
Geophys. J. Int. (2002) 149, 646–658

P and S tomography using normal-mode and surface
waves data with a neighbourhood algorithm

Caroline Beghein, Joseph S. Resovsky and Jeannot Trampert
Department of Earth Sciences, Utrecht University, Budapestlaan 4, PO Box 80021, 3508 TA Utrecht, The Netherlands. E-mail: beghein@geo.uu.nl

Accepted 2001 December 3. Received 2001 December 3; in original form 2001 June 15

S U M M A R Y
Traditionally P- and S-wave tomography has been based on the inversion of data that are
sensitive to the desired Earth structure, and model covariance is estimated from imperfect
resolution and data error propagation. This analysis ignores the usually large null-spaces,
and hence the significant non-uniqueness of the solution encountered in seismic tomography
problems. Here we perform a model space search for P- and S-velocity structure to find
acceptable fits to recent normal-mode splitting and fundamental-mode phase velocity data.
The survey of the model space employs the neighbourhood algorithm of Sambridge, which
preferentially samples the good data-fitting regions. A Bayesian approach is used subsequently
to extract robust information from the ensemble of models. We particularly focus on posterior
marginal probability density functions and covariances for the various model parameters. The
covariance matrix obtained is very useful in providing insights into the trade-offs between the
different variables and the uncertainties associated with them. We stay within the framework
of perturbation theory, meaning that our emphasis is on the null-space of the linear inverse
problem rather than the neglected non-linearity. The whole model space (including the null-
space) is sampled within reasonable parameter bounds, and hence the error bars are determined
by all fitting models rather than subjective prior information. We estimated P and S models
for spherical harmonic degree two only. The uncertainties are quite large and corresponding
relative errors can exceed 100 per cent in the mid-mantle for Vp. We find a good correlation of
our most likely S model with previous models but some small changes in amplitude. Our most
likely P model differs quite strongly from the recent P model SB10L18 and the correlation
between our most likely P and S models is small. Among all the good data-fitting models, there
are, however, many that have a significant Vp − Vs correlation. We compute d ln Vs/d ln Vp

from the models that correlate significantly. We find an increase with depth in the top 1500 km.
Deeper in the mantle, normal-mode data prefer modest values compared with traveltime data.

Key words: error bars, neighbourhood algorithm, normal modes, seismic lower mantle
tomography, surface waves.

1 I N T R O D U C T I O N

Several tomographic models of the Earth’s mantle have been
produced over the past 15 years, using different kinds of data,
parametrizations and inversion techniques. Although there are some
robust patterns, the models present large discrepancies (Resovsky
& Ritzwoller 1999a). This is partly the result of the propagation
of data errors through the inversion operator and imperfect resolu-
tion. Tomographic inverse problems are generally ill-posed (owing
to uneven and inadequate sampling of the Earth and inadequate
model parametrization) and ill-conditioned (small errors in the data
can lead to large variations in the model estimation owing to very
small eigenvalues) resulting in large data and model null-spaces.
These null-spaces are usually dealt with by employing some kind of
regularization (i.e. choosing one particular model out of many that

are compatible with the data). Different authors use different regu-
larization schemes and hence produce discrepancies in the models
obtained. We propose to sample the model space to gain an overview
of all models compatible with the data rather than choosing one by
some subjective regularization.

An example of how a model null-space component can change the
resulting model is shown by Deal et al. (1999). They have been able
to incorporate additional, independent information in a tomographic
image without affecting the misfit. They have added a thermal model
of a subducting plate to a high-resolution, 3-D tomographic study of
the Tonga–Fiji region. Since the thermal model did not fit the seismic
data, they added only the component of the theoretical slab that was
insensitive to the seismic data using their null-space shuttle. As the
vectors of the null-space have no effect on the data prediction, the
new tomographic model is in equally good agreement with the data.
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Unless the employed regularization is derived from true physical
information, it can add artefacts to the tomographic model.

A second advantage of mapping the model space is in error anal-
ysis. Most linearized inversions give a posterior model covariance
that is smaller than or equal to the prior covariance by construc-
tion (Tarantola 1987). If the cost function to be minimized has a
large valley (i.e. there is a large model null-space), the posterior
covariance can be seriously underestimated, depending on the prior
covariance (Trampert 1998). We argue that the width of the valley
in the cost function is a realistic representation of the error bars in
the absence of true physical prior information.

Here we propose to use a forward modelling approach in order to
explore the model space, including the null-space. We suppose that
perturbation theory is valid for our forward modelling. This means
that the estimated error bars take the null-space of the linear inverse
problem into account, but cannot account for the neglected non-
linearity in the forward problem. Since we do not make an inversion,
our results are not biased by the introduction of damping or any other
unphysical a priori information and since we stay within the linear
theory, the starting model is irrelevant. We apply the neighbourhood
algorithm (NA) of Sambridge (1999a) to survey the parameter space
and to find an ensemble of mostly ‘good’ data-fitting models. This
method is a novel direct search technique, conceptually very simple
and able to exhibit a self-adaptive behaviour by sampling preferen-
tially the regions of lower misfit. Once the survey of the parameter
space is achieved, robust information on the ensemble can be ex-
tracted using a Bayesian approach, giving valuable indications of
the errors and the correlation of the model parameters (Sambridge
1999b). We applied this method to recent normal-mode splitting
measurements and fundamental surface wave velocity maps. The
normal modes provide constraints on the long-wavelength struc-
ture of the Earth, for compressional and shear wave anomalies in
the mantle. Fundamental-mode Rayleigh waves have been included
to constrain the upper mantle. The main purpose of this work is to
establish the feasibility of our approach to mantle tomography. Con-
sequently, we concentrate only on degree-two structure.

