unaltered in wave shape despite

interactions with the heterogeneities, and (2) scattered waves

generated by the source pulse as it encounters heterogeneities in

the medium. This is the standard first-order (Born) pertur-

bation approximation to an exact solution (Hudson 1977; Aki

& Richards 1980).

The geometry of the source-wave/scattered-wave process

is diagrammed in Fig. 2. A disseminated scattering volume

is centred about a seismic source at the origin. A seismic sensor

at position r registers scattered waves from elastic hetero-

geneities at sites j. The source emits a spherically symmetric

P or S wave which reaches a scattering volume element j at

time t=j /a or t=j /b. Upon encountering the scattering

volume, the source wave generates a secondary spherical wave

(either a P or S wave) which reaches the sensor at traveltime

tk=|jxr| /a or tk=|jxr| /b. For P–P and S–S scattering, the

total elapsed times of the scattering signal are t=(j+|jxr|) /a
or t=(j+|jxr|) /b.

In line with the assumption that the source pulse remains

unaffected by scattering, it is assumed that scattered waves

travel through the medium without themselves being re-scattered.

Both source and scattered waves are assumed to be not signi-

ficantly refracted by smooth velocity trends in the medium.

As long as the degree of elastic heterogeneity is small, and/or

the total travel path of the source + scattered wave is not

too long, the single scattering and constant mean velocity

approximations are consistent with borehole sonic velocity log

fluctuation magnitudes and trends.

Crustal seismic coda wave scattering data appear to validate

the single-scattering approximation for in situ applications.

Leary & Abercrombie (1994a,b) found that, for earthquake-

generated seismic scattering recorded at depth in crustal rock,

first-order scattering is a good approximation to at least 150 Hz

for shear waves travelling tens of kilometres. The deep-well

coda data indicated that multiple scattering became important

only for lapse times that far exceed the times relevant to seismic

imaging of reservoirs. These data also demonstrate that, com-

pared with intrinsic absorption, scattering is an unimportant

mechanism for attenuating seismic waves (Leary 1995).

The deep-well coda wave data are particularly important in

validating the first-order scattering approximation applied to

the real Earth. In situ coda motion is determined by scattering

from 3-D distributions of power-law-scaling elastic hetero-

geneities. Most attempts to compute the validity of the single-

scattering approximation are restricted to two dimensions,

to scattering distributions determined by a fixed scale-length,

and to media with hypothesized rather than observationally

constrained intrinsic absorption losses. In view of these very

considerable limitations, it is perhaps not surprising that

physical models and numerical simulations of seismic coda

have left matters somewhat undecided. Dubendorff & Menke

(1986) and Frankel & Clayton (1986) found support for first-

order scattering approximations. Matsunami (1991), Hoshiba

(1991), and Roth & Korn (1993) found that scattering atten-

uation is negligible compared with intrinsic attenuation. Li &

Hudson (1997) concluded from a 2-D scattering simulation

that first-order scattering does not account for observed coda

wave amplitudes, and suggested that multiple scattering con-

tributions need to be computed. The range of validity of the

first-order scattering approximation is thus potentially open to
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Figure 2. A source (asterisk) of spherically propagating waves is

located at the origin of a triaxial coordinate system, and a vector sensor

(triangle) is located in a borehole through the origin along the vertical

axis at position r. A region of point scattering elastic heterogeneities at

positions j emit a scattered wave that travels to the sensor along the

vector jxr.
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question. However, deep-well coda data closely paralleling the

conditions of numerical simulations undertaken here support

the first-order scattering approach to seismic imaging.

2.1 Seismic scatterers as point-force radiators

Seismic scattering amplitudes are computed by combining

expressions given by Aki & Richards (1980) for P- and S-wave

point-force radiation vector displacement fields and for point

forces generated by heterogeneities in the properties of the

material. The point-force terms arise in the first-order scatter-

ing approximation to the exact vector wave equation. The

scattered wavefield defined by the first-order scattering approxi-

mation is a complex amalgam of P- and S-wave motion over all

space. We are initially interested only in that portion of space

in which the P and S waves have separated and for which

it is simple to express the complex wave amplitude and phase

analytically. In that case we dispense with the complexities

inherent in the general first-order scattering solution to the

wave equation and simply regard the point-force scatterers

as sources of P and S radiation of magnitude and direction

determined by spatially fluctuating material properties with

phase given by the source–scatterer traveltime. For narrow-

aperture backscattering, one can analytically sum over the

infinite frequency bandwidth to define an impulse or d-function

in total traveltime, and to perform a radial integration over

the d-function to define the separated P–P and S–S impulse

responses of the scattering medium as the sum over all angles

subtended by the scattering volume. The angular summation

can be efficiently computed for broadband scattering structures

representing realistic earth heterogeneity.

Beginning with narrow-aperture backscattering, a point

force at the origin is aligned along the 1-axis. The point-force

radiation amplitude is specified by (1) the direction cosine

c1=h1r=cos h relative to the 1-axis, (2) the point-force magni-

tude I1 in Newtons (N) along the 1-axis, and (3) the non-

dimensional source-wave time signature S(t). The P- and

S-wave vector displacement uki(r, t) in units of metres registered

at time t by a sensor at location r is

u0tðr, tÞ ¼ð4na2orÞ�1cic1=1Sðt� r=aÞ

þ ð4nb2orÞ�1ðdi1 � cic1Þ=1Sðt� r=bÞ , (1)

where ci=hir fixes the polarization of the motion as a function

of sensor position, r=|r| is the distance between scatterer

and sensor, and a and b are the (assumed) uniform P and S

wave speeds of the medium. The contraction ci(di1xcic1)=
c1xcicic1=c1xc1=0 indicates that the S-wave motion is

orthogonal to the radial P-wave motion. The factor c1 indicates

that, for a point-force along the 1-axis, the P-wave radiation

is maximum in the 1-direction (cos h=1) and zero along the

2- and 3-axis directions (cos h=0). The 1-component of the

S-wave radiation is proportional to 1xcos2h and is therefore

zero along the 1-axis (h=0u) and maximum along the 2- and

3-axes (h=90u).
In the present notation, the geometric coordinate system for

each scatterer is determined by the source–scatterer axis and

the wave polarization. The 1-axis is associated with the direction

of source-wave travel, with the 2- and 3-axes transverse to

the direction of travel. The spatial variations of the material

properties generate radial and transverse derivatives relative to

the source–scatterer axis. The radial derivative is expressed

equally by h1 or hj, and transverse derivatives by h2 and h3. The

transverse coordinate axes can be orientated with respect to the

polarization of the source S wave.

The point-force sources of scattered seismic radiation are

found in relation to the source wave by expanding the exact

vector wave equation in a two-term perturbation series. The

displacement wavefield and material properties are expressed

as perturbations (primed symbols) on the uniform (unprimed

symbols) elastic constants, r+rk, l+lk, m+mk, and on the

source field ui(r, t) plus the scattered wavefield uki(r, t).
The primed scattered wavefield and the spatially variable

material property terms are assumed to have magnitudes much

smaller than the unprimed source plane wavefield and mean

material property terms. Borehole log data indicate that a

typical fluctuation is 3 per cent of the mean; it is unusual for

fluctuations to exceed 20 per cent of the mean. The exact vector

wave equation then partitions into terms defined by known

uniform elastic property fields r, l, m and an unknown scattered

wavefield uki(r, t), and terms defined by the known source plane

wavefield ui(r, t) and the spatially fluctuating elastic parameter

fields rk, lk, mk:

oL2
t u

0
k � ðjþ kÞLkðLju0jÞ � kLjLju0k&Fk , (2a)

Fk ¼� o0L2
t uk þ ðj0 þ k0ÞLkðLiuiÞ þ k0LiLiuk þ Lkj0Liui

þ Lik0ðLiuk þ LkkiÞ : (2b)

The secondary source terms Fk have units N mx3. The

total scattering motion in the time interval [t, t+Dt] is the

angular sum over unit volumes Dj3 in the radial interval

[j, j+Dj]=a[t, t+Dt], where a is the source wave speed.

The point-force radiation wavefield (1) is expressed in terms

of a distribution of point-force densities (2b) due to fluctuating

material properties rk, lk, mk interacting with a source wave-

field ui(j, t) of frequency v. While in practice the source wave

diverges from a point, we will assume that the source wave is

plane at the point of interaction with the scattering hetero-

geneity. This approximation can be justified when (1) the

scatterer is sufficiently far from the source, (2) the scatterer is

sufficiently small, and (3) the source wavelength is sufficiently

large that the source wave is effectively planar at the scatterer.

It is seen in Section 3.1 that this approximation applies when the

source wavelengths and offsets are large compared with the size

of the point scatterer Dj. For a P-wave velocity a#4000 m sx1

and material heterogeneity discretization interval Dj=1 m, the

source plane-wave approximation works for frequencies below

1000 Hz and for source–scatterer offsets >10 m. Under these

restrictions, the only important modification arising from a

spherical radiation source is thus the insertion of a geometric

attenuation factor 1/j in the expression for the scattered wave

amplitude.

Combining the scatterer response function (1) and scatter-

ing excitation function (2b) for a source at the origin and

a scatterer at j, let the wave propagation direction define

the 1-axis along the j-direction. With the source–scatterer

distance j=|j|, P waves have polarization [1, 0, 0] with respect

to the direction of source-wave propagation, and uk
P(j, t)#

S(v) exp[iv(txj /a)][1, 0, 0], where the source amplitude is in

units of metres, [S(v)]=m. Similarly, S waves have polarization

[0, 1, 0] or [0, 0, 1]. The source S wave is taken to be uk
S(j, t)#

S(v) exp[iv(txj /b)][0, 1, 0]. From (2b), the P- and S-wave
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secondary scattering point-force amplitudes in units of N mx3

are

FP
k &½L1ðj0 þ 2k0Þ, L2j0, L3j0�L1u

P

þ ½o0u2 þ ðj0 þ 2k0ÞL2
1, 0, 0�uP , (3a)

FS
k &½L2k0, 0, 0�L1u

S þ ½0, o0u2 þ k0L2
1, 0�uS , (3b)

where the unsubscripted scalar variables uP=S(v) exp[iv(txj /a)]

and uS=S(v) exp[iv(txj /b)] denote the source amplitude and

phase along the 1-axis of travel. A wave travelling along the 1-axis

encountering heterogeneity distributed along the 1-, 2- and 3-axes

thus creates an effective point force proportional to the second

radial derivative along the polarization axis (1-axis for P waves,

2-axis for S waves), with smaller components proportional to

the transverse spatial derivatives along the non-polarization axes

(2- and 3-axes for P waves, 1-axis for S waves). Point forces

proportional to the spatial derivatives of the material properties

and to the temporal and spatial derivatives of the source function

mean that high-frequency heterogeneities and source waves create

high accelerations and larger-amplitude scattered radiation.

