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Abstract

Most studies of nearshore hydrodynamics, sediment transport, and morphology focus on bathymetric variability
within a narrow band of spatial and temporal scales. Typically, these studies rely on bathymetry estimates derived
from field observations consisting of discrete samples in space and time with varying degrees of measurement error.
Sampling limitations, which result in aliasing, and measurement errors can significantly contaminate variability at
resolved scales, and may lead to large errors in the representation of the scales of interest. Using a spectral analysis,
interpolation errors were analyzed for three different nearshore bathymetric data sets, each of which targeted a
different range of spatial scales. Bathymetric features that were unresolved or poorly resolved (e.g. beach cusps)
introduced the potential for contamination in two of the data sets. This contamination was significantly reduced using
an appropriate scale-controlled interpolation method, leading to more accurate representations of the actual
bathymetry. An additional benefit of using scale-controlled interpolation is that interpolation errors may be estimated
independently of actual observations, which allows one to design bathymetric sampling strategies that ensure that
dominant scales are either resolved or largely removed. Finally, interpolation errors corresponding to a particular
sample design can be used to determine which interpolated values contribute usefully to a band-limited analysis of
bathymetric variability.
Published by Elsevier Science B.V.
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1. Introduction

Most studies of nearshore hydrodynamics, sedi-
ment transport, and morphology focus on bathy-
metric variability within a narrow band of spatial
and temporal scales. However, nearshore bathym-
etry consists of a variety of morphologic patterns
that span a broad range of spatial and temporal
scales. The largest features include nearshore

sandbars, with O(100 m) cross-shore wavelengths
and O(100^1000 m) alongshore length scales
(King and Williams, 1949; Bowen and Inman,
1971; Lippmann and Holman, 1990; Wijnberg
and Terwindt, 1995). Intermediate features in-
clude beach cusps at the shoreline, which are typ-
ically characterized by alongshore wavelengths of
O(1^10) m (Komar, 1971; Dean and Maurmeyer,
1981; Werner and Fink, 1993; Holland, 1998;
Coco et al., 2000). The smallest features are rip-
ples, which are characterized by O(0.1^1 m) wave-
lengths (Clifton et al., 1971; Hunter et al., 1979).

Typically, morphologic features with the largest
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spatial scale have the slowest response times,
while short-scale features respond rapidly. For
example, sandbars may exhibit signi¢cant re-
sponse within an approximately seasonal cycle
(Winant et al., 1975; Lippmann and Holman,
1990), and even over decades (Birkemeier, 1985;
Lippmann et al., 1993; Ruessink and Kroon,
1994; Plant et al., 1999). Whereas beach cusps
evolve over periods of minutes to hours (Antia,
1987; Miller et al., 1989; Holland, 1998; Coco et
al., 2000), and ripples can evolve on time scales of
seconds, or nearly the same time scale as orbital
wave motions (Blondeaux, 1990; Hay and Bowen,
1993; Traykovski et al., 1999).

In spite of the broad range of scales that may
be of interest to nearshore research, it is at present
impossible for bathymetric measurements to si-
multaneously resolve all relevant scales. A conse-

quence of this limited resolution is that attempts
to adequately sample large-scale features will tend
to su¡er from aliasing of short-scale features. For
example, there is an ongoing program to sample
the long-term, large-scale bathymetry at the Army
Corps of Engineer’s Field Research Facility
(FRF; Fig. 1; see Birkemeier and Mason, 1984;
Lee et al., 1998; Birkemeier and Holland, 2001).
A large amphibious vehicle (the CRAB) is used to
survey the bathymetry with roughly 10-m resolu-
tion in the cross-shore, along-track direction.
Cross-shore transects are spaced 50^200 m in
the alongshore direction. This sampling pattern
resolves features with cross-shore scales greater
than several tens of meters (which is adequate
for resolving sand bars), and it resolves along-
shore scales greater than about 100 m. Beach
cusps, which are commonly observed at this loca-

Fig. 1. Example of the monthly CRAB bathymetric survey data from the FRF, Duck, NC (20 September 1990). The survey
transects are indicated with lines of densely spaced dots. The contours (solid lines) are drawn from interpolated bathymetry, com-
puted using the quadratic loess method, with cross-shore and alongshore smoothing scales of Vx = 20 m and Vy = 200 m. Loca-
tions M1^M3 refer to analysis points, discussed in Section 3.
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tion, have typical wavelengths of about 30 m
(Holland, 1998) and are not resolved by the typ-
ical survey strategy. The variability associated
with cusps aliases as variability at resolved scales
and contributes to sampling errors.

In contrast, intensive ¢eld experiments have in-
cluded surveys over small regions with dense sam-
pling in order to resolve short-term temporal
variations. For example, during the Duck94
experiment at the FRF (Birkemeier and Thorn-
ton, 1994) a 500U500-m horizontal domain (see
Fig. 1) was surveyed daily using the CRAB. The
reduced size of the sample domain allowed the
alongshore transect spacing to be reduced to 25
m (Fig. 2, top). As part of the same experiment,
higher resolution surveys were obtained using a
global positioning system (GPS) (Plant and Hol-
man, 1997) within the subaerial portion of the
CRAB’s sample domain (see Fig. 2, top). The
high-resolution system consisted of a GPS anten-
na mounted on one of several small vehicles, in-
cluding a hand-pushed cart called DOLLY, which
had footprints of about 1^2 m. (Below, we refer
to the high-resolution surveys as the DOLLY
data.) The samples were obtained every 5 m along
track (which was oriented alongshore) and track
spacing was typically 5 m in the cross-shore direc-
tion. Since the di¡erent survey approaches resolve
di¡erent scales, these data sets may be compared
to illustrate how sampling errors depend on scale.