An ensemble of ‘good’ data-fitting joint shear and compressional
wave velocity models are produced with the present set of normal-
mode and phase velocity data, and probabilistic information is re-
trieved. Error bars are then assigned to tomographic models. Having
obtained the most likely d ln Vs, d ln Vp models and their respective
error bars we examine their correlation and their ratio, a quantity
widely discussed in the mineral physics community and which is of
particular interest for geodynamists.

2 D A T A A N D P A R A M E T R I Z A T I O N

The data set we use is composed of normal-mode splitting func-
tions and fundamental-mode phase velocity models, corrected for
the crustal model of Mooney et al. (1998). The free oscillations of
a spherically symmetric, non-rotating and (transversely) isotropic
Earth model have specific degenerate frequencies. The addition of
asphericities and a slight general anisotropy (under the conditions
of application of perturbation theory) generate the splitting of mul-
tiplets into singlets with eigenfrequencies close to the degenerate
eigenfrequency. Let us represent these 3-D model perturbations δm
(r, θ , φ) from the reference model in terms of spherical harmonic
components:

δm(r, θ, φ) =
smax∑
s=0

s∑
t=−s

δmt
s(r )Y t

s (θ, φ), (1)

where Y t
s are fully normalized and orthogonal spherical harmon-

ics as defined in Edmonds (1960), with harmonic degree s and az-
imuthal order t. The structure coefficients kct

s of a particular isolated
multiplet (denoted by k) characterize the way in which the eigenfre-
quencies split. If we neglect boundary perturbations, except for the
crustal correction, we are left to first order with a single linearized
relation between Earth structure and structure coefficients:

kct
s =

∫ a

0

δmt
s(r )kMs(r )r 2 dr, (2)

where a is the radius of the Earth and kMs(r ) is the volumetric
structure kernel for the perturbation δmt

s (with respect to PREM;
see Dziewonski & Anderson 1981). For more details concerning
normal-mode theory we refer the reader to Woodhouse & Dahlen
(1978) or Dahlen & Tromp (1998). Normal-mode splitting mea-
surements below 3 mHz have been made recently by Resovsky &
Ritzwoller (1998) for coupled and uncoupled multiplets with good
sensitivity to S- and P-velocity anomalies everywhere in the mantle.

In addition to structure coefficients, they also estimated cor-
responding error bars using Monte Carlo simulations of the ef-
fect of theoretical errors and noise. The structure coefficient mea-
surements are used to create synthetic seismograms that are first
perturbed with ‘errors’ and noise of the appropriate statistical char-
acteristics and then inverted for new coefficient estimates. The
results of multiple calculations were observed to produce approxi-
mately Gaussian coefficient distributions, the widths of which pro-
vided the uncertainties. The coefficients of different angular and
azimuthal orders were also observed to vary independently. Both
measurements and estimated error bars can be found on the inter-
net (http://phys-geophys.colorado.edu/geophysics/nm.dir/). We use
their degree-two structure coefficients, determined from uncoupled
normal-mode multiplets, but we exclude modes with sensitivity to
the inner core. We keep measurements for 82 uncoupled mode mul-
tiplets; in particular, 51 spheroidal modes and 31 toroidal modes.

To constrain the uppermost mantle, we add eight fundamental-
mode Rayleigh wave phase velocity models between periods of 40
and 275 s. For periods of between 40 and 150 s, the models and
errors are the average and standard deviation obtained from different
studies: (Trampert & Woodhouse 1995, 1996, 2001; Ekström et al.
1997; Laske & Masters 1996; Wong 1989; van Heijst & Woodhouse
1999). For larger periods, we use the models of Wong (1989). 3-
D models of phase velocity perturbations δc/c (δc is the phase
velocity perturbation relative to a reference phase velocity c, PREM
in this case) can be expanded into spherical harmonics and their
coefficients δct

s/c are related to the Earth’s 3-D structure in a way
similar to structure coefficients:

l

(
δct

s

c

)
=

∫ a

0

δmt
s(r )lK(r )r 2 dr. (3)

Note that kernels for phase velocity perturbations are independent
of degree s (they all correspond to kernels with s = 0), unlike the
kernels relative to structure coefficients, and neither of them depends
on t. l is an index that discriminates between different frequencies.

Unlike for normal-mode splitting data, error bars on phase ve-
locity maps are harder to obtain. Trampert & Woodhouse (2001)
have shown that the quality of published phase velocity models
vary widely with the period. At each selected period, we took all
existing models, averaged each spherical harmonic coefficient and
estimated its standard deviation. This should account for different
measuring techniques of phase velocity, different data coverage and
different regularization schemes in the construction of the maps.
The error bars determined for normal-mode structure coefficients
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Figure 1. Estimated errors for degree-two fundamental-mode Rayleigh
wave phase velocity perturbations.

by Resovsky & Ritzwoller (1998) have the characteristic of being
almost constant at a given degree. There is not much variation be-
tween the different orders of the spherical harmonic coefficient. By
analogy, we decide to assign average uncertainties to l (δct

s/c) inde-
pendent of the order t of spherical harmonic and defined by

σ 2
l = 1

2s + 1

2s+1∑
t=1

lσ
t 2

s , (4)

where s is the degree of the spherical harmonic (two in this study) and

lσ
t2

s is the variance estimated for one particular spherical harmonic
coefficient. Fig. 1 shows σl as a function of the period of the surface
waves considered. It appears that the error decreases almost linearly
between 40 and 100 s and the curve flattens between 100 and 150 s.
We thus decided to assign a constant uncertainty to models with
periods of between 150 and 275 s, the value computed at 150 s (the
model of Wong (1989) being the only one available to us at longer
periods). We suppose for convenience that the errors are Gaussian
distributed, but there are far too few models to test this hypothesis.