Narrow-aperture seismic backscattering applies when the

source and sensor are close and far from the scatterer,

0<|r|%|j|. Expanding the spatially dependent terms for small

values of r gives |rxj|#jxrj /j. In the limiting case of sensor

and source at the origin, |rxj|=j, and the spatial derivatives of

(3a,b) reduce to the analytic expressions given in Appendix B:

cickF
P
k ¼ ½1, 0, 0�ðo0u2� ðu=aÞ2ðj0 þ 2k0Þ � iu=aL1ðj0 þ 2k0ÞÞuP

:cick f
P
k u

P , (3c)

ðdik � cickÞFS
k ¼ ½0, 1, 0�ðo0u2 � ðu=bÞ2k0 � iu=bL1k0ÞuS

:ðdik � cickÞ f Sk uS , (3d)

where fk
P and fk

S denote the point-force vector density in units

of N mx4 excited by the source-wave displacements uP and

uS in metres. By this definition, a wave of displacement ampli-

tude uP or uS scattering on a heterogeneity of volume D3j is

equivalent to a point force of magnitude (3c,d) in newtons.

Using (3c,d) to denote motion at a scatterer at distance j due

to plane P and S source waves of frequency v directed along

the 1-axis, eq. (1) gives the backscattered displacement field

of frequency v at the origin for each unit volume of scattering

point-force density fk(v):

uPPi ð0, tjm, uÞ&ð4na2om2Þ�1cick f
P
k ðuÞS0ðuÞ exp½iuðt� 2m=aÞ� ,

(4a)

uSSi ð0, tjm, uÞ&ð4nb2om2Þ�1ðdik � cickÞ f Sk ðuÞS0ðuÞ

| exp½iuðt� 2m=bÞ� : (4b)

The source amplitude S0(v) in (4) is now normalized to a

spherical source wave with dimension m2 per unit frequency v
to accommodate the spherical divergence geometric factor 1 /j.

As discussed in Section 3.1, at the range of application of (4) a

spherical source wave effectively acts on the point scatterer as if

it were a plane wave over the dimension Dj of the scatterer.

Simplifying (4) for P–P and S–S backscattering with unit ray

vectors ci=ck=[1, 0, 0] gives

uPP1 ð0, tjm, uÞ&ð4na2om2Þ�1f P1 ðuÞS0ðuÞ exp½iuðt� 2m=aÞ� ,

(5a)

uSS2 ð0, tjm, uÞ&ð4nb2om2Þ�1f S2 ðuÞS0ðuÞ exp½iuðt� 2m=bÞ� :

(5b)

In (4) and (5) the scattered wave phase includes both source–

scatterer and scatterer–sensor traveltimes 2j /a=j /a+j /a and

2j /b=j /b+j /b. For simplicity, we assume that the source is

spherically symmetric about the origin. Summed over the source

frequency range and evaluated numerically over successive

source-wave shells of dimension aDt encountering the volumetric

distribution of scattering elements Dj3, eq. (4) provides a

numerical evaluation of P–P and S–S backscattering seismic

vector displacement motion uk
PP(0, t) and uk

SS(0, t), k=1, 2, 3,

in metres.

The vector motion implied by amplitudes (5) refers to

a coordinate system fixed to each scatterer. For a general

vector seismogram in the overall coordinate system of Fig. 2,

the radial P-wave motion along the 1-axis and the transverse

S-wave motion along the 2-axis are geometrically projected

onto the fixed geophone coordinate system located at the origin

(Fig. 2).

Eqs (3c,d) show that the P- and S-wave backscattering are

identical aside from longitudinal versus transverse polarization

and the corresponding moduli and wave speeds. As sonic

velocity logs for P- and S-wave traveltime fluctuations

indicate that the spatial fluctuations are highly correlated, it

is physically accurate to treat P- and S-wave scattering on an

identical footing provided anisotropy is not being considered.

In the following discussion the P-wave speed a and polarization

are used, but the S-wave speed b and polarization can be

substituted in the P-wave expressions.

2.2 Impulse backscattering response by analytic
summation over frequencies

Scattering expressions (5) effectively have finite amplitude for

all times t and all spatial points j for each wave frequency v.

Relating an impulse of motion at the sensor to impulses of

motion at the scatterer and at the source requires summing (5)

over all frequencies generated by the source. The simplest source

function is the broadband impulse d-function. The d-function

scattering response is obtained by integrating analytically over

an infinite frequency range, retaining only sensor motion (5)

at the P–P total traveltime t=2j /a (t=2j /b for S waves). As

an impulse source has a constant frequency spectrum, the

source strength S0(v)=constant=S0 in units of displacement

squared per unit frequency, [S0]=m2 s. For an impulse source,

the frequency spectrum of the impulse scattering seismogram

is directly related to the spatial frequency spectrum of the

scattering distribution. The effect of a finite-bandwidth source

pulse is found by convolving the impulse scattering response

with the band-limited source wavelet.

In the backscattering geometry with the sensor and source at

the origin, eqs (5a,b) define the source-wave phase in terms

linear in j, thus simplifying the relation between frequency

integration and the source impulse d-function. Contracting the
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P–P backscattering term (3c) with the backscatter direction

cosine ck=[1, 0, 0] gives

ck f
P
k ðuÞ ¼ ½iu=aL1ðj0 þ 2k0Þ � 2ou2a0=a� ,

and under frequency integration (5) becomes

uPPð0, tjmÞ&S0ð4na2om2Þ�1Ð ½iu=aL1ðj0 þ 2k0Þ � 2ou2a0=a�

| exp½iuðt� 2m=aÞ�du

&S0ð4na2om2Þ�1fL1ðj0 þ 2k0Þ

|
Ð
iu=a exp½iuðt� 2m=aÞ�du

� 2oa0=a
Ð
u2 exp½iuðt� 2m=aÞ�dug

&S0ð4na2om2Þ�1fð1=2ÞL1ðj0 þ 2k0Þ

|
Ð
Lm exp½iuðt� 2m=aÞ�du

� oa2ða0=aÞ
Ð
L2
m exp½iuðt� 2m=aÞ�dug

&S0ð4na2om2Þ�1fð1=2ÞL1ðj0 þ 2k0ÞLmdðt� 2m=aÞ

� oa2ða0=aÞL2
mdðt� 2m=aÞg , (6)

where displacement u1
PP(0, t|j) has units of displacement per

scattering volume in the direction j, and the sense of vector

motion at the origin is given by direction j to each scattering

element. The constant S0 normalizing the source function,

[S0]=m2 s, can be written S0=u0s0t0 in terms of source

displacement amplitude u0 at source dimension s0 for unit time

interval Dt=t0 characterizing the numerical realization of the

d-function. Radial integration of (6) in the direction ej=j /j
gives

uPPðtjemÞ ¼ ð1=2ÞS0Ð m2dmð4na2om2Þ�1fL1ðj0þ2k0ÞLmdðt�2m=aÞ

� 2oa2a0=aL2
mdðt� 2m=aÞg

¼ ð1=2Þu0s0q0ð4na2oÞ�1Ð dmfL1ðj0þ2k0ÞLmdðt� 2m=aÞ

� 2oa2a0=aL2
mdðt� 2m=aÞg : (7)

After the radial convolution integral (7), the unit of seismo-

gram displacement at each time interval Dt=t0 from the scatter-

ing area j2dV=D2j in the direction ej is [u1
PP(t|ej)]=m. It

remains only to sum over the spatially fluctuating contributions

from unit scattering areas of dimension D2j.

Spatial convolution of integral (7) can be performed using three

d-function identities. The first two identities are (1) d(F(x))=
d(xxa) /|dF /dx| with F(a)=0, and (2) b dx F(x)dk(xxa)=
xFk(a). The first identity changes the d-function variable from

a time-variable to a space-variable: d(tx2j /a)p(1/2)ad(jxat /2).

By the second identity, performing the radial integration over

the first derivative of the d-function transfers the derivative

to the spatially varying elastic parameter factors h1(lk+2mk)
and ak. The third identity extends the second identity to second-

order derivatives of the d-function:

ð3Þ
Ð
dxFðxÞd00ðx� aÞ

¼
Ð
dx½FðxÞd0ðx� aÞ�0 �

Ð
dxF 0ðxÞd0ðx� aÞ

¼ ½FðxÞd0ðx� aÞ�jþ?
�? þ F 00ðaÞ ¼ F 00ðaÞ :

Applying identities (1) to (3) to eq. (7) and incorporating the

normalization factor (ra2)x1 into the integrand yields

uPPðt ¼ 2m=ajemÞ

¼ a=4u0s0q0ð4na2oÞ�1fL2
1ðj0 þ 2k0Þ � oa2L2

1ða0=aÞgjm¼at=2ðemÞ

¼ au0s0q0=16nL2
1fj0 þ 2k0Þ=ðjþ 2kÞ � a0=agjm¼at=2em

¼ au0s0q0=16nL2
1fo0=oþ 2a0=a� a0=agjmem

¼ au0s0q0=16nL2
1f2a0=a� o0=ogjmem (8)

with the directional unit vector indicating the sense of back-

scattered motion at the origin. Using angled brackets n m to

denote angular summation over all directions ej, the total

vector P–P backscattered vector motion at the origin can be

written as

uPPðt ¼ 2m=aÞ ¼ au0s0q0=16nSL2
1f2a0=a� o0=ogjmemT , (9a)

where motion for the scattering volume in each direction ej is

projected onto the sensor coordinate axes i=1, 2, 3. The wave

speed a in (9a) controls the temporal interval over which

scattered waves contribute to the amplitude registered at time t.

Accordingly, a is expressed in m/Dt, where Dt is the temporal

discretization interval of the displacement seismogram. A

useful value of Dt is 1 ms, and a nominal value of the wave

speed a is 4 m msx1. The units of wave speed a are immaterial

for the normalized fluctuation term ak /a.

Eq. (9a) indicates that the temporal spectra of backscattering

seismograms scale as the angular average over the second radial

derivative of material property fluctuations in the surrounding

rock mass. The total scattering amplitude can vary as a function

of time t as the random backscatterings of the outgoing

spherical wave interfere at the origin. The overall magnitude

and time-behaviour of (9a) are not apparent in the given form.

Apart from the effect of angular averaging over multiple

sources of scattering heterogeneity, however, the second spatial

derivative of fluctuations in (9a) means that the amplitude

spectrum of motion ui
PP(t=2j /a) scales as v2 and the power

spectrum scales as v4. Eq. (9a) thus expresses the plane wave

Rayleigh scattering frequency dependence (e.g. Aki & Richards

1980).

