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Abstract

The purpose of this analytic-numerical Bayesian forecasting system (BFS) is to produce a short-term probabilistic river stage

forecast based on a probabilistic quantitative precipitation forecast as an input and a deterministic hydrologic model (of any

complexity) as a means of simulating the response of a headwater basin to precipitation. The BFS has three structural

components: the precipitation uncertainty processor, the hydrologic uncertainty processor, and the integrator. A series of

articles described the Bayesian forecasting theory and detailed each component of this particular BFS. This article presents a

synthesis: the total system, operational expressions, estimation procedures, numerical algorithms, a complete example, and all

design requirements, modeling assumptions, and operational attributes. q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Bayesian forecasting system (BFS) is a

general theoretical framework for probabilistic fore-

casting via any deterministic hydrologic model

(Krzysztofowicz, 1999a). Within this framework a

variety of probabilistic forecasting systems suited to

different purposes can be developed. One such system

was developed for short-term forecasting in head-

water basins. A series of articles described the

formulation, modeling, and testing of each component

of this particular BFS. This article presents a

synthesis: the total system, operational expressions,

estimation procedures, numerical algorithms, a com-

plete example, and all design requirements, modeling

assumptions, and operational attributes. It could serve

as a blueprint for operational implementation.

The purpose of this particular BFS is to produce a

probabilistic river stage forecast (PRSF) based on a

probabilistic quantitative precipitation forecast

(PQPF) as an input and a deterministic hydrologic

model as a means of simulating the response of a river

basin to precipitation. It could be adapted to produce a

probabilistic river discharge forecast or a probabilistic

runoff volume forecast. It is designed to meet six

requirements.

1. The predictand is a time series of river stages at the

outlet of a headwater basin.

2. The dominant source of forecast uncertainty is the

basin average precipitation amount during the

coming period.

3. The PQPF is produced either algorithmically by a

model or judgmentally by a meteorologist.

4. The maximum lead time of the PRSF equals,

approximately, the lead time of the PQPF plus the

concentration time of the basin.

5. The system works in conjunction with any

deterministic hydrologic model of a river basin.
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6. The system is computationally efficient and its

execution in real time is simple and fast.

In essence, the BFS can be attached to any

deterministic hydrologic model for operational fore-

casting. Its function is to quantify the total uncertainty

about the predictand. This uncertainty is defined from

the viewpoint of a user of forecasts—a rational

decision maker who wants to make optimal decisions

that take forecast uncertainty explicitly into account.

To achieve the computational efficiency and oper-

ational simplicity, the BFS is built of analytic

expressions which require minimal numerical calcu-

lations. In the classification of all conceivable

versions of the BFS according to the methods of

computation, this is an analytic-numerical BFS

(Krzysztofowicz, 2001a).

Section 2 introduces the decomposition of the total

uncertainty, the structure of the system, the time scale,

and the example. Section 3 specifies the required

format of the PQPF. The next three sections present

the system components: Section 4 details the

precipitation uncertainty processor, Section 5 details

the hydrologic uncertainty processor, and Section 6

details the integrator. Section 7 highlights properties

of the PRSF and presents algorithms for updating the

PRSF. Section 8 summarizes the assumptions and the

attributes of the BFS.

2. Preliminaries

2.1. Decomposition of uncertainty

The sources of uncertainty associated with a river

stage forecast can be categorized as operational,

precipitation, and hydrologic. Operational uncer-

tainty is caused by erroneous or missing data,

human processing errors, unpredictable interventions

(e.g. changes in reservoir releases not communicated

by a dam operator to the forecaster), unpredictable

obstacles within a river channel (e.g. ice jams), and

the like. These sources of uncertainty are exterior to

the forecasting theory. Therefore, the term ‘total

uncertainty’ used henceforth will not encompass

operational uncertainty.

Fig. 1. Structure of the Bayesian forecasting system (BFS) which produces a probabilistic river stage forecast (PRSF) based on a probabilistic

quantitative precipitation forecast (PQPF) processed through a deterministic hydrologic model. Symbols denote inputs and outputs during

execution of the BFS in real time.
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In the BFS, the total uncertainty is decomposed

into precipitation uncertainty and hydrologic uncer-

tainty. The sources of these uncertainties are as

follows. Precipitation uncertainty is associated with

the total basin average precipitation amount during

the period covered by the PQPF. This uncertainty is

quantified in terms of a probability distribution

specified by the PQPF. Hydrologic uncertainty is the

aggregate of all uncertainties arising from sources

other than the total basin average precipitation

amount. These sources include: (i) the deterministic

forecast of the temporal disaggregation of a total

precipitation amount into subperiods (this forecast is

part of the PQPF), (ii) the deterministic forecast of the

spatial disaggregation of a total precipitation amount

into subbasins (this forecast is part of the PQPF when

the basin consists of multiple subbasins), (iii) the

deterministic estimates of all other inputs into the

hydrologic model (in general, the measurement,

estimation, and prediction uncertainties), (iv) the

imperfections of the hydrologic model (in general,

the model and parameter uncertainties), and (v) the

precipitation beyond the period covered by the PQPF.