In order to implement the first part of the neighbourhood algo-
rithm (sampling the parameter space), we need to define the fit of
a model to the data. Given a data set d, the posterior probability
density (PPD) for a model m is given by

P(m | d) = kβ(m)L(d | m), (5)

where β(m) is a prior density probability distribution and L(m | d)
is a likelihood function, related to the fit of the model to the data.
We take

ln(P(m | d)) = − N

2
χ2 (6)

with

χ 2 = 1

N




Nm∑
k=1

(
kct,th

s − kct,obs
s

)2

σ 2
k

+
Ns∑

l=1

[
l

(
δct

s

/
c
)th − l

(
δct

s

/
c
)obs

]2

σ 2
l


 (7)

where N is the total number of data points, Nm is the number of
normal-mode data points and Ns is the number of surface wave

data points. The superscript ‘th’ denotes the theoretical structure
coefficients and phase velocity perturbations, predicted by eqs (2)
and (3), and ‘obs’ refers to the measurements. σk (σl ) is the estimated
error bar corresponding to the kth (lth) data. χ is a measure of the
average data misfit compared with the size of the error bar.

We parametrize our models with independent isotropic perturba-
tions of the elastic coefficients δA and δL (with A = κ + 4

3 µ = ρV 2
p

and L = µ = ρV 2
s ) with respect to PREM. Where PREM is trans-

versely anisotropic (at depths between 24 and 220 km), we use the
equivalent isotropic PREM. The notation A and L was introduced
by Love (1927) and is usually used to describe radially anisotropic
media. The corresponding sensitivity kernels are given in Tanimoto
(1986), Mochizuki (1986) or Dahlen & Tromp (1998). We derived
the appropriate isotropic kernels and finally δm corresponds to
(δA, δL , δρ). With the present set of normal-mode data it is not
possible to resolve 3-D density perturbations in the mantle. Sev-
eral authors have confirmed this (Resovsky & Ritzwoller 1999b;
Resovsky & Trampert 2001; Romanowicz 2001). Instead, we de-
cided to scale density anomalies δρ and shear wave velocity pertur-
bations using d ln Vs/d ln ρ = 2.5 (Anderson et al. 1968). Beside the
size of the model space, this constraint is the only prior information
we introduce in the problem. Our models are parametrized radially
in seven layers. The bottom and top depths of these layers are, in
kilometres (2891, 2609), (2609, 2018), (2018, 1526), (1526, 1001),
(1001, 670), (670, 220), (220, 24). They correspond to radial knots of
PREM and are based on the layers defined in Resovsky & Ritzwoller
(1998), which in turn are based on a Backus–Gilbert style resolution
analysis (Backus & Gilbert 1968). We gathered some of their layers
into one new layer in order to reduce the number of variables. Eq. (2)
reduces consequently to a sum over these seven layers:

kct
s =

7∑
i=1

δmt,i
s kM

i
s (8)

with

kM
i
s =

∫ r
sup
i

r inf
i

kMs(r )r 2 dr (9)

where r inf
i and r sup

i are the lower and upper radii, respectively, of
layer i and δmt,i

s is an average perturbation of parameter mt
s on layer

i. A similar relation holds for fundamental-mode phase velocity per-
turbations (eq. 3). The lateral parametrization is given in spherical
harmonics by

δA(r, θ, φ) =
smax∑
s=0

s∑
t=−s

δAt
s(r )Y t

s (θ, φ) (10)

δL(r, θ, φ) =
smax∑
s=0

s∑
t=−s

δLt
s(r )Y t

s (θ, φ). (11)

These expansions allow us to solve the problem spherical harmonic
coefficient by spherical harmonic coefficient. Because of the scaling
relationship between d ln Vs and d ln ρ, we are left with just two
parameters in each layer, and thus 14 model components for each
structure coefficient, or phase velocity coefficient.

3 R E S U L T S

3.1 Sampling and appraisal

We apply the NA using a linearized forward problem (eqs 2 and
3). We want to survey the model space to find combinations of
parameters δAt

s(r ) and δLt
s(r ) that give an acceptable fit to the data
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(eq. 7). Because there is assumed to be no covariance among the data
of different angular or azimuthal order, each of the five spherical
harmonic coefficients at degree two can be treated independently.
In other words, we can explore five parameter spaces separately,
with 14 unknowns in each of them.

First, we had to fix the boundaries of the model space. We com-
puted the equivalent degree-two parameters δLt

s(r ) for six different
S models (MM2-L12D8, Resovsky & Ritzwoller 1999a; SKS12-
WM13, Su et al. 1994; S20RTS, Ritsema & Van Heijst 2000;
SAW12D, Li & Romanovwicz 1996; S16B30, Masters et al. 1996
and SB10L18, Masters et al. 2000). In each layer, we chose to search
twice the range of the largest absolute amplitude obtained from those
six models. Because model SB10L18 is a joint P and S model, we
have a P model we can use to fix the range of the parameter δAt

s(r ).
We compared the amplitude of the coefficient δAt

s(r ) corresponding
to model SB10L18 and those obtained by scaling (by a factor of 2)
the other S models. We fix our range for the parameter δAt

s as twice
the absolute amplitude of the largest δAt

s found. The final result
depends on the range chosen (even if the model space is completely
sampled, because there is a possibility that a good fitting model ex-
ists outside this range), but because of fear of violating perturbation
theory, we decided not to increase the range any further. At the same
time, we ensure that these six S models are included in the model
space we sample, as well as their corresponding P models. Fixing
the boundaries is equivalent to equating β(m) in eq. (5) to a boxcar
function. This will introduce boundary effects and P(m | d) will not
necessarily be Gaussian when the most likely model is close to the
edge.