For example, a comparison of the CRAB and
DOLLY bathymetry interpolated using a nearest
neighbor interpolation routine is shown in the
lower two panels of Fig. 2. Cusps with a wave-
length of 70 m appear in the interpolation of the
CRAB bathymetry. However, the actual cusp
spacing is revealed by the interpolation of the
DOLLY bathymetry to be about 40 m. The ap-
parent 70 m cusp spacing inferred from the
CRAB data is an artifact of sparse sampling.
This example shows that signi¢cant variations in
the sampling error result from changes in resolu-
tion of the sampling method.

In addition to being used to characterize the
dominant scales of nearshore morphology, bathy-
metric survey data are also used in most process
models, which describe waves, currents, and sedi-
ment transport (e.g. Roelvink and Broker, 1993).

Bathymetric data are used to prescribe the bottom
boundary condition in the case of hydrodynamic
models, and to prescribe initial conditions for
seabed evolution (e.g. pro¢le) models. These mod-
els typically require bathymetric data to be inter-
polated to regularly spaced grid nodes. The spac-
ing of the grid nodes controls the range of scales
that are resolved by the model. Thus, even results
of nearshore hydrodynamic and sediment process
models are, in practice, limited to the scales re-

Fig. 2. Comparison of bathymetry surveyed on 21 October
1994. Bathymetry surveyed by CRAB, and interpolated with
the quadratic loess method is shown at top, with a box de-
lineating the sub-region surveyed synchronously by DOLLY.
Location C1 is an analysis point, discussed in Section 3. The
lower two panels compare the CRAB and DOLLY bathyme-
try, interpolated with a nearest neighbor method. A mean
cusp wavelength (heavy line) has been identi¢ed in each data
set.
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solved by bathymetric data, and are a¡ected by
the errors at these scales.

In general, very few studies that utilize bathy-
metric survey data have bothered to report error
estimates associated with sampling de¢ciencies
(such as aliasing), even though these errors could
seriously a¡ect quantitative and qualitative inter-
pretations of nearshore processes. The objective
of this paper is to describe the magnitude and
scale of errors associated with both sampling
and utilization of typical nearshore bathymetric
data sets. Our approach is based on the practical
need to interpolate almost any sampled data set
to a regular spatial/temporal grid. In Section 2,
we describe a particular scale-controlled interpo-
lation method and its associated error analysis.
Interpolation errors can be quantitatively esti-
mated only if the spectral density function of
the true bathymetry is known. Section 3 presents
a spectral analysis of the interpolation method,
applied to the three bathymetric data sets dis-
cussed so far. In Section 4, the practical applica-
tions and implications of the interpolation error
analyses are treated, and the discussion is summa-
rized in Section 5.

2. Theory

2.1. Interpolation method

We consider linear interpolation methods con-
sisting of a set of J observations, zj, located at
positions xj, and an interpolation location (or lo-
cations), xi, where we wish to obtain estimates, zŒi.
(In the equations that follow, a subscript ‘j’ refers
to an observation index, and subscript ‘i’ refers to
an interpolation index.) The independent variable
is a vector because it can include multi-dimension-
al location coordinates, such as two spatial coor-
dinates and a time coordinate:

x!¼ ðx; y; t; TÞ ð1Þ
The observation locations may be randomly

spaced, while the interpolation locations are usu-
ally, but not necessarily, regularly spaced.

Linear interpolation methods seek an elevation
estimate of the form:

ẑzi ¼
XJ

j¼1

âaijzj ð2Þ

which constructs the interpolated value as a linear
combination of the observations. The parameters
a“ij are a set of weights, which usually depend only
on the location of the observations relative to the
interpolation location. The interpolation weights
may be computed using, for example, piecewise
linear interpolation of nearest neighbors, inverse
distance weighting, triangulation, and ¢nite ele-
ment methods (for a detailed review, see Franke,
1982), and may even depend on known, spatially-
variable sampling errors.

Not all approaches to computing the interpola-
tion weights control the smoothness of the inter-
polated output. Methods that control the scale
(and hence are appropriate to typical band-limited
analyses of bathymetry) include sub-optimal inter-
polation (Ooyama, 1987) and linear smoothing.
We will use quadratic loess interpolation, which
is a linear smoother (for a review, see Schlax and
Chelton, 1992), and has ¢ltering properties con-
trolled by a parameter Vx (in 1-D). For example,
Fig. 3 shows a cross-section through the bathym-
etry presented in Fig. 1 (monthly CRAB survey).
The data have been interpolated to a regularly
spaced array using both quadratic loess and near-
est neighbor methods. The quadratic loess method
used observations within N 20 m in the cross-
shore direction (i.e. Vx = 20 m) and N 200 m
alongshore (Vy = 200 m) of each interpolation lo-
cation, while the nearest neighbor method used
only the nearest 3 observations to compute each
estimate.