2.3 Numerical evaluation and normalization of the
angular sum scattering amplitude

Because (9a) cannot be expressed analytically, the magnitude

and time behaviour of the total scattered motion is com-

puted numerically from (9c) below for random distributions of

scatterers with a specific power-law-scaling behaviour. The

numerical summation is carried out over a Cartesian grid with

discretization interval Dj and volume element D3j. For

numerical purposes the d-function converts to a finite time

interval Dt=Dj /a and integration goes to summation over

scattering areas D2j of thickness Dj=aDt=at0:

uPPðt ¼ 2m=aÞ&au0s0q0=8n&ijk 1=m2fL2
mða0=a� o0=2oÞemgijk*2m :

(9b)
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The three grid summation indices i, j and k are constrained

to two angular degrees of freedom at time t=2nDj /a by the

condition j2=Dj2n2, n2=(i2+j2+k2), and ej is the radial unit

vector. At each time interval centred on time t=2nDj /a=2j /a,

the geometrical spreading term 1/j2 can be factored from

the sum to appear as the scattered wave amplitude pre-factor

(s0 /j)(at0 /j)=(s0 /j)(Dj /j), thus normalizing geometric spread-

ing to the effective size of the source s0 and the effective size

of the unit scattering volume Dj=at0. The unit area factor

D2j, is incorporated into the sum, rendering the summand non-

dimensional as the numerical derivatives are taken at finite

increment Dj, (4p)x1 Sijk{hj
2(ak /axrk /2r)D2j}ijk. The factor 4p

(steradians) normalizes the angular integral to unity over a unit

sphere. Vector scattering motion at time t, uPP(t=2nDj /a),

thus reduces to effectively dimensionless factors expressing

geometric scaling of the source and backscattered waves and

the scattering amplitude of the spatially fluctuating medium:

uPPðt ¼ 2n*m=aÞ&u0ðs0=mÞð*m=mÞ

|ð4nÞ�1&ijkf½L2
mða0=a� o0=2oÞ*2m�eijkgijk :

(9c)

It is understood in (9c) that the vector motion at the origin is

the resultant of summing over weighted directional unit vectors

eijk pointing to the scattering element at location (i, j, k).

Accounting for notational differences, space-differentiation

versus time-differentiation, and spherical versus plane source

waves, (9c) agrees with the plane-wave backscattering expressions

of Li & Hudson (1997).

To establish the numerical robustness of the summation in

(9c), consider the bracketed fluctuation terms in (9c) to be fixed

at unity and independent of an implied sign of radial motion at

the origin. Fig. 3 shows that the summation term of (9c) yields

values #4p for spherical shells of radius >10Dj, indicating

that the scattering integral (9c) is numerically accurate for

scattering radii as low as 10 grid units Dj. The scattering

simulations given below observe this limit on inner scattering

radius. It is shown in Section 3.1 that a scattering radius of 10

grid units Dj is consistent with a plane-wave approximation for

the spherical source wave encountering scattering elements of

dimension Dj.

2.4 Angular averaging of the backscattering impulse
response

Angular averaging over random elastic heterogeneities deter-

mines the backscattered seismogram amplitude (9c) and its

Fourier spectrum. Although the elastic heterogeneities are

spatially correlated noise, the fluctuations are not symmetric or

in general spatially correlated across the diameter of the source

wave front. The effect of angular summation can be under-

stood in terms of uncorrelated randomness between the ampli-

tude and sign of diametrically opposed scatterers. Scattering

fluctuations of material properties seismic velocity and/or mass

density tend to have zero mean value about the constant back-

ground velocity and density of the reservoir rock. That is, in

any spatial direction there are equal numbers of positive and

negative fluctuations in the fluctuating elastic properties of the

reservoir. Furthermore, the variance of uncorrelated random

sample mean decreases with increasing sample size. We can

thus expect that (1) the angular summation (9c) tends to zero

for any two diametrically opposed scattering directions, and

(2) the approach to zero is closer and closer for increasing travel-

time; hence (3) since for any total traveltime there are more

scatterers at higher frequencies than at lower frequencies, higher-

frequency scattering tends to zero faster than lower-frequency

scattering.

These expectations for the angular summation (9c) of scatter-

ing amplitudes can be quantified in terms of rms amplitudes of

seismic motion at the sensor. For summation over uncorrelated

spatial fluctuations giving rise to backscattered seismic motion

at the sensor, the rms amplitude will tend to be suppressed

by a factor 1/dN for N fluctuations contributing to motion

at any arrival time t=2j /a. As the number of backscattering

fluctuations from a subarea j2dV is determined by the wave-

length, shorter wavelengths sample larger numbers of fluctuations

than longer wavelengths. Accordingly, higher frequencies detect

greater numbers of spatially uncorrelated fluctuations than do

lower frequencies, hence the number of backscattered fluctuation

phases N3v2. The statistics of uncorrelated randomness imply

that, relative to plane-wave Rayleigh scattering, the amplitude

and the spectra of spherically sourced and scattered seismic

motion in a random scattering medium is suppressed inversely

with time and with frequency, 1/dN31/t and 1/dN31/v.

The analysis of scattered wave spectra may be further

quantified in terms of the spatial correlation of random media.

If random material parameter fluctuation power spectra scale

as fB, the spatial fluctuation amplitude spectra scale as fB /2,

and scattered wave frequency spectral scaling will be affected

in proportion to the exponent B /2 (e.g. Turcotte 1992; Leary

1997). The second derivatives of (9c) enhance the higher

scattered frequencies to scale as fB /2+2., and the 1/f suppression

factor from angular averaging of backscattered seismic motion

is expected to yield seismograms with amplitude spectra scaling

as fB /2+1. When B=x1, typical of rock (Leary 1991, 1997,

1998), the resulting seismogram spectral amplitudes scale as df.

At the same time, the angularly uncorrelated nature of random

fluctuations reduces the scattered wave amplitude as a function

of traveltime, 1/t. Summation over random scatterers thus
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Figure 3. The fluctuating trace is the amplitude of the eq. (9c)

summation for unity summand compared with the analytic value 4p

given by the straight line for successive spherical radii in units of data-

cube node spacing Dj. The mean value of the fluctuating trace indicates

that the scattering amplitude (9c) is properly normalized at numerical

radii >10 grid units Dj.
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agrees with the df spectral power-law enrichment of coda wave

amplitude spectra and 1/t amplitude decay seen by Leary &

Abercrombie (1994a,b).

3 MODEL VAL IDAT ION :
BACKSCATTER ING SPECTRA AS
FUNCT IONS OF SCATTERING MEDIUM
FLUCTUAT ION STAT I ST ICS

The angular summation of uncorrelated random fluctuations

about the expanding sphere of a source wave implies (Section 2.4)

that the backscattered wave motion has rms amplitude decay-

ing as 1 /t, and has a power-law spectral amplitude that scales

as f 1+B /2 when scattered by a medium with fluctuations

having Fourier spectral power that scales as fB. For B=x1,

characteristic of crustal rock, it is expected that the spectrum

of a backscattered impulse wavelet will scale as df. These

expectations are tested for a range of values of the spatial

fluctuation scaling exponent B by numerically summing (9c)

over successive spherical source wave surfaces embedded in

3-D data cubes characterized by power-law spatially correlated

random fluctuations. Scattering in a medium characterized by a

fixed scattering length a is also simulated.

3.1 Scattering data cube

Numerical realizations of backscattering expression (9c) are

computed for a 3-D grid or data cube of random numbers with

the source and sensor at the centre. Fig. 1 shows slices of such a

data cube. A data cube with 200 numbers on a side is feasible

on a standard PC using, for instance, the Matlab numerical

package (Matlab 2000). Each grid-point random number

represents the mean material property of a 1 m cube. The

numerical scattering simulation then corresponds to borehole-

sourced and sensed field data at ranges up to a radius of

100 m. For a P-wave velocity of 4000 m sx1, a 4 m wavelength

corresponds to 1000 Hz, and a 100 m wavelength corresponds

to 40 Hz.

For frequencies near 1000 Hz, a spherical wave of radius

10 m and wavelength 4 m begins to appear as a plane wave to a

1 m scattering element. This follows because a spherical and a

plane wave cannot be distinguished if the phase and amplitude

do not vary significantly over the spatial dimension Dj. The

amplitude difference between successive spherical and plane

waves is #Dj /j. For a plane wave exp[ikj], the phase is

identical at two laterally adjacent points [j, 0, 0] and [j, Dj, 0],

whereas a spherical wave is phase-shifted #(1/2)kDj2/j between

the two points. For source–scatterer offsets j>10 m such

that Dj /j<10x1, and for wavelengths such that pDj /l<1, the

difference between the plane wave and spherical wave inter-

action with the medium is small and may be neglected. We may

then understand numerical simulations in terms of field obser-

vations in the frequency range 40 to 1000 Hz for a spherical

volume of radius between 10 and 100 m where the medium is

specified in terms of fluctuations over spatial intervals of 1 m.

For modelling a lower range of frequencies or larger crustal

volumes, unit cubes with Dj=2–25 m shift the observation

frequency range to 15–500 Hz and 1–40 Hz for volumes 400 m

to 5 km on a side.

At each grid point in the data cube, the radial second derivative

of the random fluctuations is computed. The computed radial

displacement is projected onto the grid axes along the radius

vector ej to define the x-, y- and z-axis sensor displacement

motion ui
PP(t=2j /a) at two-way traveltime t=2j /a. The radial

derivative of fluctuation property M(x, y, z) at grid point

[x, y, z] is the directional derivative

LmMðx, y, zÞ ¼ LxMLmxþ LyMLmyþ LzMLmz :

Since

½x, y, z� ¼ m½x=m, y=m, z=m� ¼ m½cx, cy, cz� ¼ mem ,

the first directional derivative can be written hjM(x, y, z)=
eje+M. For the second radial derivative,

L2
mMðx, y, zÞ ¼ Lmðem .+MÞ ¼ ðem . Lm+MÞ ¼ em .+LmM

¼ em .+ðem .+MÞ ¼ c2
xL

2
xM þ c2

yL
2
yM þ c2

zL
2
zM :

The numerical second derivatives along the discrete grid axes

are hx
2Mw[M(xxDx, y, z)+M(x+Dx, y, z) – 2M(x, y, z)] /Dx2,

etc.

The fluctuation statistics of the scattering data cube are

controlled by weighting the radial wavenumber in the 3-D FFT

transform domain of a 3-D array of Gaussian-distributed

(uncorrelated, independent or white) random numbers (Turcotte

1992). For power-law-scaling fluctuation statistics, the wave-

numbers are radially filtered by a simple power law in radial

wavenumber. In order to impose a correlation length on the

data-cube fluctuations, the power-law filter is applied only to

frequencies for wavelengths smaller than the correlation length

a. The data-cube fluctuation statistics are validated by the

condition that numerical boreholes drilled through the data

cube return spatial frequency spectra with the correct exponent,

or that for a medium with correlation length a the spectrum is

power-law above 1/a while flat below 1/a.

A sample three-component displacement seismogram com-

puted with (9c) is shown in Fig. 4 for an earth-model data cube

with power-law spectral scaling exponent B=x1. The elastic

constants fluctuate with 3 per cent standard deviation about

their whole sample mean; the mean P-wave velocity is 4 m msx1.

The seismic displacement amplitude falls off inversely with

seismic traveltime, as observed in deep borehole recordings of

seismic coda waves (Leary & Abercrombie 1994a,b).

3.2 Scattering seismogram spectra

Fig. 5 summarizes the backscattered wave spectral results for

values of spatial scaling noise exponent B between 0 and 2.5.

Sample numerical vector-displacement seismograms (9c) and

their amplitude spectra are shown in Figs 6 to 8. These figures

show the power-law frequency scaling behaviour for the

scattered wave spectra computed for a range of fB-scaling-

noise media. The principal categories of power-law-scaling

spatial fluctuations are determined by three integer scaling

exponents. Each scaling exponent is characteristic of numerous

physical and engineering phenomena (Mandelbrot 1983,

1999): (1) B#0, generating spatially uncorrelated fluctuations

(‘white noise’); (2) B#x1, generating moderately spatially

correlated fluctuations as observed in crustal rock (‘1 /f-noise’);

and (3) B#x2, generating strong spatially correlated fluctuations

as observed in many physical systems (‘Brownian noise’).