We refer the reader to Sambridge (1999a) for details concerning
the sampling neighbourhood algorithm. The first stage of the al-
gorithm, the sampling, makes use of a geometrical construct, the
Voronoi cells, to approximate the misfit function and to drive the
search towards the best data-fitting regions while continuing to sam-
ple a relatively wide variety of different models. It is relatively easy
to tune since only two parameters have to be set: ns , the number
of models generated at each iteration, and nr the number of ‘best’
data-fitting Voronoi cells in which random walks are performed at
each iteration. We have been careful with the choice of these values
since it is very important to have a good initial sampling in order
to make a meaningful Bayesian interpretation (which is the second
stage of the neighbourhood algorithm). We have to avoid directing
the search towards a local minimum and we must try to sample the
posterior probability density (PPD) with the highest possible accu-
racy, to sample all the good fitting regions of the model space. A
way to do so is by increasing the values of the tuning parameters. As
both tuning parameters increase together, the algorithm is more ex-
plorative as a sampler but also less efficient at mapping details of the
most important (the best-fitting) parts of the model space. It is not
possible to draw general conclusions on the tuning parameters since
every problem is different and requires specific parameters. We had
to find their most appropriate values by trial and error. Sambridge
(1998) explains that the minimum sample size required is very sen-
sitive to the dimension of the problem. His experiments show that,
to obtain a good enough approximation of the posterior probabil-
ity density, the required sample sizes have to be increased when
the dimension of the problem becomes larger. We decided to have
ns equal to nr , which is the minimum value ns can take, in order to
broaden the survey. We started to sample the model space with some
relatively low values of ns and nr (10 or 20), and we increased the
tuning parameters successively and compared the different results.
For some variables, we obtain different results if we use such small
values. This indicates that for these tuning parameters, the results

are not independent of tuning. The chosen values of nr are not large
enough to identify all the models compatible with the data. After
some trials with nr ranging up to 200, we decided to use nr = 50. It
is the smallest value above which the results appear to be indepen-
dent of the tuning and that explores all the good-fitting regions. The
algorithm is very effective in finding the regions of lowest misfit.
To choose the number of iterations, we looked at the evolution of
the misfit with time. χ decreases very rapidly, the sampling being
directed towards the cells having the best fit. We decided to stop the
survey when the misfit has ‘flattened’, and the model distribution
is observed to approximate a likelihood sampling. The latter con-
dition indicates that the sampling is adequate for analysis using the
NA Bayesian resampling (see below). When nr is increased, more
models must be generated and hence the survey requires more time.
The sampling is completed in about 2 h on a SUN Ultrasparc ma-
chine (400 MHz) for nr = 200 and 300 iterations and it only takes
half an hour for nr = 50 and 600 iterations.

As an example, in Fig. 2 we show the result using the real part of c1
2

in four of our seven layers. It is a way to depict the shape of the model
space with regions of higher misfit (in blue) and regions of better fit
(redish), where the sampling density is larger. We see that there is a
clear global minimum in the upper mantle. For some other variables,
the best-fitting region is more elongated. This shows that, within the
boundaries of our model space, a large range of values for these
variables are compatible with the data. It is the case of perturbations
in δA = δ(ρV 2

p ) in the mid-mantle and deeper in the mantle. Several
variables have their global minimum situated at the edges of the
model space. Increasing the range of the survey has the effect of
reducing the minimum misfit somewhat but, because of the trade-
offs among the model parameters (visible in the correlation matrix,
Fig. 3), moving the global minimum of one of them implies that other
variables move as well and may, in turn, be directed towards the edge.
Therefore, we believe that, as long as there are trade-offs between
model parameters, the model space cannot be surveyed, completely
guaranteeing that no solution is on the edge of the model space.
This is not a major problem though, because we can quantify the
trade-offs as explained below. Furthermore, increasing the range of
the search substantially will violate perturbation theory and require
a complete new set-up of the problem.

We now need to extract quantitative information on the models
previously generated. Sambridge (1999b) provides an approach to
the appraisal problem, based on a Bayesian point of view. This is the
second stage of the algorithm. This appraisal of the ensemble is the
most time-consuming part of the algorithm. In most model space
search techniques, inferences are drawn from the good-fitting part
of the ensemble only, and sometimes even from a single member.
What is new in this algorithm is that the entire ensemble is used,
the ‘bad’ data-fitting models as well as the ‘good’ ones, and an ef-
ficient summary of the sampled models is provided. In a Bayesian
approach, the information contained in the models is represented by
a posterior probability density function—in the absence of restric-
tive prior information on the models, the model that maximizes the
PPD is the model with the best data fit. The PPD can be used to
compute quantities such as the posterior mean model, the posterior
model covariance matrix and marginal posterior probability density
functions. An integration over the parameter space is performed us-
ing a ‘likelihood sampling’, the density of which corresponds to
the PPD. To do this, the algorithm uses the misfit of the sampling
to create a likelihood sampling. This requires a new ensemble of
points to be generated (the ‘resampled’ ensemble), the distribution
of which follows the approximate PPD. This is one of the main fac-
tors influencing the computation time. Once the resampling is done,
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Figure 2. Results of the sampling using the real part of c1
2 (δc1

2/c). The colour scale represents the χ misfit as defined in eq. (7). Parameters on the horizontal
axis correspond to perturbations in elastic coefficient A (= δ(ρV 2

p )) and parameters on the vertical axis correspond to perturbations in L (= δµ = δ(ρV 2
s )), with

respect to PREM. The full range of the models space is shown.

computing the Bayesian integrals requires only simple averages over
the resampled ensemble. For more details concerning this method,
see Sambridge (1999b).