2.2. System structure

The decomposition of the total uncertainty is

justified by principles of Bayesian predictive infer-

ence. These principles prescribe the structure of the

BFS depicted in Fig. 1. A PQPF, which quantifies

precipitation uncertainty, is the primary input. Two

processors are attached to the hydrologic model.

One processor maps precipitation uncertainty into

output uncertainty under the hypothesis that there is

no hydrologic uncertainty. Another processor quan-

tifies hydrologic uncertainty under the hypothesis that

there is no precipitation uncertainty. Then the two

uncertainties are optimally integrated to produce a

PRSF. Hence the BFS has three structural com-

ponents: the precipitation uncertainty processor

(PUP), the hydrologic uncertainty processor (HUP),

and the integrator (INT).

Fig. 1 also lists symbolically all inputs and outputs

within the BFS that must be defined for operational

forecasting. The symbols are explained along with the

system components in subsequent sections.

2.3. Time scale

As is common in operational forecasting, PRSFs

are assumed to be prepared on schedule, once or more

times per day. On each forecasting occasion, the time

scale t is reset; t0 denotes the forecast time, which

coincides with the last observation time before

forecast preparation; and tn ðn ¼ 1;…;NÞ denotes

the time at which the river stage is forecasted and then

observed (Fig. 2). PRSFs are prepared for times

t1;…; tN ; coinciding with the abscissae of a discrete-

time hydrograph calculated by the hydrologic model

(though these calculations may be performed on finer

time steps).

The lead time of the PRSF prepared at time t0 for

time tn equals tn 2 t0: When D ¼ tn 2 tn21 is constant

for n ¼ 1;…;N; the lead time equals nD: For

simplicity, index n itself will be referred to as lead

time.

On each forecasting occasion, a PQPF must be

prepared for period ½t0; t0 þ T�; which begins at the

forecast time t0 and ends at time t0 þ T [ {t1;…; tN}:

The period is divided into I subperiods indexed by i

ði ¼ 1;…; IÞ and coinciding with the time steps in the

hydrologic model (Fig. 2).

The river basin above the forecast point may be

represented by a lumped hydrologic model or a semi-

distributed (or a distributed) hydrologic model, in

which case the basin is partitioned into J subbasins (or

subareas) indexed by j ðj ¼ 1;…; JÞ:

2.4. Example

The BFS has been tested operationally by the US

National Weather Service (NWS). The example

reported throughout the article is for the forecast

point Eldred, Pennsylvania, located in the headwater

Fig. 2. Example of time scales for the PQPF (upper scale) and the

PRSF (lower scale).
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of the Allegheny River and closing a drainage area of

550 square miles (1430 km2). All simulations of river

stages were performed at the NWS using the

operational forecast system whose description can

be found in Hudlow (1988) and Fread et al. (1995).

For Eldred, the NWS uses a lumped hydrologic model

with a single precipitation input ðJ ¼ 1Þ in the form of

a time series of 6-h basin average precipitation

amounts. The model outputs a time series of river

stages at 6-h steps. (The time to peak of the unit

hydrograph is 30 h.)

In the pilot testing, forecasts are produced daily.

The PQPF is prepared for a 24-h period beginning at

1200 UTC (Universal Time Coordinated), divided

into four 6-h subperiods ðI ¼ 4Þ: The PRSFs are

prepared based on the input data available at 1200

UTC on the forecast day. The example uses real-time

input data from the NWS archives and has two

versions. In the complete version, illustrating all

system components, the PRSFs are produced for 3

days in 24-h steps ðN ¼ 3Þ: In the abbreviated version,

illustrating only the final output, the PRSFs are

produced for 3 days in 6-h steps ðN ¼ 12Þ:

3. Precipitation input

3.1. Input requirements

A system that produces the PQPF is not part of the

BFS. It must be developed separately and may employ

any forecasting method. However, it must meet two

requirements:

1. The PQPF must be in a specified format.

2. The PQPF system must be well calibrated.

The notion of calibration (from the Bayesian point

of view) and the criteria for calibration are described

elsewhere (Krzysztofowicz and Sigrest, 1999). The

required formats of the predictand and the PQPF are

detailed next.