Figs 9 and 10 illustrate numerical vector-displacement seismo-

grams and corresponding spectra for data cubes simulating a

medium dominated by a narrowband correlation length a. The
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character of the seismograms varies rapidly as the aperture of

temporal frequencies moves across the narrow spatial frequency

aperture of correlation structure.

Fig. 5 shows that the synthetic seismograms yield ampli-

tude spectra scaling exponent values 1+B /2, in systematic

agreement with the data-cube spatial fluctuation power-law-

scaling exponent B deduced in Section 2.4. The values of

spatial fluctuation scaling exponents, denoted by asterisks, are

averages over 15 data-cube realizations. The horizontal error

o’s give the standard deviation from the mean B for the 15 data

cubes. The vertical error o’s give the standard deviation from

the mean of temporal amplitude spectral scaling exponents for

three components of vector motion as shown in Figs 6 to 8.

The assumed flat or white-noise spectrum of the d-function

source pulse S(v)=S0=constant means that the spectra of the

simulated backscattered motion shown in Figs 6 to 8 directly

relate to the fluctuation statistics of the scattering volume. The

sample synthetic scattering seismogram spectra have the power-

law spectral behaviour expected from (9c) and observed in situ

for the deep-well coda seismograms (Leary & Abercrombie

1994a,b). The seismogram spectra are shown for a bandwidth

of 60 frequencies, but only the first 32 frequencies carry scaling

information about the data-cube spatial correlation spectrum.

Higher frequencies contain uncorrelated random information

since the data cube has no structural information at wave-

lengths shorter than three nodes. Accordingly, the slope of the

seismogram amplitude spectra are determined only for the first

32 frequencies.

Two scattering simulations for media characterized by a

fixed scale-length a are shown in Figs 9 and 10. The correlation

length a parametrizes an exponential spatial correlation function

exp[x(r /a)2]. The corresponding spatial frequency filter for the

data cube is exp[x(ka)2], where k=nk0 are successive spatial

frequency overtones of the fundamental spatial frequency for a
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Figure 5. Plot of the numerically determined relation between

exponent B controlling the scaling character of the spatial fluctuations

of a 192-node data cube (horizontal axis), and the scaling exponent

characterizing the temporal spectra of scattering seismograms (vertical

axis). The plot summarizes 15 data-cube realizations for each value of B.

Asterisks locate the mean of (i) the scaling exponent determined by the

spatial fluctuation power spectra of ‘numerical boreholes’ through the

data cubes, and (ii) the scaling exponent determined from the amplitude

spectra of the scattering seismogram vector motion. Rms deviations

from the mean scaling exponent B are denoted by horizontally offset o’s

about each asterisk; rms deviations from the mean amplitude spectral

scaling exponent of scattering seismograms are denoted by vertical

error o’s. The straight line denotes the expected B /2+1 dependence of

the scattering seismogram spectral scaling exponent on the scattering

medium scaling exponent. The asterisk in a square denotes simulations

relating 1 /f-noise fluctuations recorded in well logs to deep-well coda

spectra (Leary & Abercrombie 1994a,b).
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Figure 4. Synthetic displacement seismic motion computed with (9c) rms fluctuation nak /am=3 per cent and mean P-wave velocity a=4 m msx1;

curves show that the seismic amplitudes fall off inversely with traveltime.
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data cube of Ndc nodes, and k0=2p /L with L=NdcDL /2 the

scale-length of the data cube, and overtone index n ranging

from 1 to Ndc /2.

Figs 9 and 10 show the effects on scattering spectra as the

correlation length a is varied with respect to the data-cube size

L. If the correlation length a is small compared with L, the filter

exp[x(ka)2] is negligible for all or most spatial frequencies,

and the medium fluctuation statistics revert to uncorrelated

randomness to yield scattering seismogram amplitude spectra

that scale with the exponent 1 expected from spatial scaling

exponent B=0. If a is large compared with L, the filter acts to

diminish the scattering amplitude so that the scattering signal is

negligible.

The appearance in Figs 9 and 10 of the peak in spectral

scattering amplitude at the expected frequencies shows that the

computed scattering responds to the correlation length built

into the data cube. This dependence, the systematic relation

between spatial fluctuation spectral scaling exponent B and

temporal spectral scaling exponent 1+B /2 seen in Figs 5 to 8,

and the 1/t amplitude decay of the backscattered seismic motion,
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Figure 6. (a) Components of vector displacement motion at the centre of a 192-node data cube given by (9c) for spatial fluctuation scaling exponent

B#x1. (b) Amplitude spectra of opposing seismograms; the power-law slope of the amplitude spectra is given by the straight-line fit on a log–log plot

for the first 32 frequencies.
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validate the scattering expression (9a) and its numerical

implementation (9c). These expressions are now used to

simulate time-lapse scattering and multi-offset static imaging

in the single-well borehole seismic geometry using sources and

sensors in the same well.

4 T IME -LAPSE BOREHOLE SE I SMIC
IMAGING OF HETEROGENEOUS
RESERVOIRS

Extensive well-log evidence in sedimentary rock (Leary 1997,

1998; Leary & Al-Kindy 2002) indicates that the B=x1

(1/f-noise) class of data cubes can be used as a standard

physical earth model for simulating time-lapse and static

seismic imaging data in the single-well source–sensor geometry

of Fig. 2. In particular, a 1 /f-noise earth model can be com-

bined with (9c) to estimate the source signal-to-noise level

and stability needed for time-lapse seismic imaging of active

hydrocarbon reservoirs, and the source signal-to-noise level

and sensor density needed to form static seismic images of

subsurface structures.

Time-lapse seismology using the single-well geometry of Fig. 2

can detect signals from spatially and temporally localized earth

events if three criteria are met:
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Figure 8. (a) Components of vector displacement motion at the centre of a 192-node data cube given by (9c) for spatial fluctuation scaling exponent
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Figure 9. (a) Components of vector displacement motion at the centre of the data cube for exp[x(r /a)2] spatial correlation with correlation

parameter a=1 /3 the size of the data cube. (b) Amplitude spectra of opposing seismograms.
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(1) the source and sensor are sufficiently stable that the

residual seismic scattering motion from differencing successive

illuminations of the static background earth structure does not

obscure the physical time-lapse signal;

(2) the time-lapse volume is sufficiently spatially localized

that backscattered vector motion can be interpreted uniquely

as coming from a specific location;

(3) the backscattered signal is larger than uncorrelated

random seismic noise in the earth and instrument noise in the

recording system.

These three borehole seismic imaging criteria are modelled

with backscattering formulation (9c) for a 1/f-noise fluctuating

reservoir structure constrained by well-log and well-core obser-

vations, and using empirical amplitude and stability data from

the particular borehole seismic source.

4.1 Background noise from source and sensor
instability

Time-lapse imaging noise arises from the static scattering

background because no actual source and sensor system is

exactly reproducible. Changes in the source wavelet and sensor

response produce residual seismic motion that can mask a time-

lapse signal when the two survey seismograms are differenced.

A particular borehole seismic source, the downhole orbital

vibrator (DOV), has been demonstrated to generate a source

pulse stable to a few parts in 104 (SMSITES 2001). This means

that in principle one can detect a time-lapse signal if the size and

elastic property changes of an active reservoir volume return a

backscattering signal that is, say, 5 /104 of the amplitude of the

whole-reservoir static backscattering.

The time-lapse seismic monitoring signal is a partial sum (9c)

of point-force scatterers over a localized volume hosting the

time-dependent change in earth properties. In 1/f-noise distri-

butions recorded in a North Sea oil reservoir, high porosity

is spatially associated with high fluid permeability (Leary &

Al-Kindy 2001). Volumes of high-amplitude porosity fluctuation

are hence likely to host significant fluid-flow events such as

oil–water substitution. The substitution of water for oil in

regions of high porosity /permeability creates a change in elastic

properties that is of the order of the static elastic property

fluctuations. Laboratory data on P-wave speeds, for instance,

suggest that 5<ak /a<15 per cent for oil–water substitution

(Wang & Nur 1992). As a guide to the magnitude of a time-

lapse seismic scattering signal from fluid substitution, it will

be assumed that the oil–water substitution changes the local

elastic properties by an amount comparable with the 3 per cent

fluctuation amplitude commonly observed in local 1 /f-noise

distributions measured by well logs and well-core sequences.

For the time-lapse seismic scattering simulation, consider

a reservoir volume at radius nDj with characteristic dimen-

sion mDj in units of the data-cube node spacing Dj. The

active reservoir volume is bounded by radii (nxm /2)Dj and

(n+m /2)Dj and subtended by solid angle DV#p(m /2n)2. The

time-lapse scattering amplitude (9c) for the volume is

uTLðt ¼ 2n*m=aÞ

&u0ðs0=mÞð*m=mÞð1=4nÞ&ijkf½L2
mða0=a� o0=2oÞ*2m�eijkgijk,

ðn�m=2Þ*m < m < ðnþm=2Þ*m , (10)

where the summation over scattering nodes designated by

indices i, j, k is constrained by j2=Dj2n2, n2=(i2+j2+k2) for

the given range of radius j and by solid angle DV#p(m /2 /n)2 in

a specific direction. The static background seismic wavefield

uPP(t) shown in Figs 5 to 10 is computed by summing the point-

force contributions (10) over 4p steradians of solid angle for the

heterogeneous reservoir volume surrounding the source–sensor

system.
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Figure 10. (a) Components of vector displacement motion at the centre of the data cube for exp[x(r /a)2] spatial correlation with correlation

parameter a=1 /d3 the size of the data cube. (b) Amplitude spectra of opposing seismograms.
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If two time-lapse survey source pulses differ slightly, the

source difference DS(t)=S1(t) – S2(t) convolved with the whole-

reservoir seismic scattering response uPP(t) gives the residual

background wave motion, Dui
PP(t)=DS(t)*ui

PP(t). The size of the

time-lapse scattering signal ui
TL relative to the static scattering

background noise Dui
PP must be greater than 1:

S=N&juTLi j=j*uPPi j > 1 (11)

as a condition for detecting fluid-substitution events as in, say, a

producing hydrocarbon reservoir.

Figs 11 to 13 illustrate the time-lapse seismic imaging com-

putation. Fig. 11 displays a section of a 1/f-noise data cube

having a high-porosity and a correspondingly high-permeability

spatial trend as implied by poroperm well-core data (Leary &

Al-Kindy 2001). The permeability pathway of Fig. 11 connects

data-cube nodes having above-threshold permeability. In a

uniform geofluid pressure field, fluid would flow along the con-

nectivity structure defined by the high-porosity, high-permeability

nodes. Material constants are associated with the high-porosity,

high-permeability nodes. The time-lapse change in material con-

stants for the high-porosity /permeability nodes are comparable

with the background spatial fluctuations. Each of the points

shown in Fig. 11 is therefore assumed to be a time-lapse scattering

element with strength of the static fluctuation magnitude.