For the resampling of the model space, tuning parameters have
to be set: the number of random walks to perform and the number
of steps per random walk. Finding the parameters that optimize the
coverage of the Gibbs sampler is a trial and error process, which
is time consuming but it is a characteristic of every direct search

Figure 3. Correlation matrix corresponding to the real part of c1
2 (δc1

2/c).

technique. It is preferable to use multiple random walks instead of a
single one, and the number of steps per walk must be large enough to
ensure convergence. After each trial, convergence can be checked,
numerical errors evaluated and the length and number of random
walks can then be adjusted accordingly. For ensembles generated
with 50 cells and 600 iterations, we needed between 6000 and 10 000
steps per walk, depending on the coefficient treated, and four to six
walks in order to achieve the convergence of the integrals. It takes
approximately 7 h on a SUN Ultrasparc (400 MHz) to compute
1-D marginals, 2-D marginals and the correlation matrix. We also
computed Bayesian integrals for some of the ensembles generated
with 200 cells, to make sure that the results were the same as those
obtained with 50 cells. Since their sampling required more iterations,
more points are needed for the computation of the integrals. The
appraisal then requires 3–4 days.

When the PPD is Gaussian, the trade-off between model param-
eters can be represented by the correlation matrix, which is derived
from the off-diagonals of the posterior model covariance matrix.
The correlation matrix corresponding to our problem is different
for each spherical harmonic coefficient. The one obtained for the
real part of c1

2 is represented in Fig. 3. We can see that variables
of the mid-mantle and lower mantle are highly correlated with one
another. They are also correlated with model parameters of the up-
per mantle, for instance δA between 2018 and 2609 km of depth
(layer 2) with δL in the uppermost layer. There are, to some extent,
trade-offs among all the model parameters. In order to improve these
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results, we would need to add independent data sensitive to one or
other of a given pair of correlated model parameters. The correla-
tion matrix is an excellent tool to see what is actually resolvable and
what additional data is most desirable.

The covariance matrix can also be used to obtain the variances
of the model parameters (obtained from its diagonals). However,
the use of a covariance matrix only makes sense when the PPD is a
Gaussian distribution. A more general way of looking at variances
and trade-offs is given by marginal distributions. A 1-D marginal is
the probability of each value of a particular model parameter, given
all possible variations of the others. The width of those posterior
marginals gives a further indication on the constraint we have on
each variable, and can be assimilated in error bars. A 2-D marginal
shows the likelihood of each combination of values for a pair of
model parameters. Computing the joint marginal of two model pa-
rameters implies an integration over all the other parameters. Fig. 4
shows 2-D marginals of some pairs of variables for the real part
of c1

2. These marginals are a robust way of looking at model pa-
rameter trade-offs. The elongated shape observed for some pairs of
variables shows the trade-off between them. For instance, the top
left-hand marginal of Fig. 4 shows a trade-off between δA in the
lowermost layer (layer 1) and the layer above (layer 2, between 2018
and 2609 km depth) and the bottom middle marginal shows a trade-
off between P anomalies (δA) in layer 4 (between 1000 and 1526 km

Figure 4. 2-D marginals corresponding to the real part of c1
2 (δc1

2/c). The white triangle denotes the values for model SB10L18. Going from inside towards
the edges, the solid lines represent the 30 per cent (white), 50 per cent (grey) and 90 per cent (black) confidence levels. Parameters on the horizontal axis
correspond to perturbations in elastic coefficient A (= δ(ρV 2

p )) and parameters on the vertical axis correspond to perturbations in L (= δµ = δ(ρV 2
s )), with

respect to PREM. The full range of the models space is shown.

depth) and S anomalies (δL) in layer 3 (at depths between 1526 and
2018 km). Even with the additional constraints provided by surface
waves, the upper and the lower mantle are not completely indepen-
dent. The bottom left-hand marginal shows a trade-off between δL
in the upper mantle (layer 7) and δA between 2018 and 2609 km
depth (layer 2). We also show two pairs of model parameters that
almost do not correlate in Fig. 3: δA and δL between 2018 and
2609 km depth (bottom right) and δA and δL at depths between
670 and 1000 km (top right). Neither show the elongated diagonal
pattern characterizing a trade-off.

In Fig. 5, we show the 1-D marginals for a few model param-
eters. δA at depths between 2018 and 2609 km can take a large
range of values compatible with the data. The width of the 1-D
marginal is large. In this particular case, the sign of the perturbation
is barely constrained. In contrast, in the upper layers, between 220
and 1000 km of depth, both P and S anomalies are better determined.
If we compare the 1-D marginal and Fig. 2 for δA between 1000 and
1526 km of depth, we observe a difference. From Fig. 2, one could
expect a wide range of possible values for that parameter and thus a
1-D marginal with a shape similar to that obtained for δA between
2018 and 2609 km depth. Its width is relatively large but it clearly
peaks towards the edge, at a positive value. This difference between
the sampling and the Bayesian interpretation of this sampling comes
from the resampling of the ensemble that has to be made in order to
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Figure 5. 1-D marginals corresponding to the real part of c1
2 (δc1

2/c). The vertical black line is the position of model SB10L18. The full range of the models
space is shown.

evaluate an approximate PPD. These marginals also show that all the
parameters in the model space are not exactly Gaussian distributed.
When a most likely parameter is located towards the edge of the
model range, boundary effects destroy the Gaussian shape. Another
strong influence on the Gaussian distribution comes from the null-
space. If the model parameters are Gaussian distributed, the PPD is
Gaussian. In the presence of a null-space the PPD will show an elon-
gated valley and appear non-Gaussian distributed. Away from the
edges of our sampling range, the 1-D marginals are thus a measure
of the size of the null-space. The 2-D marginals and the off-diagonal
elements of the correlation matrix compare quantitatively well, but
the amplitudes of the correlations are affected by large non-Gaussian
distributions. Using a Gaussian assumption for the PPD will under-
estimate the posterior uncertainties on the model parameters in the
presence of a large null-space.