Although the large-scale trends are similar,
there are signi¢cant di¡erences between the inter-
polated pro¢les. In particular, seaward of about
x= 400 m, the data are relatively sparse and the
nearest neighbor interpolation is poorly con-
strained. Also, where the bathymetry is relatively
rough (Fig. 3, inset), the nearest neighbor method
reproduces short-scale, but not necessarily accu-
rate, variability present in the data. The quadratic
loess method removes much of this variability to
produce a more reliable, albeit smoother, estimate
of the bathymetry. Clearly, the impact of sam-
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pling errors depends on the interpolation method
as well as the sampling resolution. The next sec-
tion describes several methods of quantifying in-
terpolation reliability.

2.2. Mean square interpolation error

Discrete sampling of bathymetric data introdu-
ces two kinds of sampling errors. The ¢rst is ali-
asing of short-scale, unresolved features. For in-
stance, the 10-m wheelbase of the CRAB does not
resolve features that are shorter than about 20 m.
The unresolved features will be misrepresented by
the discrete observations. In addition to sample-
resolution errors, there are measurement errors,
which are typically assumed to be represented as
Gaussian-distributed white noise. Thus, we may
decompose the observations into components rep-
resenting a part of the true bathymetry that is
resolved, z‹j, and an unresolved part, zjP, plus mea-
surement error, ej. Then, the interpolated estimate

described by Eq. 2 may be rewritten as

ð3Þ

Interpolation errors result from each of the
terms in Eq. 3. If the convolution of the interpo-
lation weights with the ¢rst term in parentheses
does not yield the resolved scales of the true ba-
thymetry at the point xi, then the interpolation
procedure damages the resolvable scales (i.e. the
‘signal’) of bathymetry, introducing interpolation
error. For instance, the interpolator might overly
smooth the observations, or even amplify them
(also called overshoot by Thiebaux and Pedder,
1987). The remaining two terms, the unresolved
component of the true bathymetry and the mea-
surement errors, are of no value to an accurate
interpolation of the true bathymetry and both are,

Fig. 3. Cross-section through monthly CRAB bathymetry, comparing quadratic loess (solid line) and nearest neighbor (dashed
line) interpolation methods. Inset includes data (circles) lying within 12.5 m of the cross-section (y= 875 m). The cross-shore
scale, Vx, governs the smoothness of the quadratic loess interpolation methods.
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e¡ectively, ‘noise’. Ideally, convolution with the
interpolation weights would remove the noise.

Interpolation errors associated with each of the
terms in Eq. 3 may be estimated. For example, if
the measurement errors have identical variances
and are spatially uncorrelated, then a normalized
mean square interpolation error (which describes
the fraction of the measurement error variance
that passes unchecked through the interpolation
method) is

ÔO
2
i ¼

X

j

âa2ij ð4Þ

We will refer to this normalized mean square
error as the ‘sampling error’ since it can be com-
puted independent of any actual data values, and
depends only on the choice of interpolation meth-
od and the distribution of the observation loca-
tions. For instance, Fig. 4 shows the sampling
error for the quadratic loess interpolation method
along the same cross-section presented in Fig. 3.
Near the shore, where the data were most densely
sampled, the root mean square (rms) sampling
error was about 0.2 (corresponding to 4% error
variance transmission), suggesting that the scales
of interest (as indicated by the smoothing scales,
Vx,Vy) were adequately sampled. Sharp increases in
the sampling error correspond to progressive dou-
bling of the alongshore sample spacing at xV400
m, 500 m, and 700 m, indicating that the scales of
interest may be poorly sampled. The sampling er-
ror reaches a value of 1 (no removal of measure-

ment error) at locations xs 700 m, where single
observations from distant alongshore locations
contributed to the interpolation estimate. The sam-
pling error is useful for analyzing the error proper-
ties of a particular surveying strategy.

Another measure of error is the weighted mean
square residual,

q̂q2i ¼
1
ÔO
2
i

X

j

ðẑzi3zjÞ2âa2ij ð5Þ

which describes the spatially varying mis¢t be-
tween the smooth, interpolated surface and the
observations. This is the variability that is ¢ltered
from the observations. This error statistic may
re£ect some of the damage done to the resolved
scales of the true bathymetry (¢rst term in Eq. 3),
in addition to re£ecting removal of damaging
noise (last two terms in Eq. 3). In the example
shown in Fig. 4, the residual errors are high along
the front of the dunes (x6 100 m) and along the
shoreline (xV110 m), and generally decrease
in the o¡shore direction. It is not possible to de-
termine whether the spatial variability in the re-
siduals corresponds to spatial variation in the
resolved or unresolved scales. If, however, the re-
siduals are due to measurement errors alone, then
an estimate of the mean square interpolation er-
ror, is (again assuming white noise, Priestley,
1981, p. 368),

ŝs2i ¼
O
2
i

13O
2
i

ðq̂qiÞ2 ð6Þ

Fig. 4. Interpolation error corresponding to the pro¢le shown in Fig. 3. The rms sampling error describes the fraction of white
noise that would be expected to contaminate the interpolation. The rms residuals describe the deviations between the interpolated
surface and the observations, and the rms interpolation error describes the estimated deviation between the interpolated surface
and the true bathymetry.
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This error estimate is the expected variance of
the di¡erence between true and interpolated ba-
thymetry values, and takes into account both the
sampling pattern and the scale of variations in the
observations.