3.2. Precipitation predictand

Let W denote the basin average precipitation

amount to be accumulated during the period; let w

denote a realization of W. (Hereinafter W is referred to

as the total precipitation amount.) Let V denote an

indicator of precipitation occurrence, with V ¼ 0 ,

W ¼ 0 and V ¼ 1 , W . 0: Hence, the precipitation

event is denoted V ¼ v; where v [ {0; 1}:

Furthermore, let Wij denote the average precipi-

tation amount to be accumulated during subperiod i

and over subbasin j. Conditional on the hypothesis

that precipitation occurs, V ¼ 1; define a factor Qij ¼

Wij=W : The matrix of factors Q ¼ {Qij : i ¼

1;…; I; j ¼ 1;…; J} defines the spatiotemporal dis-

aggregation of the total precipitation amount W . 0:

The predictand consists of W and Q:

For a lumped hydrologic model, matrix Q reduces

to vector Q ¼ ðQ1;…;QIÞ; where Qi ¼ Wi=W is a

fraction conditional on the hypothesis V ¼ 1; and

where Wi is the basin average precipitation amount to

be accumulated during subperiod i ði ¼ 1;…; IÞ: The

vector of fractions Q defines the temporal disaggrega-

tion of the total precipitation amount W . 0:

3.3. Precipitation forecast

The PQPF for a river basin consists of two parts.

The first part is a probabilistic forecast of the total

precipitation amount W. This forecast must specify (i)

the probability of precipitation occurrence during the

period and over the basin,

n ¼ PðV ¼ 1Þ; ð1Þ

such that 0 # n # 1; and (ii) the distribution of the

total precipitation amount, conditional on the hypoth-

esis that precipitation occurs,

H1ðwÞ ¼ PðW # wlV ¼ 1Þ; ð2Þ

such that H1ðwÞ . 0 if w . 0 and H1ðwÞ ¼ 0 if

w ¼ 0:

The second part of the PQPF is a deterministic

forecast of the spatiotemporal disaggregation Q: This

forecast must specify a matrix of expected factors,

conditional on the hypothesis that precipitation

occurs:

j ¼ {jij : i ¼ 1;…; I; j ¼ 1;…; J}; ð3aÞ

jij ¼ E½QijlV ¼ 1�; ð3bÞ
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with the conditions 0 # jij and

XJ

j¼1

rj

r

XI

i¼1

jij ¼ 1; ð3cÞ

where r is the area of the basin and rj is the area of

subbasin j.

For a lumped hydrologic model, matrix j reduces

to vector of expected fractions j ¼ ðj1;…; jIÞ; such

that ji ¼ E½QilV ¼ 1�; with 0 # ji # 1 for i ¼

1;…; I; and j1 þ · · · þ jI ¼ 1:

In summary, the PQPF for a river basin must be in

the format ðn;H1; jÞ: On those forecasting occasions

on which n ¼ 0; elements H1 and j are undefined.

Otherwise, the conditional distribution H1 may be of

any form; however, there is an operational advantage

(to be revealed later) when H1 belongs to a parametric

family of distributions which have closed-form

expressions for H1 and its inverse H21
1 : The choice

of such family may be guided by the goodness-of-fit

between the parametric distribution and the empirical

distribution constructed for the given basin and season

from a climatic precipitation record (Krzysztofowicz

and Sigrest, 1997). In the Eastern United States, the

Weibull family with two parameters (scale parameter

a and shape parameter b ) was found suitable for all

seasons. Consequently, the PQPF for a river basin

may be in the parametric format ðn;a;b; jÞ:

3.4. Equivalence and rescaling

The rationale for forecasting the spatiotemporal

disaggregation deterministically is fourfold. First, a

probabilistic forecast of the matrix of factors Q would

be of such a complexity that an operational meteor-

ologist could not prepare or adjust the PQPF

judgmentally (Krzysztofowicz et al., 1993), which

was one of the requirements for this particular PQPF

system. Second, results of an empirical investigation

support the deterministic equivalence principle (Kelly

and Krzysztofowicz, 2000): for a class of basins and

under certain conditions a probabilistic forecast of Q
is unwarranted because a deterministic forecast of Q
provides equivalent information for river stage

forecasting. Third, even if the deterministic equival-

ence principle does not hold, the BFS accounts for the

uncertainty arising from a deterministic forecast of Q
through a suitably designed HUP (Krzysztofowicz

and Herr, 2001). Fourth, the deterministic forecast of

Q makes it possible to formulate the analytic-

numerical PUP which offers significant operational

advantages (to be revealed later).