Fig. 12 illustrates the two parts of velocity seismogram simu-

lation of backscattering and time-lapse signals for the 1/f-noise

earth volume. An initial and a final source pulse are provided by

autocorrelation wavelets of a downhole orbital vibrator wavelet

modelled for empirical 100-fold swept-frequency correlation

wavelets (SMSITES 2001). The two source wavelets differ

slightly in mechanical signal generation, giving a 5-parts-per-104

source-pulse difference. The initial and final time-lapse whole-

cube background velocity vector seismograms vi
PP(t) are super-

posed in the left-hand column of Fig. 12. The right-hand

column shows the time-lapse image noise as the dotted-trace

difference between the two left-hand column seismograms,

Dvi
PP(t), and the time-lapse image signal vi

TL(t=2j /a) as the

solid-trace seismic scattering wavelet of the localized time-lapse

oil–water substitution event in Fig. 11.

The Fig. 12 velocity seismograms are plotted on a timescale

corresponding to a 3-m grid-node spacing; the amplitude scale

is arbitrary. The time-lapse signal shown to occur at two-way

traveltime 200 ms thus models an oil–water substitution event

at a range t#100 ms or #300 m for wave speed a=3 m msx1.

The event is distributed over a data-cube volume of some 20

model nodes, corresponding to 60 m in simulation space. The

time-lapse scattering event occupies only a small fraction of

the enclosing 60 m subcube. The physically plausible, spatially

convolved distribution of oil–water substitution changes in a

heterogeneous reservoir has an equivalent scattering volume of

20 m on a side. Fig. 12 represents an estimate of the lower limit

of time-lapse event detectability for the assumed source–signal

stability and a single sensor. A more stable source, or a more

pronounced time-lapse material property contrast, would reduce

the detection threshold for a single sensor.

Multiple-sensor data, illustrated in Fig. 15, can readily detect

time-lapse signal pulses of the size simulated in Fig. 12. The

time-lapse signal is relatively stationary in time and waveform

across a sensor array, while the background scattering signal

varies essentially randomly across the array.

Once a pulse is identified as originating at a time-lapse

reservoir event, it is straightforward to back-project the polarized

P-wave vector motion (provided the signal is sufficiently

large). The back-projected azimuth combines with the signal

traveltime to locate the oil–water substitution event in the

reservoir.
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Figure 11. The configuration of a high-porosity, high-permeability spatial trend located in a 1 /f-noise data cube with 200 nodes on a side. Each

plotted point represents a site for oil–water substitution during oil recovery, and therefore a site of time-lapse change in material constants that

contributes a scattered wavelet to the time-lapse seismic imaging signal.

Time-lapse seismic imaging in heterogeneous reservoirs 415

# 2002 RAS, GJI 148, 402–425



4.2 Spatial location of time-lapse events

In addition to meeting the condition that the time-lapse

signal can be detected against the static background residual as

shown in Fig. 12, the time-lapse signal must be large enough

relative to the residual imaging noise to locate the event in

space. Fig. 13 shows a sample back-projection of a model

signal P-waveform such as that of Fig. 12.

Provided the phase of the sensor components and the orien-

tation of the horizontal sensors are known, and the coupling

of the sensors to the borehole is uniform, P-wave motion

back-projection will be accurate. Back-projection can be done

graphically by estimating the magnitude of motion on each

axis, say [a, b, c], and forming the direction cosines [c1, c2, c3]=
[a, b, c] /(a2+b2+c2)1 /2, or by analytic means from the principal

eigenvector of the vector-motion coherence matrix for the

scattered wavelet signal. Let ui(t=nDt), i=1, 2, 3, represent the

time-lapse scattered signal+noise vector motion about a zero

mean in the time interval t1jnDtjt2. Then the coherence

matrix xij=Sn ui(nDt)uj(nDt) represents how the vector motion

is distributed about the three axes of motion. If all or the

majority of motion is on a single axis, say i=1, the matrix

element x11=u1(nDt)u1(nDt) will be large, and the remaining

elements such as x22=u2(nDt)u2(nDt) and x33=u3(nDt)u3(nDt)
will be small. Finding the orthogonal coordinate system that

maximizes vector motion along one coordinate axis is the eigen-

vector problem for matrix xij. Provided the coherent scatter-

ing signal from a localized oil–water substitution event is

sufficiently large over incoherent background seismic noise, the

determination of the principal eigenvector is robust.
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Figure 12. (a) Velocity vector seismograms of whole-cube scattering background. Seismograms for initial and final source wavelets are superposed

but are indistinguishable at the level of plotting resolution. (b) Dashed trace shows the difference between the left-hand trace pairs; the solid trace

shows the velocity vector scattering seismic motion from the high-permeability structure in Fig. 11. The recorded motion is the sum of the solid and

dashed traces. As simulated, the time-lapse signal pulse cannot be easily distinguished from background noise for a single sensor, but the time-lapse

signal can be readily distinguished in multisensor data.
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Figure 13. Location of a time-lapse event such as pictured in Fig. 11

using coherence-matrix analysis of time-lapse signal vector motion such

as recorded in Fig. 12. The asterisk marks the centre of the data cube;

the irregular black shape represents the oil–water interchange volume.

The arrow points from the source to the white cavity in the oil–water

interchange volume, denoting the location inferred from seismogram

inversion.
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Both the graphical and coherence matrix methods should

be used to locate the scattering event. The coherence matrix

method makes use of the entire information content of the

wavelet, whereas the graphical method uses only a single, albeit

the most important, bit of information. However, the graphical

method is directionally unambiguous whereas the eigenvectors

of the coherence matrix are subject to phase ambiguity that is

often tricky to sort out. In the simulation example of Figs 11

and 12, the mean location of the oil–water substitution event is

at data-cube node location [x49, 79, x66]. If the traveltime or

radial variable is precisely known, the eigenvector inversion

returns [x55, 77, x69], and the graphical method returns

[x50, 80, x70].

4.3 Absolute amplitude of time-lapse seismic events

The third condition for detecting a time-lapse signal is that

the signal be larger than the ambient seismic background

and recording system noise. Considerable evidence indicates

that borehole conditions can be sufficiently quiet that seismic

background noise is smaller than the y0.1mV rms amplifier /

digitization noise typical of digital recording systems (e.g.

Leary & Abercrombie 1994a,b; SMSITES 2001). The basic

seismic signal record simulated in Fig. 12 has, then, to meet or

exceed the y0.1mV rms amplifier /digitization noise threshold

of the recording system.

The amplitude of point-force scattering motion depends on

the magnitude of the material property fluctuations rk, lk, mk,
on the summation of the random distribution of fluctuations

over the successive scattering envelopes, and on the amplitude

of the source pulse. Fig. 14 shows the absolute vector displace-

ment motion computed from the fluctuating second-order radial

derivative summand of (9c) weighted by radial offset geo-

metric factor jx2, uPP(t)#|Sijk{j
x2hj

2(ak /a)}ijkeijk| for a 1/f-noise

spatial distribution of random fluctuations with unit mean

fluctuation amplitude.

The numerical amplitude t0 /t, t0#0.75, of the displacement

motion in Fig. 14 translates into an absolute amplitude for

physical displacement motion when scaled by constants specify-

ing the source amplitude and dimension u0 and s0, the scatterer

mean fluctuation nak /am, the unit size of the discretization Dj,

and the angular aperture normalization factor 1 /4p.

A suite of near-field and far-field seismic data is available to

characterize the physical displacement and effective dimension

of the swept-frequency downhole orbital vibrator (DOV) bore-

hole seismic source (SMSITES 2001). The orbital vibrator

functions as a rotating point force in the borehole fluid acoustic

medium. A DOV sweep signal is generated for 5–15 s over

rotational frequencies from y50 to y300 Hz. An impulse-like

correlation wavelet is formed by cross-correlating the DOV

monitor signal with the far-field sensor signal.

Observation of the DOV near-field and far-field signals has

yielded the following quantitative profile of the DOV borehole

source radiation (SMSITES 2001). The source occupies a large

percentage of the borehole column. A point-force acoustic wave

excited by source displacement is effectively a plane wave in

the subcentimetre annulus between the DOV and the bore-

hole wall. The resulting far-field seismic radiation is accurately

given by plane-wave acoustic diffraction at a slit of DOV height

h#1 m and borehole width w#0.1 m. At distance j, the

seismic diffraction field of the acoustic-to-seismic converted

waves of length l and source amplitude u0 has magnitude

u(r)#u0(w /l)(h /j). The effective source dimension at frequency

200 Hz is then s0=(wh /l)#(0.1 m)(1 m)/(20 m)#(1/2)10x2 m.

The DOV monitor geophone signal has peak voltage #150 mV
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at 200 Hz, equivalent to a source displacement in the borehole

fluid u0#10x5 m at 200 Hz. Plane wave acoustic-to-seismic con-

version at the borehole fluid–solid interface introduces a factor

# 2/3 for normal-incidence transmission, giving an effective

source displacement u0#7r10x6 m.

Using amplitude nak /am#3 per cent estimated from borehole

logs, the backscatter displacement amplitude constant for use

with the Fig. 14 calibration curve is u0s0Djnak /am /4p#10x10 m3

for Dj=1 m. Multiplying this value by 0.02 mx2 from Fig. 14

for a 45 ms two-way traveltime gives |ui
PP|#2r10x12 m for a

scatterer offset j#100 m and source frequency 200 Hz. The

voltage excited by a single DOV frequency sweep in a sensor

of transducer constant 15 V(m/s)x1 by 2r10x12 m displace-

ment at 200 Hz is V#(4p)(200 sx1)(15 V mx1 s)(10x12 m)#
4r10x8 V=0.04 mV, corresponding to the least significant bit

of 24 bit signal digitization.

Signal correlation boosts the raw signal by a factor #30 to

1 mV. Stacking 1000 DOV sweeps (3 hr at 10 s /sweep) increases

the signal-to-noise ratio by an additional factor of 30 relative

to the uncorrelated background noise, yielding an effective

30 mV scattering signal relative to a 0.1 mV background noise

level. If a back-scattering wavefield with 30 mV amplitude

has the stability to resolve signals at the 0.1 mV level, a fluid-

substitution event volume subtending 0.3 per cent of the total

scattering area registers a signal at the signal-to-noise ratio

#1 level of detection over ambient seismic /instrument noise.

Expressing the solid angle fraction dV /4p#(1 /2) sin hdh#
0.5 per cent of 4p steradians in terms of the polar angle aperture

Dh gives (1 /2)Dh2#2(0.3 per cent), or Dh#0.1. At j#100 m

offset, a scattering volume of angular aperture Dh#0.1 has

characteristic dimension d#2jDh#20 m.

DOV wavelet signal and noise levels are illustrated by the

cross-well data shown in Fig. 15. The upper panel shows the

means of two DOV 750-sweep far-field correlation wavelets.

The direct wavelet has traveled 300 m and arrives at the sensor

with 5 mV amplitude. Following the direct wavelet for 30 ms to

60 ms, backscattering decays approximately as 1/time to 1 mV

residual level. The 1/t time decay of the direct wavelet agrees

with the scattering simulation of Fig. 14. The persistent 1 mV

background scattering level is probably due to the highly

layered Iceland basalts.