To summarize this section, interpolated ba-
thymetry estimates consist of (1) a component
due to the resolvable part of the true bathymetry,
plus (2) a component due to the unresolved por-
tion of the true bathymetry, plus (3) a component
due to measurement errors. Interpolation errors
from any of these three sources may appear as
(I) damage done by the interpolation weights to
the resolved component of the true bathymetry
(e.g. over-smoothing), (II) misrepresentation of
true, but unresolved, features (e.g. aliasing, see
Fig. 2), and (III) transmission (including possible
ampli¢cation) of measurement errors. Because of
the explicit dependence of interpolation error on
scale, quantitative estimates of the magnitude of
interpolation errors can be shown through spec-
tral analysis of the interpolation weights, the true
bathymetry, and the measurement errors.

2.3. Interpolation errors ^ spectral representation

Schlax and Chelton (1992) describe the distri-
bution by scale of interpolation errors using the
‘equivalent transfer function’ (ETF). The ETF is
the Fourier transform of the interpolation weights
(Fig. 5). A detailed description of the computa-
tion of the ETF in practice can be found in Schlax
and Chelton (1992). Since the interpolation
weights are convolved with the observations, the
spectral representation of the interpolated ba-
thymetry is obtained by multiplying the spectral
density function of the interpolation weights
(AŒ i = (ETF)i*(ETF)i, where the asterisk denotes
complex conjugate) against the spectral density
function of each component of the observations:

ð7Þ
The capitalized variables denote the spectral

density function of the corresponding lower-case
variables in Eq. 3. The term on the left hand side
of Eq. 7 is the (1-D) local wave number spectrum

of the interpolation estimate (k is the wave num-
ber, de¢ned as the reciprocal wavelength). The
¢rst term on the right hand side of Eq. 7 describes
the spectral transmission of the resolved scales,
MkMskN, where kN is the Nyquist wave number
(kN = 0.5(vx)31 for equally spaced observations in
one dimension). The second term describes the
transmission of the unresolved part of the true
bathymetry spectrum, MkMs kN. The third term
describes the transmission of the measurement er-
rors, which may contaminate both the resolved
and unresolved wave numbers.

Ideally, the ETF would pass all of the variabil-
ity below a certain wave number cuto¡ value, and

Fig. 5. Distribution of quadratic loess interpolation weights
(top) and ETF (bottom). The weighting function (top, solid
line) is centered on the interpolation location (x/Vx = 0). Ob-
servations arranged symmetrically about a centered interpola-
tion location yield a symmetric pattern of discrete interpola-
tion weights (dots), while observations that lie to one side of
the interpolation location (circles) yield an asymmetric pat-
tern of weights. The two sampling patterns give rise to di¡er-
ent ETF shapes. The Nyquist wave number is kNVx = 2.5 and
the cuto¡ wave number (for centered sampling) is kcVx = 0.7.
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it would pass no variability above this cuto¡.
These properties are not achieved in practice.
For the case of quadratic loess interpolation
(Fig. 5), the ETF is rounded near a cuto¡ wave
number that can be characterized by the half-
power wave number, kcV0.7/Vx. At the lowest
wave numbers, k6 kc, where the ETF is nearly 1,
variability is passed unchanged. Variations in the
resolved band are preserved in this wave number
range and contribute to an accurate interpolation,
while measurement error variance in this band
contributes to interpolation error.

Variance is typically attenuated at wave num-
bers above the cuto¡. An exception to this gen-
eralization occurs when interpolating at the edge
of a sample region, which can lead to ampli¢ca-
tion of variance at some wave numbers (Fig. 5,
open circles), increasing the interpolation error.
Attenuation of the unresolved wave numbers
and the measurement error is desirable, since
this reduces the interpolation error. Attenuation
of resolved wave numbers results in an overly
smooth representation of the true bathymetry,
which adds to the total interpolation error. Bathy-
metric analyses are impacted adversely only if the
scales of interest are attenuated, and this impact
may be controlled by choosing appropriate inter-
polation smoothing scales.

Because of discrete sampling, the ETF contains
a series of side bands (only part of the ¢rst side-
band is shown in Fig. 5). In the case of equally
spaced samples, the sidebands are centered on
wave numbers equal to kSB = 2 n kN (where n is
any positive integer). Variance in the side bands is
unresolved and is aliased into the pass band, re-
sulting in additional interpolation error. However,
variance is removed at the unresolved scales lying
between side bands, where the ETF is nearly zero
(i.e. in the region 2.56 kxVx 6 4.5 in Fig. 5). The
important point to note here is that scale-con-
trolled interpolation removes some of the noise
variance unlike some other interpolation methods,
which may pass all noise variance!

3. Error analysis

Analysis of the scale-dependent distribution of

errors can be applied to any linear interpolation
method described by Eq. 2 and to arbitrary sam-
pling patterns. In this section, an analysis of the
three survey data sets obtained at Duck illustrates
the in£uence of changes in sampling patterns and
interpolation methods on interpolation errors. It
is quite possible to perform the interpolation and
analysis using both spatially and temporally dis-
tributed data. For simplicity, the analysis is re-
stricted to the spatial domain and a 2-D (i.e.
cross-shore and alongshore coordinates) quadrat-
ic loess ¢lter is used to compute interpolation
weights. Alongshore smoothing scales are chosen
such that the sampling strategy adequately re-
solved the variability of the interpolation weights.
Since 99% of the spectral density in the main
band of the quadratic loess ETF is recovered for
wave numbers less than 2/V (Fig. 5), placing the
Nyquist wave number at this limit yields a
constraint Vy v 4vy. A similar constraint for
the cross-shore smoothing scale was applied to
the DOLLY data set. However, the along-track
(cross-shore) sampling of the CRAB is very dense
(vxV1 m), while the 10-m footprint of the vehicle
limits the actual resolution of the data. Accord-
ingly, cross-shore and alongshore smoothing
scales (Vx, Vy) were (20 m, 200 m) for the monthly
CRAB survey, (20 m, 100 m) for the Duck94
CRAB survey, and (20 m, 20 m) for the DOLLY
survey.