Example. The PQPF for a particular forecast day is

reported in Table 1; the conditional distribution H1 of W

is plotted in Fig. 3. This PQPF came from a prototype

system of the NWS. In the current implementation, the

forecast is for a 24-h period, divided into four 6-h

subperiods. A source forecast, which is prepared daily

by an operational meteorologist, consists of six gridded

Table 1

Real-time input to the BFS at the forecast time: probabilistic

quantitative precipitation forecast (PQPF) for the basin and river

stage observed at the forecast point

Input Symbol Value

Precipitation forecast

Probability of precipitation occurrence n 0.85

Conditional distribution H1 of amount:a

scale parameter a 1.807

shape parameter b 1.378

Expected fraction for:

subperiod 1 j1 0.00

subperiod 2 j2 0.10

subperiod 3 j3 0.40

subperiod 4 j4 0.50

Stage observation

Observed river stageb h0 7.90

a Weibull distribution, precipitation amount in inches.
b Stage in feet.

Fig. 3. Distribution H1 of the basin average precipitation amount W,

conditional on the hypothesis that precipitation occurs, V ¼ 1;

specified by the PQPF for the 24-h period beginning at 1200 UTC

on the forecast day. Distribution H1 is Weibull.
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fields covering a service area. From the source forecast,

a PQPF for any basin within the service area can be

computed. The computation begins with the rescaling of

the source forecast. At each grid point, the source

forecast specifies the PQPF for a nominal area, which is

1930 square miles (5000 km2) in the current implemen-

tation. The PQPF for a nominal area is rescaled to the

PQPF for an area equal to the area of the given basin.

The operational procedure for rescaling a PQPF is

documented by Krzysztofowicz (1999b). Other

elements of the NWS prototype PQPF system are

partially documented by Antolik (2000), Krzysztofo-

wicz and Pomroy (1997), Krzysztofowicz and Sigrest

(1997), Krzysztofowicz et al. (1993), Mills and

Krzysztofowicz (1998), and Seo et al. (2000).

4. Precipitation uncertainty processor

The purpose of the PUP is to map the uncertainty

associated with the total precipitation amount through

the hydrologic model into the uncertainty associated

with the model river stage. The mapping takes place at

the forecast time after the PQPF has been prepared

and all deterministic inputs to the hydrologic model

have their values set for the particular forecasting

occasion. The PUP presented herein was developed

by Kelly and Krzysztofowicz (2000).

4.1. Conditional output distribution

To formulate the PUP, three variables need be

defined as follows:

u0—subvector of deterministic inputs to the

hydrologic model at the forecast time; these inputs

encompass all internal states (initial conditions) and

all exogenous variables (except future precipitation)

whose values vary from one forecast time to the next;

they exclude parameters of the hydrologic model

(whose values remain fixed for a given river basin).

u—vector of all deterministic inputs, which

encompasses the subvector u0 and the matrix of

expected disaggregation factors j; that is, u ¼ ðu0; jÞ:
sn—model river stage (an estimate of the actual

river stage to be observed at time tn) output from the

hydrologic model at the forecast time based on (i) the

deterministic input vector u and (ii) the perfect

forecast of the total precipitation amount W; because

no perfect forecast of W is available, the model river

stage is uncertain and thus is treated as a random

variable, denoted Sn:

For every lead time n ðn ¼ 1;…;NÞ; define the

conditional output distribution. This is the distribution

of the model river stage, conditional on the hypothesis

that precipitation occurs,

Pn1ðsnÞ ¼ PðSn # snlV ¼ 1Þ; ð4Þ

such that Pn1ðsnÞ . 0 if sn . sn0 and Pn1ðsnÞ ¼ 0 if

sn ¼ sn0; where sn0 is the model river stage resulting

from zero total precipitation amount. The task of the

PUP is to map the conditional distribution H1 of total

precipitation amount W into the conditional distri-

bution Pn1 of model river stage Sn; given the

deterministic input vector u:

4.2. Numerical mapping

A numerical procedure for obtaining the con-

ditional distribution Pn1 at the forecast time consists

of five steps.

1. Define a set of probabilities {pð1Þ;…; pð7Þ} and

assign to them values 0, 0.25, 0.50, 0.75, 0.90,

0.95, 0.995; these values were selected

experimentally.

2. Calculate a set {wp : p ¼ pð1Þ;…; pð7Þ}; where wp

is the conditional quantile of total precipitation

amount W corresponding to probability p under

distribution H1 :

wp ¼ H21
1 ðpÞ: ð5Þ

3. For each p ðp ¼ pð1Þ;…; pð7ÞÞ; use the matrix of

expected disaggregation factors j to calculate a

matrix of precipitation amounts:

{jijwp : i ¼ 1;…; I; j ¼ 1;…; J};

where jijwp is the precipitation amount for

subperiod i and subbasin j.