We did not test different parametrizations. Choosing another
parametrization would probably modify the results since, as shown
by the correlation matrix, all model parameters are to some extent
correlated to one another. The layers we have chosen are based on
those of Resovsky & Ritzwoller (1998) which approximate the op-
timal depth layers that can be resolved for the given depth kernels.
Modifying the layers will thus only degrade the posterior covariance.
The important point is that the results should only be considered with
the correlation matrix.

3.2 Shear and compressional wave velocity
models and error bars

In this section, we discuss mainly the most likely models. These are
the models corresponding to the maximum of the 1-D marginals

and not the mean model as calculated directly by using the NA. The
reason for this is that the mean model is only meaningful when the
PPD is Gaussian and this is not exactly the case for all the parameters
in the model space, as discussed in Section 3.1. For the same reason,
we preferred to estimate the width of the 1-D marginals instead of
reading them directly in the covariance matrix. We took this width as
the largest distance where the amplitude of the most likely models
has decreased by a factor of 1/e. It usually gives slightly larger
variances than those read in the covariance matrix.

In Fig. 6, we compare the root mean square (rms) amplitude of
our most likely velocity models, their robust part (the most likely
model from which we subtract the uncertainties) and the rms of
model SB10L18, as a function of depth. SB10L18 is a joint P and
S model derived from the inversion of body waves, surface waves
and normal-mode splitting data. The rms of the robust part of our
models correspond to a lower limit for S- and P-model amplitudes.
The size of the anomalies in SB10L18 and in our most likely model
is similar. They differ the most between 220 and 670 km depth and
below 1000 km for Vs . For Vp , the amplitudes are close in the top
670 km and between 1000 and 1526 km of depth. The differences
are partly a result of the presence of body wave data in SB10L18.

In Fig. 7(a) we show the geographical correlation of our d ln Vs

model with other S models (degree two): MM2-L12D8 (Resovsky
& Ritzwoller 1999a), SKS12-WM13 (Su et al. 1994), S20RTS
(Ritsema & Van Heijst 2000), SAW12D (Li & Romanovwicz 1996)
and S16B30 (Masters et al. 1996). These models were derived from
linearized inversions. For most models, in some layers, the correla-
tion is above the 90 per cent confidence level for degree-two maps
(corresponding to a correlation coefficient of 0.73, Eckhardt 1984)
and there are two layers, in the mid-mantle, where the correlation
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Figure 6. Root mean square amplitudes of our most likely models, their robust part and model SB10L18 as a function of depth. Left, corresponds to S
anomalies. Right, corresponds to P anomalies.

is very low, with any other model. One could expect it to be better
for models MM2-L12D8 and S20RTS that incorporated the same
set of normal-mode data as we used. This poor correlation is re-
lated to the trade-off between Vp and Vs in the mid-mantle (Fig. 3).
We searched for a joint P and S model, whereas MM2-L12D8 and
S20RTS assume a scaling between d ln Vp and d ln Vs . These very
different constraints on Vp lead to different Vp models and, in the
mid-mantle, the trade-offs imply that Vs can also be very different.
Fig. 7(b) shows the geographical correlation for degree two of our
most likely models with model SB10L18, for both P and S since
SB10L18 is a joint P and S model. It is interesting to see that the
correlation coefficient between our S model and the S model of
SB10L18 is above the 90 per cent confidence level in most layers.
For the P models, the correlation is not as good, especially in the
lowermost mantle where the correlation coefficient is close to zero.
They correlate reasonably well between depths of 220 and 670 km
and between 1000 and 1526 km.

In Fig. 8(a) and (b), we plot the maps corresponding to our most
likely degree-two S and P models in the seven layers we use. A robust
feature from all tomographic models to date is that the degree-two
structure dominates the two lowermost layers (2609 ≤ d ≤ 2891 km
and 2018 ≤ d ≤ 2609 km) and in the transition zone (Resovsky &
Ritzwoller 1999a). These maps are thus good approximations to
complete tomographic models only at those depths. As we see from
the correlation coefficient in Fig. 7(b), both S models agree quite
well at most depths. In contrast, the two P models differ much more.