The lower panel calibrates the upper panel signal against two

noise sources. The dashed line is the irreducible uncorrelated

seismic background noise and recorder noise for a stack of 750

sweeps shown enhanced by a factor of 10. The solid line is the

difference between the means of the two stacked signals of the

upper panel. The irreducible background noise is #0.4 per cent

of the direct wavelet and #1.5 per cent of the 1/t-decay tail.

The rms difference between the two direct wavelets is 4 per cent

of the direct wavelet rms amplitude and 15 per cent of the

1/t-decay tail. The signal stability level of Fig. 15 is due to

numerical correlation noise affecting small signal amplitudes.

At 100 m source–sensor offsets corresponding to modelled

seismic backscatter signals, the observed far-field DOV signal

would be 15 mV, comparable to the 30 mV simulation signal

amplitude. More powerful DOV sources can produce signals

up to 10 times larger than those recorded in Fig. 15, raising the

scattering effective signal to 150–300 mV levels. At these larger

signal levels, the correlation noise of Fig. 15 reduces to 0.1 per

cent of the DOV signal level, thus giving field source signals

approaching the observed DOV near-field source stability of a

few parts in 104.
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Figure 15. (a) Superposition of two DOV cross-well seismograms recorded with source and sensor at 500 m depth at 300 m separation. The direct

arrival DOV wavelets decay inversely with time as in Fig. 14 synthetic backscattering wavelet. (b) Two types of seismic noise: (solid) difference

between two mean wavelets shown in the top panel; (dashed) uncorrelated background noise gained by factor 10. Data are courtesy of SMSITES

Project in Iceland (SMSITES 2001).
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5 SPAT IALLY CORRELATED STAT IC
STRUCTURES IN MULT I SENSOR
ARRAY DATA

A powerful diagnostic tool of exploration seismology is

the identification of coherent scattering phases across seismo-

grams from regularly spaced sensors. Borehole sensor arrays

comprising 12 to 96 three-component geophones at intervals

of 1–10 m are currently available to supply multisensor data

for phase imaging time-lapse events such as oil–water sub-

stitution or for imaging static structures. It is therefore useful to

apply the model scattering formalism to simulation of sensor

data away from the origin. Formally this can be done by

executing the frequency and radial variable integrals (6) and (7)

for the source-wave argument [iv(txj /ax|jxr| /a)].

Multiple-sensor offsets can be finite but small compared with

the scatterer offset. Then the source-wave argument expands to

½iuðt� 2m=aþ r . m=m=aÞ� ¼ ½iuðt� 2m=aþ costr=aÞ� ,

where y is the angle between the sensor offset r and the source

plane wave propagation 1-axis. While in principle P–S and S–P

converted waves are excited when rejl0 and the sensor ray-

path direction ckl[1, 0, 0], in practice where j&r converted

waves are too small to register as independent components of a

scattering seismogram. A wide-aperture array requires the more

complex algebra given in Appendix C, where the d-functions

are expressed not in terms of a linear expression in the scatterer

offset variable j, but in terms of the non-linear function

f (j)=txj /ax|jxr| /a.

For a general plane wave phase dependence of radial offset

exp[ivf (j)], the infinite-frequency integrals are related to a

d-function that is zero everywhere except at the radial position

j for which f (j)=0. The relevant general expressions are
Ð
du exp½iuf ðmÞ� ¼ dð f ðmÞÞ , (12a)

Ð
duiu exp½iuf ðmÞ� ¼

Ð
duLf exp½iuf ðmÞ�

¼ Lf
Ð
du exp½iuf ðmÞ� ¼ Lf dð f ðmÞÞ , (12b)

Ð
duu2 exp½iuf ðmÞ� ¼ �

Ð
duL2

f exp½iuf ðmÞ�

¼ �L2
f

Ð
du exp½iuf ðmÞ� ¼ �L2

f dð f ðmÞÞ :

(12c)

For small but finite sensor offsets,

f ðmÞ ¼ tþ costr=a� 2m=a ¼ t0 � 2m=a ,

and the phase effect alters the total traveltime from t=2j /a
to t=2j /axcos yr /a. The spatial integrals (8) for P–P

and S–S scattering appear with the geometric denominator

[j2(1xr /j cos y)]x1#jx2(1+r /j cos y), inducing additional

algebraic terms. Letting M(j, h, w) and Mk(j, h, w)=hjM(j, h, w)

stand for the material property and spatial derivative for

scattering point-force terms (2), the radial integrals for small

but finite offset sensors become

Ð
m2dmd cos hd�M 0ðm, h, �Þ½m2ð1 � r=m costÞ��1Lmdðt0 � 2m=aÞ ,

(13a)
Ð
m2dmd cos hd�Mðm, h, �Þ½m2ð1 � r=m costÞ��1L2

mdðt0 � 2m=aÞ :

(13b)

Cancelling the radial factors j2 and jx2 and converting the

d-function derivatives to the derivatives of the material property

and geometry terms gives

I1ðtÞ ¼
Ð
dmLm½M 0ðm, h, �Þð1 þ r=m costÞ�dðt0 � 2m=aÞ , (14a)

I2ðtÞ ¼
Ð
dmL2

m½Mðm, h, �Þð1 þ r=m costÞ�dðt0 � 2m=aÞ , (14b)

Executing the first derivative gives

Lm½M 0ðm, h, �Þð1 þ r=m costÞ�

¼ LmM 0ðm, h, �Þ þ r=m costLmM 0ðm, h, �Þ

� r=m2 costM 0ðm, h, �Þ , (15a)

of which the first term corresponds to the sensor at the origin, the

last is negligible, and the second represents a first-order correction

to the first term due to finite sensor offset. The second spatial

derivative gives

L2
m½Mðm, h, �Þð1 þ r=m costÞ�

¼ L2
mMðm, h, �Þ þ r=m costL2

mMðm, h, �Þ

� r=m2 costLmMðm, h, �Þ þ . . . : (15b)

again retaining only the first and second terms. The radial

integrals give

I1ðtÞ ¼ LmM 0ðm, h, �Þjm¼ðat{r costÞ=2½1 þ 2r cost=ðat� r costÞ� ,

(16a)

I2ðtÞ ¼ L2
mMðm, h, �Þjm¼ðat{r costÞ=2½1 þ 2r cost=ðat� r costÞ� :

(16b)

These expressions reduce to the existing scattering expression (9a)

for r=0 and are stable for times t&r /a, a condition equivalent

to r%j. Numerical summation over the angular variables thus

alters the summation over (9c) by the spherical amplitude term

2r cos y /(atxr cos y) and by the shift in plane wave traveltime

2r /a cos y.

Fig. 16 illustrates the enhanced wavelet interpretation yielded

by narrow-aperture multisensor time-lapse data. The time-

lapse simulation of Fig. 12 is repeated for multiple sensors.

The time-lapse signal visible in the single-sensor simulation of

Fig. 12 is highly re-enforced in the multisensor data for Fig. 16.

Seismogram fluctuations that could not be readily understood

as signal or noise can now be assigned to the proper category.

The signal moveout and amplitude systematics across the sensor

array independently indicate that the oil–water substitution

event is in line with, and is below, the sensor array. If the single-

sensor data of Fig. 12 were more obscure, the multisensor data

of Fig. 16 could be expected to detect the time-lapse signal

wavelet.

A more difficult signal-identification task is finding a coherent

signal in the backscattering image of a static scattering surface.

With a very large number of sensors, it may be possible to

discern a static vertical reflector such as a salt flank from

a borehole embedded in rock adjacent to the salt dome. A

more tractable scattering surface signal-identification problem

occurs when the borehole is within the salt dome. Since salt is

plastic over geological time, the elastic heterogeneities locked

into the brittle fracture structure of rock are greatly reduced in
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salt. A subvertical rock-salt reflecting surface may therefore

be identifiable from within a salt dome if enough sensors are

deployed.

To obtain a wide-angle sensor spread, the small-offset

sensor constraint on the simulation of Fig. 16 is lifted, and the

scattering amplitude expressions of Appendix C are used to

compute the synthetic seismograms. Fig. 17 shows a sample

result for an 11-sensor vertical borehole sensor spread about a

centrally located borehole source.

A vertical reflecting wall is scaled to be located at a 180 m

horizontal offset from a source embedded in a scattering

volume scaled to be 400 m on a side. A suite of background
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Figure 17. Simulation of a single-well scattering image of a vertical interface. The source is located in the centre of a vertical string of 11 sensors.

Upper (lower) panel shows in-line (cross-line) horizontal motion of wide-aperture backscattered P waves. Backscatters from the vertical wall are small

superposed arrivals at y105 ms, with trace amplitudes increased by factor 25 for visibility.

Figure 16. (Top to bottom) Suites of time-lapse-differenced [X, Y, Z]-component velocity seismograms for five sensors arrayed vertically through the

source point. The time-lapse volume is that of Fig. 11; the centre trace of each array is that given in Fig. 12. Sensor offsets from the source are t3 and

t6 data-cube nodes Dj. Multiple sensors give a clear indication of a coherent residual in the time-lapse difference data. The signal moveout confirms

that the time-lapse scattering volume is in-line with the sensor array. The signal amplitude trend confirms that the scattering volume is below the array.
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scattering seismograms and reflected signal velocity seismo-

grams are shown for the X (top) and Y (bottom) components of

horizontal motion. The seismograms have frequencies ranging

from 50 to 300 Hz. The reflected signal is computed for the

same level of velocity contrast as the background velocity

fluctuations, and is boosted by a factor of 25 in order to be

visible against the seismic scattering background.

The r25 amplitude boost used in Fig. 17 to reveal the

small backscattering signal from a distant planar static reflector

indicates the difficulty of the task of identifying a coherent

static structure in wide-aperture scattering in a 1/f-noise medium.

In a realistic scenario for which a vertical interface is not a

smooth surface returning a coherent compact wavelet, signal

identification might require a stacking fold of 252#600. This

might be achieved with an array of 25 sensors and 25 sources.

If the velocity contrast is that of a rock–salt interface, the

reflected wavelets would be perhaps three times larger, implying

a stacking fold of y50–100, requiring 8–10 sensors and 8–10

sources for identification. If the source and sensors were inside

the salt body, the background scattering due to salt-body

elastic property fluctuations would be greatly reduced, and the

signal reflected from the salt–rock interface might be seen with

10 sensors and a single source as the semi-coherent anomalous

in-line motion arrivals of Fig. 17 (top).

The computation shown in Fig. 17 brings out an important

aspect of a realistic scattering simulation for wide-aperture

source–sensor geometry. For the wide-aperture scattering

simulated in Fig. 17, in contrast with the narrow-aperture

scattering simulated in Fig. 16, the reflected wavelet is not

necessarily coherent across the sensor array. Trace stacking is

not therefore as efficient in building a signal, as often assumed

in surface seismics where the interfaces are presumed smooth,

the reflected wavelets of coherent phase, and the background

alone is uncorrelated random noise. In the simulation of Fig. 17,

the desired signal is not effectively enhanced by summing the

11 sensor traces.