3.1. Spatial variation of interpolation errors

Due to expected spatial variation in the scale of
nearshore morphology, the large-scale, monthly
CRAB surveys were conducted with variable spa-
tial resolution, which decreased o¡shore. This
practice minimized the cost of sampling resources,
but an additional price may be paid in sampl-
ing error. Fig. 6 shows the ETF analysis of the
monthly CRAB survey along the cross-section
y= 875. The band limits of the analysis are set
to (kxV, kyV)9 N6, which includes most morpho-
logically relevant scales. Near the shoreline, where
the alongshore sample spacing is about 50 m (Fig.
1; location M1), the ETF is non-zero within the
pass band. As the ETF is essentially zero at all
cross-shore wave numbers outside the pass band,
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the cross-shore sample spacing is su⁄cient to sup-
press aliasing out to cross-shore wave numbers at
the limit of this analysis. Aliasing is indicated by a
side band, located along the zero cross-shore wave
number and centered at an alongshore wave num-
ber of about (40 m/cycle)31. This wave number
band happens to correspond to beach cusps at
Duck, which have wavelengths between 10 and
40 m (Holland, 1998). Because the side bands re-
peat, variability corresponding to cusps with 20-m
wavelengths will be aliased as well. Fortunately,
the quadratic loess interpolation suppresses inter-
mediate scale cusps (e.g. 30-m wavelength), which

is clearly preferable to passing all unresolved var-
iability.

At the second location (xV400 m; Fig. 1, lo-
cation M2) the alongshore sample spacing in-
creased to 100 m. This results in side bands ap-
pearing at alongshore wave numbers of (100 m/
cycle)31 and (40 m/cycle)31. In addition to an
increased number of side bands, there is strong
ampli¢cation within the side band and pass
band. Cusps are not typically present at this sam-
ple location, but potentially aliased features in-
clude transverse bar with alongshore wavelengths
between 25 and 150 m (Konicki and Holman,
2000) and mega cusps with wavelengths between
150 and 400 m (Lippmann and Holman, 1990).
Some of this variability will be misrepresented
through a combination of ampli¢cation and alias-
ing.

Finally, at the most seaward location (M3),
nearly all alongshore wave numbers are capable
of aliasing into the pass band and variance at
these wave numbers is signi¢cantly ampli¢ed.
This occurs because the e¡ective alongshore sam-
ple spacing is in¢nitely long compared to the in-
terpolation smoothing scales, and the spacing of
side bands is nearly in¢nitely close together in the
wave number space. The scales of interest are
poorly resolved at this location and the perfor-
mance of the interpolator is unreliable. As indi-
cated in the pro¢le shown in Fig. 4, the normal-
ized sampling error increases from about 5% at
M1 (where data were densely sampled), to 20% at
B, and to 50% at M3. The spatial variation of the
ETF means that, at di¡erent locations, di¡erent
spatial scales contribute to the interpolation er-
rors di¡erently. Such variability in the interpola-
tion error could ruin an analysis that attempts
to describe real variability at a particular spatial
scale.

3.2. Short-scale features: removed or resolved?

The next analysis focuses on the region near the
shoreline where cusps were observed (Fig. 2). In
this case, the ETF (Fig. 7) was computed at a
¢xed location C1 (x= 100, y = 875, see Fig. 2)
for each of the three data sets. In all three exam-
ples, the normalized sampling error is less than

Fig. 6. ETF analysis of the monthly CRAB survey along a
cross-section (y= 875 m) centered at x= 175 m (M1), 450 m
(M2), and 600 m (M3). Each panel shows the squared ETF
value as a function of normalized cross-shore and alongshore
wave numbers. Medium gray shades correspond to ETF val-
ues of 1, bright white regions correspond to ampli¢cation,
and black corresponds to attenuation. The white box delin-
eates the approximate bounds of the pass band of the inter-
polator. In all cases Vx = 20 m and Vy = 200 m.
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0.1, indicating that less than 10% error variance
transmission is expected if uncorrelated measure-
ment errors are the only noise contribution.