In Fig. 9(a) we plot the correlation between our most likely P and
S models. The correlation is significantly high (above the 90 per cent

confidence level) only between depths of 220 and 670 km. The low-
est correlations are situated in the lowermost and uppermost layers.
This is not representative in the uppermost mantle because degree-
two structure is not dominant there. In contrast, the lowermost man-
tle is believed to be dominated by that degree. We cannot, however,
conclude directly that there is no correspondence between P and S
anomalies in the lowermost mantle. One of the advantages of using
the NA is that it provides error bars on the models. Within these
error bars, there may be models compatible with the data that have a
higher Vs − Vp correlation. A better way to look at that correlation
is thus by taking into account the uncertainties in the models. To
take into account all the models, we sample δA and δL within their
estimated error bars with a random number generator, we deduce
the corresponding d ln Vs and d ln Vp , and we compute the correla-
tion coefficient for all possible combinations. That distribution of
correlation values can be plotted as a histogram. It is interesting to
note that the histograms are largely independent of how we sampled
the models (uniformly, Gaussian or corresponding to the actual 1-D
marginals). We take the median of the correlation coefficient and
we estimate its uncertainty. The uncertainty of the median is ob-
tained by computing its scaled median absolute deviation (SMAD)
(Bevington 1969). We use the SMAD as the uncertainty on the
overall correlation coefficient. In Table 1 we list the median cor-
relation coefficients and their uncertainty at different depths and
Fig. 9(b) gives the histograms for different depths. In our lowermost
layer, where our most likely P and S models do not correlate (the
correlation coefficient was −0.417), we see that the median value is
also very low (−0.535) and lots of models are anticorrelated. The

C© 2002 RAS, GJI, 149, 646–658



654 C. Beghein, J. S. Resovsky and J. Trampert

Figure 7. Correlation coefficient between our most likely models and other models as a function of depth. Left, represents the correlation between our most
likely S model with five other S models. Right, represents the correlation between our most likely models with the joint P and S model SB10L18.

uncertainty is, however, very large and there are a few models com-
patible with the data that correlate well. There are models in the
layers above that correlate well and some correlate significantly. In
the uppermost layer, correlation is poor again, but there degree two
is far from dominant. This is one illustration of the importance of
error bars in tomographic models.

Error bars for the spherical harmonic components of d ln Vs and
d ln Vp can be derived easily from those on d At

s and d Lt
s . In Fig. 10

we show the relative error bars for the rms amplitude, d(rms)/rms,
for both shear and compressional wave velocities. This represents
the size of the error bars on the rms relative to the size of the most
likely model. The error bars are large, especially for Vp . These un-
certainties are mainly a result of the large null-space associated with
our problem. It shows what can be determined by the data alone.
Prior information can of course reduce the null-space, but we ar-
gue that choosing a model should be based on physical information
rather than a subjective damping parameter. Unless such a physi-
cal prior information exists, it is preferable to consider all models
compatible with the data. Another way to reduce the size of the null-
space is of course by adding more data. We expect that including
body wave data will significantly reduce the uncertainties.

Perturbations in Vs are believed to be larger than perturbations in
Vp . The value of their ratio R = d ln Vs/d ln Vp is commonly used
as a diagnostic as to whether the heterogeneities in the mantle have a
chemical or thermal origin. The value of R in the deep mantle is still
a controversy. A low ratio could be explained by a thermal origin of
the anomalies and a high value (above 2.5) could indicate a chemical
component in the heterogeneities. Looking at various studies, there

is a large variety of values for R. A good review on the subject can be
found in Masters et al. (2000). Because different authors compute
R in different ways, Masters et al. (2000) recalculated a spherically
averaged R for various models. Generally, studies using body wave
traveltime data only prefer a high value of R in the lowermost mantle.
Robertson & Woodhouse (1996) use ISC data and find a ratio slowly
increasing from 1.7 to 2.5 for depths between 600 and 2000 km.
Bolton (1996) uses long-period body wave data and his results also
show an increase of R with depth up to a value slightly below 3.5 at
the bottom of the mantle. Both studies were constrained inversions,
i.e. a perfect proportionality between P and S anomalies at every
depth was imposed but R was allowed to change. Su & Dziewonski
(1997) use ISC data, long-period body wave and surface wave data to
perform an unconstrained inversion for bulk sound and shear wave
speed. They obtain a value of d ln Vs/d ln Vp of almost 3.5 in the
lowermost mantle. Saltzer et al. (2001) employ ISC data to produce
P and S models of the mantle. They distinguish between regions
where there has been subduction over the last 120 Myr and where
there has not. They find a peak value of R = 3 around 2200 km of
depth in non-slab regions and a ratio smaller than 2 at all depths in
slab regions. There are two models using ISC data that show a low
ratio at all depths. These are the models of Vasco & Johnson (1998)
and Kennett et al. (1998). Their values of R are smaller than 1.5,
and even smaller than 1 for Vasco & Johnson (1998). When normal
modes are included in the data set, the tendency observed in joint
inversions is to have a more modest ratio in the lowermost mantle
(model SB10L18), except for Romanowicz (2001) who finds a value
between 1 and 2 everywhere, but at depths greater than 2000 km
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Figure 8. Degree two maps of our most likely P and S models compared with degree-two maps of models SB10L18. Layer 1 corresponds to the lowermost
and layer 7 to the uppermost mantle.

R is larger than 2.5. Model SB10L18 was obtained from the joint
inversion of bulk sound and shear wave speed, whereas Romanowicz
(2001) performed inversions for Vp and Vs directly. In their paper,
Masters et al. (2000) also observe that constrained inversions for
bulk sound and shear wave speed usually give P and S models that
correlate significantly while there is less correlation in inversions
for Vp and Vs .

We compute R = d ln Vs/d ln Vp on a 10 deg × 10 deg grid. We
take into account all the models obtained for Vs and Vp , in the same
way we did to compute the correlation between all of our P and S
models. We take a series of values of δA and δL within their esti-
mated error bars, on each gridpoint, we compute the corresponding
d ln Vs and d ln Vp models and R for all the possible combinations.
We determine the median of that distribution of values, which we
take as the spherically averaged estimate of R. The SMAD is used to
derive the uncertainty on R (as in Masters et al. 2000). We find that
R takes modest values in the lowermost mantle (see Fig. 11, dotted
line). The question is whether R is low in the lowermost mantle
(where degree-two structure is dominant) because the correlation is
low or because the normal-mode data generally prefer a lower ratio.