6 SUMMARY AND CONCLUS IONS

P-wave backscatter ‘snapshots’ of a heterogeneous rock volume

can be acquired with a borehole seismic source and sensor

located at the centre of the volume. Each scattering element

(i, j, k) with characteristic dimension Dj contributes back-

scatter motion in a radial direction eijk with amplitude given

by the dimensionless second-order radial derivative D2
ijk=

[hj
2(ak /a)]ijkD

2j of local elastic property fluctuation (ak /a)ijk.

Backscattered P-wave motion at time t=2nDj /a and radial

offset j=nDj is proportional to the areal sum controlled by the

radial index constraint n=(i2+j2+k2)1 /2:

Aðt ¼ 2n*m=aÞ ¼ &ijk*2
ijkeijk : (17)

The total P-wave backscatter vector displacement uPP(t) scales

with source displacement u0 and with the geometric scaling of

the effective source dimension, s0 /j, and scatterer dimension,

Dj /j, normalized to 4p steradians of solid angle:

uppðtÞ&ð1=4nÞu0ðs0=mÞð*m=mÞAðtÞ : (18)

The overall scattering amplitude is a trade-off, |A(t)| /j2, between

the combined spherical divergence 1/j2 of the source and

scattered waves, and the sum |A(t)| over the increasing number

of random fluctuation scattering volumes encountered by the

expanding source wave. Numerical calibration (Fig. 14) of the

areal summation (17) for unit rms fluctuation amplitude shows

that the trade-off decays inversely with traveltime, |A(t)|)| /j2#
t0 /t, for t0#0.75 ms m2 for t in ms.

For traveltime t in ms and displacement in units of source

displacement u0, the Fig. 14 calibration curve t0 /t, gives the

background P-wave scattering amplitude

uPPðtÞ ¼ juPPðtÞ&ð1=4nÞu0s0ðt0=tÞSa0=aT , (19)

as scaled to a medium of rms fluctuation amplitude nak /am
with unit scatterer size Dj=1 m and mean P-wave velocity

a=4 m msx1.

A repeat observation of (19) with slightly different

experimental conditions is approximated by

uPP
0 ðtÞ&ð1=4nÞ½u0s0 þ u0*s0 þ *u0s0�t0=t

|½Sa0=aTþ ð)=4nÞSa0=aTTLdðt� qÞ� , (19k)

where u0Ds0 + Du0s0 expresses source instability, and

(V /4p)nak /amTLd(txt)] expresses a time-lapse change in a

crustal volume of aperture (V /4p) and material property change

nak /amTL at radial offset given by two-way traveltime t. The

time-lapse difference between (19) and (19k),

uTLðtÞ ¼ uPP
0 ðtÞ � uPPðtÞ

¼ u0ðtÞ½ð)=4nÞSa0=aTTL=Sa=aT� ð*s0=s0 þ *u0=u0Þ� ,

(20)

gives concise, physically accurate expression to the conditions

for time-lapse signal detection in terms of observable earth and

experimental parameters:

jð)=4nÞSa0=aTTL=Sa0=aTj>*j*s0=s0j þ j*u0=u0j ,

juTLðtÞj ¼ u0ðtÞ½ð)=4nÞSa0=aTTLdðt� qÞ�>*juMINðtÞj :

To be detected over experimental noise, the time-lapse

scattering volume V /4p and the percentage physical change

nak /amTL /nak /am have to combine to exceed the background

noise induced by fractional source instabilities Ds0 /s0 and

Du0 /u0, and the time-lapse signal |uTL(t)| must exceed the

minimum detectable signal |uMIN(t)|.

6.1 Time-lapse seismic imaging of fluid substitution
events

Modelling indicates that signal wave amplitudes as in Fig. 12

can be achieved in situ with existing small-scale seismic equip-

ment and practice for effective target fluid-substitution volumes

of order 20 m on a side at distances of 100–200 m from the

observation well. The modelling has essentially no adjustable

physical parameters and is based on physical data rather than

model assumptions.

(1) The permeability structures are associated with stochastic

porosity distributions documented in Leary & Al-Kindy (2002).

(2) The time-lapse amplitude fluctuation associated with

the changing fluid type in the permeability structure is fixed

by laboratory observation at the amplitude of observed static

fluctuations in elastic parameters (Wang & Nur 1992).

(3) The model vector motion is validated by (i) comparing

the numerical sum over 4p steradians of solid back-scattering
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angle with the closed mathematical expression for integration

over a sphere; (ii) computing scattering seismogram temporal

spectra for a wide range of spatial scaling distributions of

random fluctuations; (iii) obtaining the df scattering seismo-

gram temporal spectra observed in coda waves from scatter-

ing simulations for spatial fluctuations observed in situ; and

(iv) observing 1/t-temporal decay of cross-well records of direct

arrivals.

(4) The absolute amplitude of time-lapse seismogram motion

is computed from borehole source performance data using the

DOV (downhole orbital vibrator). At currently available source

power, the time-lapse signal of stacked, multisensor data is

somewhat above the sensor detection threshold. The modelled

time-lapse signal-to-noise threshold for a fluid-substitution

volume of 20 m at 100–200 m offset, S /N#(20 m/2/100 m)2#
0.25–1 per cent, is comparable to demonstrated levels of bore-

hole source and sensor stability and borehole source radiation

power. Increased source power and sensor sensitivity will, how-

ever, greatly increase the range of time-lapse event detection.

A peak frequency of 1 kHz, a longer DOV, and increased

displacement u0 are feasible engineering steps that can boost

DOV wavelet amplitude by a factor of 10–20 without sacrificing

signal stability. Stacked sensors can boost sensitivities by a

factor of 3–5. Modelling indicates that these source signal and

sensor sensitivity boosts can increase the time-lapse event

detection resolution to an aperture of 20 m at 300–500 m

offsets.

6.2 Static event seismic imaging

Static event imaging in crustal rock seems a distant prospect,

except, perhaps, in the unusual circumstances of a nearby

coherent reflector and relatively low scattering background, as

might be afforded by operations in the interior of a salt body.

The need to build sufficient fold in an axial sensor array at high

seismic frequencies in order to overcome volumetric back-

ground scattering noise appears to be beyond presently avail-

able source and sensor resources (e.g. Tura & Cambois 2001). If

the scattering noise is substantially reduced by operating within

a salt body rather than in the surrounding rock formations, it

may be possible to obtain images of the static salt–rock inter-

face from an axial source–sensor array. An important aspect of

operating at high seismic frequencies is that reflection surfaces

may not support the smooth-interface approximation used for

signal stacking in low-frequency surface seismic imaging. If

the static interface is rough, high-frequency scattered wavelets

are not very coherent, undermining the stacking tactic that

efficiently enhances low-frequency coherent planar interface

reflected wavelets relative to uncorrelated random background

wave motion.

6.3 Borehole seismic image modelling to guide future
development

The principles of time-lapse borehole seismic imaging are straight-

forward. Successful implementation needs stable, adequately

powerful seismic sources that, combined with a sufficient number

of stable vector motion sensors in a single well, can produce

seismic snapshots sufficiently deep into the reservoir to make

their deployment a potentially cost-effective oilfield production

tool. The physical model of reservoir heterogeneity and seismic

scattering presented here appears to provide a reliable guide to

time-lapse seismic imaging in order to consolidate present

engineering capability, and to promote effective routes to

increased capability in the near future.
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APPENDIX A : L I ST OF SYMBOLS AND
THEIR S I UNITS

Properties of crustal rock

a, ak, b, bk: mean and spatially variable P- and S-wave

velocities; [a, ak, b, bk]=m msx1.

r, rk: mass density; [r, rk]=kg mx3.

l, lk, m, mk: mean and spatially variable Lamé elastic moduli;

[l, lk, m, mk]=N mx2=(kg mx3)(m sx2).

B: power-law-scaling exponent for spatial fluctuations of elastic

properties.

Properties of seismic source

v: source frequency; [v]=sx1.

u0: effective source displacement amplitude at source; [u0]=m.

s0: effective source dimension; [s0]=m.

t0: unit time interval of seismograms; [t0]=ms.

DOV: downhole orbital vibrator borehole seismic source.

w: width of DOV borehole acoustic source.

h: height of DOV borehole acoustic source.

l: wavelength of DOV borehole source peak radiation.

t0: empirical normalization constant for 1 /time decay of

far-field wavelet.

S0(v): amplitude of source at frequency v; [S0(v)]=[u0s0t0]=
m2 s.

uP, uS: magnitude of P and S source waves at scatterer;

[uP, uS]=m.

uPP, uSS: magnitude of P–P and S–S backscattered waves at

sensor; [uPP, uSS]=m.

Seismic displacement radiation field

uk(t), uik(t): general scattered vector displacement wavefield;

[uk(t), uik(t)]=m.

r, r: vector location and scalar offset of sensor relative to

source; [r, r]=m.

t: time; [t]=ms.

j, j=|j|: radius vector and scalar distance from source to

scatterer; [j]=m.

ciwej: direction cosine, unit vector of ray paths to /from

source /sensor and scatterer; [ci, ej]=1.

=i: point force giving rise to displacement wavefield uik(t);
[=i]=N=kg m sx2.

h: angle between source–scatterer direction and the 1-axis of

the vector sensor.

dij: Kronecker unit tensor; [dij]=1.

Fk: secondary source effective point-force density of scattering

heterogeneity; [Fk]=N mx3.

d(x): Dirac delta function; [d(x)]=[xx1].

Numerical data cube and synthetic scattering
seismograms

Dj: spatial discretization interval, O(y1 m); [Dj]=m.

Dt: seismogram sample interval, O(Dt)y1 ms; [Dt]=s.

a: correlation scale-length of random medium for non-power-

law-scaling media.

B: power-law-scaling exponent of data-cube spatial fluctuations.

A as exponent: power-law-scaling exponent of scattering

seismogram temporal fluctuations.
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D2
ijk: second radial derivative of spatial elastic property

fluctuations ak /a at data-cube node (i, j, k).

A(t): areal sum over dimensionless scattering amplitudes

D2
ijk(ak /a)ijkDj

2 for n2=(i2+j2+k2).

APPENDIX B : NARROW APERTURE P –P
AND S – S SCATTERING POINT FORCES

The point force of Aki & Richards (1980, Section 13.2.3) is

evaluated in a coordinate system defined by the direction of the

plane source wave. Scatterer location is denoted by radial

distance j along the 1-axis. Point-force component F1 is along

the source direction, and point-force components F2 and F3 are

orthogonal to the direction of plane-wave travel. The phase

of the point force relative to the source is given by the plane

travelling wave exp[iv(txj /a)] for P waves, and exp[iv(txj /b)]

for S waves. Partial differentiation along the k-axis is denoted

hk with h1=hj denoting radial differentiation.