However, unresolved scales associated with
beach cusps must also contribute to the noise in
two of the data sets. Using the highest resolution
DOLLY survey data, we determined that the cusp
wavelength was approximately 40 m near the
analysis location. This corresponds to normalized
alongshore wave numbers presented in Fig. 7 of 5
(Monthly CRAB), 2.5 (Duck94 CRAB), and 0.5
(DOLLY). These cusps are not resolved by the
monthly CRAB survey and the cusp wavelength

falls near a side band of the corresponding ETF
(Fig. 7), indicating the potential for harmful alias-
ing. In this case, about 30% of the cusp variance
aliases and masquerades as resolved variability in
the interpolated bathymetry. While the cusps are
not resolved by the Duck94 CRAB survey, they
correspond to an almost completely attenuated
region of the ETF such that only 10% of the
cusp variability is transmitted. Indeed, the aliased
cusp variations, which appear with an erroneous
70-m wavelength when using nearest neighbor in-
terpolation (Fig. 2, bottom), do not appear with
the scale-controlled, quadratic loess interpolation
(Fig. 2, top). Lastly, the cusp wavelength falls well
within the pass band of the DOLLY survey, and
less than 10% attenuation of these features is ex-
pected. Interestingly, the somewhat random sam-
pling pattern of the DOLLY survey suppresses
well-de¢ned side bands in the ETF, but admits
roughly twice the sampling error as the other
two interpolation examples. A lack of sidebands
reduces the danger of resonance with a particular,
unresolved wave number band, which could be
particularly advantageous whenever a sampling
strategy does not resolve rhythmic features.

4. Discussion

4.1. Interpolation errors in practice

While the ETF analysis provides a very com-
plete means of analyzing the spectral distribution
of interpolation errors due to arbitrarily spaced
observations, it may not be practical to inspect
the ETF at all interpolation locations every time
a bathymetric data set is interpolated. Instead, a
practical application of the theory described so far
would present the expected error in terms of bulk
estimates, such as the normalized sampling error,
O, the residual error, qŒ , and the estimated inter-
polation error, s“, all of which may be obtained
without spectral computations (see Eqs. 4^6).
Maps of these bulk error estimates may be used
to determine the e¡ectiveness of a particular sam-
pling^interpolation strategy, make inferences
about the nature of the true bathymetry, and ap-
propriately utilize the interpolated bathymetry es-

Monthly CRAB (ε2=0.04)

Duck94 CRAB (ε2=0.04)

DOLLY (ε2=0.09)

Fig. 7. ETF analysis at point C1 (Fig. 2). The smoothing
scales of the quadratic loess interpolation applied to the
monthly CRAB survey (top), Duck94 CRAB survey (mid-
dle), and DOLLY survey (bottom) were (Vx = 20 m, Vy = 200
m), (Vx = 20 m, Vy = 100 m), and (Vx = 20 m, Vy = 20 m), re-
spectively. The spectral location of the beach cusps with an
alongshore wavelength of 40 m is marked with an asterisk in
each panel. Shading and pass-band boundaries (white box)
are described in Fig. 6.
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timates in subsequent analyses of nearshore pro-
cesses.

Fig. 8 shows spatial maps of the three types of
interpolation errors, which were computed for the
Duck94 CRAB data set. The mean value of O,
averaged over the entire map, was 0.36. The ex-
pected measurement error of the CRAB, due to
survey errors alone, was 0.1 m (rms) (Birkemeier

and Mason, 1984), so the present interpolation
scheme is expected to yield bathymetry estimates
with about 0.04 m rms error due to this contribu-
tion. Errors will be highest where sampling is
sparse, such as along the dune line (xV75 m)
and far o¡shore. Depending on research objec-
tives, this error map may be used to re-design
the interpolation method (to give smaller errors
everywhere) or restrict analysis to only a portion
of the interpolated ¢eld (where errors are toler-
ably low).

The pattern of the sampling error, O, corre-
sponds quantitatively to actual interpolation er-
rors only if (1) the observation errors were de-
scribed by band-limited white noise, (2) ob-
servation error variance was spatially constant,
and (3) the true bathymetric surface contained
no features outside the pass band (because these
would be removed). In practice, none of these
conditions will hold exactly. In particular, error
sources may be expected to vary spatially (such as
with distance from the shoreline). The most seri-
ous source of interpolation error in the Duck94
CRAB example may result from real bathymetric
features that were not well resolved by the data
(such as beach cusps), and were removed by the
interpolation method. This error depends on the
choice of interpolation smoothing scale as well as
on the sampling pattern.

The residual error map (Fig. 8, middle) quanti-
¢es the spatial variability of those features that
were removed by the interpolation. Aside from
the poorly sampled regions near the dune line
and far o¡shore there are several regions with
relatively large rms residuals. (Note: in regions
where the interpolation weights, a“, are zero for
all observations, the mean square residual was
set to the total variance of the data set.) One
region is a shore-parallel band along the shoreline
(xV125 m), where beach cusps were removed by
the interpolation method (Fig. 7, middle panel).
Assuming that the residual errors were dominated
by cusp features, an estimate of the rms cusp am-
plitude from the residual map is a maximum of
0.6 m. Another region of relatively large residual
error lay farther o¡shore, along the landward face
of a sandbar (Fig. 9, top and middle). In this case,
the residual error was due to short-scale along-

Fig. 8. Rms sampling (top), residual (middle), and, estimated
interpolation (bottom) errors corresponding to the Duck94
CRAB survey, with smoothing scales Vx = 20 m, Vy = 100 m.
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shore variability. The observed bar crest eleva-
tions alternate above and then below the interpo-
lated bathymetry at adjacent cross-shore tran-
sects. Without additional information, the true
scale of this variability is unresolvable. In addi-
tion, the steep landward face of the sandbar was
£attened by the combined alongshore and cross-
shore smoothing e¡ect of the interpolation. Fi-
nally, there was a patch of large residual error,
which corresponded to features with cross-shore
scales that were well resolved by the observations
(Fig. 9, bottom), but were removed by the inter-
polator due to the choice of smoothing scale
(Vx = 20 m). However, these features likely had
relatively short, and unresolved alongshore scales
as well, so there is little justi¢cation for trying to
preserve them.