To answer that, we compute R by only taking the models that cor-
relate significantly (above 0.73) in one particular layer. The values
are plotted in Fig. 11 (solid line). We observe an increase of R with
depth in the top 1500 km of the mantle, taking values between 1 and
1.75, and modest values in the lowermost mantle. This shows that
normal-mode data favour low values for R in the deeper mantle, in
contradiction with Romanowicz (2001), who finds d ln Vs/d ln Vp

up to 3.5 at depths >2000 km, using degree-two normal-mode split-
ting data and a layered parametrization. The possible reasons for this
difference are that Romanowicz does not include surface wave mea-
surements in her data and introduces strong prior information in the
inversions (the damping was chosen so that d ln Vs/d ln Vp matches
the range 1.5–2 in the top 1500 km, which is somewhat higher than
what we find).

4 C O N C L U S I O N

The aim of this paper is to explore a model space with a direct search
method in order to identify good data-fitting isotropic Earth mod-
els. We used the neighbourhood algorithm developed by Sambridge
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Figure 9. Left: correlation coefficient between our most likely P and S models as a function of depth; right: distribution of Vs − Vp correlation coefficient
between all the models compatible with the data as a function of depth.

(1999a,b), which is a new derivative-free direct search technique
that preferentially samples the good data-fitting regions of a model
space. A Bayesian approach is used subsequently in order to extract
robust information from the ensemble of models generated. We ex-

amine the posterior marginal probability density functions, the vari-
ances of the various model parameters and the correlations among
them. The whole model space, including the null-space, is sampled
within reasonable bounds and the error bars are consequently more
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Table 1. Correlation coefficient between all
models generated within their error bars. The sec-
ond column gives the median of the distribution
and the third column gives its robustness.

Depth (km) Median SMAD
(all models)

2609 < d < 2891 −0.535 0.425
2018 < d < 2609 0.36 0.30
1526 < d < 2018 0.205 0.36
1001 < d < 1526 0.20 0.27
670 < d < 1001 0.003 0.42
220 < d < 670 0.62 0.18
24 < d < 220 −0.29 0.36

realistic than traditional inversion error estimates. This new tech-
nique appears to be very efficient in finding the best data-fitting
regions in a high dimensional space (provided the size of the model
space has been established). It is easy to tune since there are only two
tuning parameters but they have to be chosen carefully to avoid the
search being trapped in a local minimum and to importance sample
the entire parameter space, while not reducing the efficiency of the
algorithm. The optimal values have to be found by trial and error.
The subsequent use of the Bayesian algorithm does not require any
further solutions of the forward problem. The parameter space is
resampled instead, using only information from the initial survey of
the model space. The accuracy of the Bayesian integrals will depend
on the way in which the model space was initially sampled.

We applied the neighbourhood algorithm to the search of isotropic
mantle shear and compressional wave velocity models, using re-
cent normal-mode splitting measurements and fundamental-mode
phase velocity data. We found an ensemble of joint P and S models
(spherical harmonic degree two only) for which posterior marginal
probability density functions, correlation and covariances were com-
puted. 1-D marginals give information on how well a parameter is
constrained and shows whether it is Gaussian distributed or not.
They are used to infer error bars on the various model parameters.
2-D marginals show the trade-offs among pairs of model parameters.
The posterior covariance matrix obtained under a Gaussian assump-
tion gives a fair representation of the correlation, although error

Figure 10. Relative uncertainties for the root mean square amplitude of our
most likely S model (solid line) and our most likely P model (dashed line)
as a function of depth.

Figure 11. Ratio between degree two d ln Vs and d ln Vp as a function of
depth.

bars may be underestimated in the case of a strongly non-Gaussian
distribution. The uncertainties and correlations constitute essential
information in order to make a meaningful analysis of the models
obtained. We see, for instance, that there is a correlation between
parameters of the lower mantle and parameters of the upper man-
tle. This implies that we could improve our models by adding data,
sensitive exclusively to either the upper or lower mantle in order to
decorrelate those parameters. Our most likely S model is highly cor-
related with other S models such as MM2-L12D8, SKS12-WM13,
S20RTS, SAW12D or S16B30, except where there is a high trade-
off between P and S perturbations. The correlation with the recent
S model SB10L18 is very high at most depths but our most likely P
model is very different from the P model of SB10L18 in most layers.
Degree-two error bars on the rms velocity perturbations of our mean
models are quite large, especially for P. The correlation between our
most likely P and S model is low but among all the models gener-
ated and compatible with the data, there are some that have a high
Vp − Vs correlation. We calculated the ratio R = d ln Vs/d ln Vp . We
find an increase with depth in the top 1500 km up to a value of 1.75.
Deeper in the mantle, there is a decrease and R oscillates between
0.8 and 1.3. Most models using body wave data alone seem to find
a high value for R in the deep mantle. Our study, for which only
surface wave and normal-mode data have been employed, tends to
favour much lower values. The model of Masters et al. (2000) ob-
tained from surface waves, normal-mode and body wave data thus
gives an intermediate ratio at these depths.

We have a powerful new tool to explore a model space, including
the null-space, and to estimate ranges of ‘good’ data-fitting models.
In the absence of true physical information, we prefer to consider the
full range of models consistent with the data. Correlations between
model parameters can be computed and give valuable indications of
what kind of independent data should be added to constrain the mod-
els better. Because our problem can be solved spherical harmonic
coefficient by spherical harmonic coefficient, it is trivial to paral-
lelize the procedure resulting in huge time savings for computing a
full tomographic model.
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