Fk ¼� o0L2
t uk þ ðj0 þ k0ÞLkðLiuiÞ þ k0LiLiuk þ Lkj0Liki

þ Lik0ðLiuk þ LkuiÞ , (B1)

uPk ðtjm, uÞ ¼ S0ðuÞ exp½iuðt� m=aÞ�½1, 0, 0� (B2a)

uSk ðtjm, uÞ ¼ S0ðuÞ exp½iuðt� m=bÞ�½0, 1, 0� : (B2b)

P wave

�o0L2
t uk ¼ �o1½1, 0, 0�L2

t uk ¼ �o1½�u2, 0, 0�u ,

ðj0 þ k0ÞLkðLiuiÞ ¼ ðj0 þ k0Þ½L1, 0, 0�Liui

¼ ðj0 þ k0Þ½L1, 0, 0�ðL1u1 þ 0 þ 0Þ

¼ ðj0 þ k0Þ½�u2, 0, 0�u ,

k0LiLiuk ¼ k0½L2
1, 0, 0�u ¼ k0½�u2, 0, 0�u ,

Lkj0Liui ¼ ½L1j0, L2j0, L3j0�ðL1u1 þ 0 þ 0Þ

¼ �iu=a½L1j0, L2j0, L3j0�u ,

Lik0Liuk ¼ ðL1k0L1 þ L2k0L2 þ L3k0L3Þ½u1, 0, 0� ¼ ½L1k0L1u, 0, 0�

¼ L1k0½�iu=a, 0, 0�u ,

Lik0Lkui ¼ ½Lik0L1ui, Lik0L2ui, Lik0L3ui�

¼ ½L1k0L1u1 þ L2k0L1u2 þ L3k0Liu3, L1k0L2u1 þ L2k0L2u2

þ L3k0L2u3, L1k0L3u1 þ L2k0L3u2 þ L3k0L3u3�

¼ ½L1k0L1u1, 0 0� ¼ L1k0½�iu=a, 0 0�u :

Hence

FP
1 ¼ ½þo1u2 � u2ðj0 þ 2k0Þ � iu=aL1ðj0 þ 2k0Þ�uP ,

FP
2 ¼ �iu=aL2j0uP ,

FP
3 ¼ �iu=aL3j0uP ,

which for backscattering contracts to

cickF
P
k ¼ ½1, 0, 0�½FP

1 , F
P
2 , F

P
3 �

¼ ½1, 0, 0�ðo0u2 � u2ðj0 þ 2k0Þ � iu=aL1ðj0 þ 2k0ÞÞuP :

(B3)

S wave

�o0L2
t u

0
k ¼ �o0½0, 1, 0�L2

t u
0
k ¼ �o0½0, � u2, 0�u ,

ðj0 þ k0ÞLkðLiuiÞ ¼ ðj0 þ k0Þ½L1, 0, 0�Liui

¼ ðj0 þ k0Þ½L1, 0, 0�ðL1u1 þ 0 þ 0Þ ¼ ½0, 0, 0� ,

k0LiLiuk ¼ k0½0, L2
1, 0�u0 ¼ k0½0, � u2, 0�u ,

Lkj0Liui ¼ ½L1j0, L2j0, L3j0�ðL1u1 þ 0 þ 0Þ ¼ ½0, 0, 0� ,

Lik0Liuk ¼ ðL1k0L1 þ L2k0L2 þ L3k0L3Þ½0, u2, 0�

¼ ½0, L1k0L1u, 0, 0� ¼ L1k0½0, � iu=a, 0�u ,

Lik0Lkui ¼ ½Lik0L1ui, Lik0L2ui, Lik0L3ui�

¼ ½L1k0L1u1 þ L2k0L1u2 þ L3k0L1u3, L1k0L2u1 þ L2k0L2u2

þ L3k0L2u3, L1k0L3u1 þ L2k0L3u2 þ L3k0L3u3�

¼ ½L2k0L1u2, 0, 0� ¼ L2k0½�iu=a, 0, 0�u :

Hence

FS
1 ¼ �iu=aL2k1uS ,

FS
2 ¼ ½þo0u2 � u2k0 � iu=bL1k0Þ�uS ,

FS
3 ¼ 0 ,

which for backscattering contracts to

ðdik � cickÞFS
k ¼ ½FS

1 , F
S
2 , 0� � ðFS

1 0, 0� ¼ ½0, FS
2 , 0�

¼ ½0, 1, 0�ðo0u2 � u2k0 � iu=aL1k0ÞuS : (B4)

APPENDIX C : SCATTER ING
AMPL ITUDES FOR A GENERAL SENSOR
OFFSET

Let the phase of the plane wave source function be ivf (j),

where f (j)=txj /ax|rxj| /a. Assigning coordinates to the

scatterer and sensor positions, j=[j, 0, 0] and r=[x, 0, z],

f ðmÞ ¼ t� m=a� ½ðm� xÞ2 þ z2�1=2=a

¼ t� m=a� ðm2 � 2xmþ r2Þ1=2=a :

For plane wave phase dependence on radial offset exp[ivf (j)],

the infinite frequency integrals are related to a d-function

that is zero everywhere except at the radial position j for
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which f (j)=0:
Ð
du exp½iuf ðmÞ� ¼ dð f ðmÞÞ , (C1)

Ð
duiu exp½iuf ðmÞ� ¼

Ð
duLf exp½iuf ðmÞ�

¼ Lf
Ð
du exp½iuf ðmÞ� ¼ Lf dð f ðmÞÞ , (C2)

Ð
duu2 exp½iuf ðmÞ� ¼ �

Ð
duL2

f exp½iuf ðmÞ�

¼ �L2
f

Ð
du exp½iuf ðmÞ� ¼ �L2

f dð f ðmÞÞ :

(C3)

Let M(j, h, w) and Mk(j, h, w)=hjM(j, h, w) stand for the

material property spatial and spatial derivative dependence of

scattering point-force terms. We wish to evaluate the radial

integrals

I1ðt, h, �Þ ¼
Ð
dmM 0ðm, h, �Þm=½ðm� xÞ2 þ z2Þ�1=2Lf dð f ðmÞÞ ,

I2ðt, h, �Þ ¼
Ð
dmMðm, h, �Þm=½ðm� xÞ2 þ z2Þ�1=2L2

f dð f ðmÞÞ :

From the definition of the function f (j),

m ¼ ð1=2Þ½a2ðt� f Þ2 � r2�=½aðt� f Þ � x� :

Since j>0, both denominator

aðt� f Þ � x ¼ mþ ðm2 � 2xmþ x2 þ z2Þ1=2 � x > 0

and numerator

a2ðt� f Þ2 � r2 ¼ ½mþ ðm2 � 2xmþ r2Þ1=2�2 � r2 > 0

are positive-definite and j is everywhere finite. If the sensor is

colocated with the source, x, zp0 and jpa(txf) /2.

In order to perform the integration over the d-function, the

integration variable is changed from j to f(j):

I1ðt, h, �Þ ¼
Ð
dmM 0ðm, h, �Þm=½ðm� xÞ2 þ z2�1=2Lf dð f Þ

¼
Ð
df Lf mM 0ðmð f Þ, h, �Þmð f Þ=½ðmð f Þ � xÞ2 þ z2�1=2Lf dð f Þ

¼ �
Ð
df Lf f½Lf m�M 0ðmð f Þ, h, �Þmð f Þ

=½ðmð f Þ � xÞ2 þ z2Þ�1=2gdð f Þ

¼ �Lf f½Lf m�M 0ðmð f Þ, h, �Þmð f Þ

=½ðmð f Þ � xÞ2 þ z2Þ�1=2gjf¼0 :

Expressing terms of I1(t, h, w) as

Lf m ¼ ð1=2ÞLf ½ða2ðt� f Þ2 � r2Þ=ðaðt� f Þ � xÞ�

¼ �a2ðt� f Þ=½aðt� f Þ � x�

� ð1=2Þ½a2ðt� f Þ2 � r2�ð�aÞ=½aðt� f Þ � x�2

¼ �afaðt� f Þ½aðt� f Þ � x�

� ð1=2Þ½a2ðt� f Þ2 � r2�g=½aðt� f Þ � x�2

¼ �a½ð1=2Þa2ðt� f Þ2 � aðt� f Þx

þ ð1=2Þðx2 þ z2Þ�=½aðt� f Þ � x�2

¼ �a=2½a2ðt� f Þ2 � 2aðt� f Þxþ x2 þ z2�=½aðt� f Þ � x�2

¼ �a=2½1 þ z2=ðaðt� f Þ � xÞ2� ,

Using algebraic expressions

L2
f m ¼ �a2z2=½aðt� f Þ � x�3 ,

½ðm� xÞ2 þ z2�1=2 ¼ aðt� f Þ � m ,

m=½ðm� xÞ2 þ z2�1=2 ¼ m=½aðt� f Þ � m� ,

and

Lf fm=½ðm� xÞ2 þ z2�1=2g ¼ a½mþ ðt� f ÞLf m�=½aðt� f Þ � m�2 ,

the first integral becomes

I1ðt, h, �Þ ¼ �Lf f½Lf m�M 0ðmð f Þ, h, �Þmð f Þ

=½ðmð f Þ � xÞ2 þ z2Þ�1=2gjf¼0

¼ �fL2
f m M 0ðmð f Þ, h, �Þmð f Þ

=½ðmð f Þ � xÞ2 þ z�1=2gjf¼0

� fLf m LfM 0ðmð f Þ, h, �Þmð f Þ

=½ðmð f Þ � xÞ2 þ z2�1=2gjf¼0

� fLf mM 0ðmð f Þ, h, �ÞLf ½mð f Þ

=½ðmð f Þ � xÞ2 þ z2�1=2�gjf¼0

¼ fa2z2=½aðt� f Þ � x�3M 0ðmð f Þ, h, �Þ

m=½aðt� f Þ � m�1=2gjf¼0

þ ða=2Þ½1 þ z2=ðaðt� f Þ � xÞ2�LmM 0ðmð f Þ, h, �Þ

m=½aðt� f Þ � m�jf¼0

þ a=2½1 þ z2=ðaðt� f Þ � xÞ2�M 0ðmð f Þ, h, �Þ

|aðm� a=2ðt� f Þ½1 þ z2=ðaðt� f Þ � xÞ2�

=ðaðt� f Þ � mÞ2jf¼0

¼ a2z2=ðat� xÞ3M 0ðm, h, �Þm=ðat� mÞ

þ a=2½1 þ z2=ðat� xÞ2�LmM 0ðm, h, �Þm=ðat� mÞ

þ a2=2½1 þ z2=ðat� xÞ2�M 0ðm, h, �Þ

|fm� at=2½1 þ z2=ðat� xÞ2�g=ðat� mÞ2

for time t={j+[(jxx)2+z2]1 /2}/a satisfying j=(1/2)(a2t 2xr2)/

(atxx).

When x, zp0 only the middle term remains, atp2j,

j /(atxj)p1, jxat /2p0, and I1(t, h, w)pa /2hjMk(j, h, w) as

derived in the main text. When r&j, rpat, j /(atxj)pj /r,

a2z2 /(atxx)3yO(1/r), a /2 [1+z2 /(at –x)2]yO(1), {jxat /

2[1+z2 /(atxx)2]} /(at –j)2yO(1/r), and I1(h, w) reduces to

two terms yO(1/r) with coefficients #jhjMk(j, h, w) and

#Mk(j, h, w).
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