Scale-controlled interpolation yields estimates
of bathymetric components that fall within the
¢lter’s pass band. If we want to describe how
well we have estimated these components, the
sampling (O) and residual errors (qŒ) are combined
to estimate the interpolation error (s“), which ac-
counts for spatial variation in the noise level, as
well as the sampling pattern’s ability to remove
this noise. The map of the interpolation error
(Fig. 8, bottom) looks very much like that of
the residual error. Over much of the interpolated
region, the interpolation errors were less than 0.05
m and the median value was 0.04 m, which is the
expected reduction of the 0.1 m survey error.
Aside from the poorly sampled regions, even the
regions with relatively large residual errors show
much-reduced interpolation errors.

The purpose of computing interpolation errors
is to ensure that the interpolated bathymetry is
appropriately utilized in subsequent analyses.
For instance, the calibration of remotely sensed
bathymetry estimates (e.g. Plant and Holman,
1997; Stockdon and Holman, 2000) relies on the
interpolation of directly surveyed bathymetry,
such as are obtained with CRAB and DOLLY
surveys. Remote sensing and direct survey meth-
ods resolve di¡erent spatial scales and observa-
tions from each method are not generally co-lo-
cated. Using scale-controlled interpolation, the
remotely sensed and directly surveyed data should
be interpolated to a common set of co-located
coordinates (e.g. a regular grid), preserving a
common set of resolved scales. There may be spa-
tial variation in the di¡erence between the two
observation methods (related to the distance be-
tween survey vehicle and theodolite, for instance)
and, due to spatial variations in the sampling pat-
terns, there will be spatial variability in the reli-
ability of interpolated values. Fortunately, the im-
pact of spatial variation in the interpolation error
may be removed by using the estimated interpo-
lation errors as weights, such that large errors
correspond to small weights. The inter-compari-
son can be presented in terms of a weighted mean
di¡erence or weighted squared di¡erence between
the two observation methods (Priestley, 1981, p.
315).

Fig. 9. Cross-shore pro¢les showing the mismatch between
interpolated (solid line) and observed (dots) bathymetry, cor-
responding to the Duck94 CRAB data set.
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4.2. Rules of thumb

To take advantage of scale-controlled interpo-
lation, the interpolation smoothing scales must be
chosen to minimize interpolation errors. Large
smoothing scales lead to smaller and more homo-
geneous sampling error, ensuring a consistent in-
terpolation at the scales of interest. However, in-
creasing the smoothing scale may lead to over-
smoothing. To prevent over-smoothing, the cuto¡
wave number of the interpolator’s ETF needs to
be higher than the scales of interest. This suggests
a constraint kc 6 (1/L0), where L0 is the shortest
length scale of interest. In addition, there is the
constraint that the pass band should include at
least a portion of the resolved scales, which led
to the constraint kc 6kN. This suggests (in one
dimension)

ð4v xÞ6V x6ð0:5L0Þ

ðquadratic loess interpolation weightsÞ ð8aÞ

If both these limits cannot be satis¢ed, then the
data have been sampled too sparsely to ad-
equately resolve the scales of interest. Similar
rules of thumb can be established for other inter-
polation methods by applying the ETF analysis.
For instance:

ð2v xÞ6V x6 ð0:2L0Þ

ðHanning interpolation weightsÞ ð8bÞ

ð1v xÞ6V x 6 ð0:1L0Þ

ðBoxcar interpolation weightsÞ ð8cÞ

The ratio of the upper and lower bounds of
these rules-of-thumb indicates the minimum num-
ber of observations, J, that are needed to resolve a
single wavelength of a feature of interest. For the
quadratic loess weights, J = 8, J = 10 for the Han-
ning weights, and J= 10 for the Boxcar. So, the
quadratic loess method provides the most e⁄cient
use of the observations, although it comes at a
cost of increased sensitivity to sparse sample spac-
ing (Schlax and Chelton, 1992). This sensitivity is

primarily due to the negative lobes of the inter-
polation weights (Fig. 5, top), which are not
present in the Hanning or Boxcar ¢lters.

4.3. Optimization

The use of scale-controlled interpolation comes
at some computational cost compared to simpler
methods. For instance, using nearest neighbor in-
terpolation (provided within subroutine ‘griddata’
as part of the MATLAB programming package),
the monthly CRAB data set (with about 104 ob-
servations, which were interpolated to 104 grid
points) was interpolated in 2 s, while it took 150
s using the quadratic loess routine, including com-
puting the error ¢elds. (All computations were
performed on a personal computer with 1300-
MHz Pentium processor.) Since the computation-
al e¡ort of interpolation increases with both the
number of input data (which a¡ects the speed of
performing the convolution in Eq. 2) and the
number of output interpolation points (which af-
fects the number of times Eq. 2 must be imple-
mented), both over-sampling the input and over-
resolving the output are ine⁄cient.

4.3.1. Optimal resolution of interpolated output
The spacing of the interpolation output should

be as coarse as possible, without aliasing variabil-
ity at wave numbers within the pass band of the
interpolator. This can be accomplished if the Ny-
quist wave number of the output exceeds the cut-
o¡ wave number of the ETF. Thus, the pass band
will be resolved if vxout = Vx/4, where vxout is the
resolution of the output grid. Interpolated values
that are required at a ¢ner resolution may be
produced with simple and much faster nearest
neighbor interpolation without loss of informa-
tion or increased error. The error estimates can
be similarly interpolated in most cases, although
their smoothness is not guaranteed.

4.3.2. Optimal resolution of input data
Over-sampling results when the Nyquist wave

number associated with the sample spacing is
higher than the wave numbers that contain signif-
icant variability. Over-sampled data should be
sub-sampled, both for the computational savings
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and for accurate estimates of interpolation errors.
Sub-sampling can be implemented e⁄ciently with
a running average, which removes variance at the
over-sampled scales. A running average with a
half width of Vbox is a form of scale-controlled
interpolation and has its own wave number cuto¡
of 0.25/Vbox. The sub-sampled data must be ob-
tained at a spacing vx= Vx/4, which implies that
Vbox = 0.5vx= Vx/8. Implementation of this sub-
sampling scheme on the monthly CRAB data set
required an additional 0.5 s of processing time,
and reduced the input data (and hence interpola-
tion time) by a factor of two. The performance
gains associated with sub-sampling will be larger
for larger data sets and larger smoothing scales.

4.3.3. Accuracy of interpolation errors
Over-sampling a¡ects the accuracy of interpo-

lation error estimates when short scales that con-
tribute negligibly to the residual error are re-
solved. As suggested in Section 4.1, residual er-
rors typically encountered in ¢eld data probably
result from attenuation of partially resolved fea-
tures. This situation is shown schematically in
Fig. 10, in which the spectral representation of
the residual error is concentrated near to the
pass band of an interpolator’s ETF. The esti-
mated interpolation error, s“, is computed with
the assumption that the residuals represent a por-
tion of a white noise spectrum, which is spread

uniformly across the resolved scales, and that only
the portion of that spectrum falling within the
pass band (arbitrarily chosen as k6 1/2) will con-
tribute to interpolation error. In the schematic
example, only one third of the apparent noise
variance falls in the pass band. However, one
half of the residual error lies within the pass
band, so the interpolation error is underestimated.

5. Conclusions

Most studies of nearshore hydrodynamics, sedi-
ment transport, and morphology focus on bathy-
metric variability within a narrow band of spatial
and temporal scales. These studies rely on ba-
thymetry estimates that are derived from ¢eld
observations consisting of discrete samples with
varying degrees of measurement error. Usually,
the bathymetry must be interpolated to produce
estimates over a regular grid, and the estimates
must accurately represent the scales of inter-
est. However, aliasing of short-scale, unresolved
bathymetric features may signi¢cantly contami-
nate variability at larger scales, sometimes leading
to serious errors in the representations of the
scales of interest. Using a spectral analysis of in-
terpolation errors, we have demonstrated that a
scale-controlled interpolation method can mini-
mize the adverse a¡ects of measurement errors
and aliasing.

Interpolation errors were analyzed for three dif-
ferent nearshore bathymetric data sets, each of
which targeted a di¡erent range of spatial scales.
All data sets were obtained at Duck, NC, USA.
Bathymetric features that were unresolved (beach
cusps) or poorly resolved (mega-cusps) introduced
serious potential for contamination in two of the
data sets. Using a typically applied nearest neigh-
bor interpolation method the unresolved beach
cusps were aliased into a wavelength that was
about twice the true beach cusp wavelength.
While an appropriate scale-controlled interpola-
tion method (a quadratic loess smoother) could
not recover the aliased variability, it could ¢lter
this variability yielding a smooth estimate of the
true bathymetry.

Both nearest neighbor and quadratic loess in-

Fig. 10. Schematic spectra of interpolation errors. The resid-
ual error spectrum (dashed line) is triangular shaped and its
variance is equal to that of the apparent noise spectrum
(dotted line). The area of the shaded region represents the
true interpolation error variance.
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terpolation methods are forms of linear interpo-
lation, in which the estimates are a linear com-
bination of the observations. All linear in-
terpolation methods allow for straightforward
estimation of unavoidable interpolation errors.
Additionally an analysis of interpolation errors
can be performed independently of actual obser-
vations, which allows for optimization of bathy-
metric sampling strategies by ensuring that dom-
inant scales are either resolved or largely re-
moved. Once computed for a particular sample
design, interpolation errors can be used to deter-
mine which estimates contribute usefully to a
band-limited analysis of bathymetric variability.

The method presented here makes optimal use
of the observations. To ensure statistical robust-
ness and optimal computational e⁄ciency, some
statistical constraints yield the following guide-
lines for quadratic loess interpolation.

(1) Choose a smoothing scale (or scales), Vx,
which satis¢es sampling constraints : (4vx)6Vx.
Or, if there are su⁄cient data, preserve a length
scale of interest : Vx 6 (L0/2).

(2) Design an output grid that does not over-
resolve the pass band: vxout = Vx/4.

(3) Use a running average ¢lter to decimate
large data sets: Vbox = Vx/8.

(4) Apply scale-controlled interpolation.
(5) Examine error ¢elds and adjust Vx to suit

particular needs:
^ increase Vx if interpolation errors are large (or

spatially variable) ;
^ decrease Vx if residual errors are large and

normalized errors are small.
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