4. For each p ðp ¼ pð1Þ;…; pð7ÞÞ; run the hydrologic

model. A run takes as input u0 and {jijwp : i ¼

1;…; I; j ¼ 1;…; J} and outputs a time series of

model river stages

{snp : n ¼ 1;…;N};
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where snp is the conditional quantile of Sn

corresponding to probability p under distribution

Pn1 :

p ¼ Pn1ðsnpÞ: ð6Þ

5. For each n ðn ¼ 1;…;NÞ; use the set of points

{ðsnp; pÞ : p ¼ pð1Þ;…; pð7Þ} to estimate a para-

metric model for the conditional distribution Pn1:

In essence, the mapping requires only seven runs of

the hydrologic model. Given the deterministic input

vector u (which encompasses j), each quantile of W is

mapped into the corresponding quantile of Sn for all n

ðn ¼ 1;…;NÞ: The set of seven probabilities was

selected via an extensive simulation experiment. This

is the smallest set that ensures an accurate represen-

tation of Pn1 when a parametric model is employed.

This model is detailed in Section 4.3.

Example. Table 2 reports the numerical example.

The first line shows the seven quantiles {wp}

calculated from distribution H1; which is specified

in Table 1. For the lumped hydrologic model, the

seven matrices of precipitation amounts reduce to

seven time series {jiwp : i ¼ 1; 2; 3; 4} with the

expected fractions {ji : i ¼ 1; 2; 3; 4} coming from

Table 1. The next three lines report the seven time

series {snp : n ¼ 1; 2; 3} of model river stages output

from the hydrologic model.

4.3. Two-piece Weibull distribution

The three-parameter Weibull distribution of vari-

ate S, denoted Wbðs;a;b;gÞ ¼ PðS # sÞ and having

scale parameter a . 0; shape parameter b . 0; and

shift parameter g [ ð21;1Þ; is specified by

Wbðs;a;b; gÞ ¼ 1 2 exp 2
s 2 g

a

� �b !
; g , s; ð7Þ

and Wbðs;a;b;gÞ ¼ 0 if s # g: The two-parameter

Weibull distribution results when g ¼ 0:

The parametric model for Pn1 is built up of two

Weibull functions. Called the two-piece Weibull

distribution, the model is specified by:

Pn1ðsnÞ ¼ Wbðsn;an1;bn1; gn1Þ; zn , sn; ð8aÞ

Pn1ðsnÞ ¼ Wbðsn;an2;bn2; gn2Þ; gn2 , sn # zn; ð8bÞ

Pn1ðsnÞ ¼ 0; sn # gn2; ð8cÞ

where the seven parameters ðan1;bn1;gn1;an2;bn2;

gn2; znÞ satisfy the following constraints:

max{gn1;gn2} , zn; ð9aÞ

zn 2 gn1

an1

� �bn1

¼
zn 2 gn2

an2

� �bn2

; ð9bÞ

bn1

zn 2 gn1

¼
bn2

zn 2 gn2

: ð9cÞ

Constraint (9a) is necessary for the existence of a

point zn at which the two Weibull functions meet;

constraint (9b) ensures that the distribution Pn1 is

continuous at zn; constraint (9c) ensures that the

corresponding density is continuous at zn: When Eqs.

(9b) and (9c) are taken into account, the two-piece

Weibull distribution has only five independent

parameters.

4.4. Two-piece Weibull density

Whereas the estimation algorithm described below

applies to the conditional output distribution Pn1; the

integrator of the BFS needs the corresponding

conditional output density pn1: This density is readily

defined as follows. Let wbðs;a;b;gÞ denote a three-

parameter Weibull density of variate S corresponding

Table 2

Conditional quantiles {wp : p ¼ pð1Þ;…; pð7Þ} of total precipitation

amount W determined from distribution H1, and conditional

quantiles {snp : p ¼ pð1Þ;…; pð7Þ} of model river stage Sn ðn ¼

1; 2; 3Þ output from the hydrologic model at the forecast time

Symbol Probability ( p )

0 0.25 0.50 0.75 0.90 0.95 0.995

wp 0.00 0.73 1.39 2.29 3.31 4.01 6.06

s1p 5.99 6.80 7.74 9.17 10.37 12.01 14.44

s2p 5.68 10.54 14.34 18.34 20.80 22.44 25.27

s3p 5.40 8.85 12.19 15.75 18.13 20.04 22.76

Precipitation amount in inches, stage in feet.
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to distribution (Eq. (7)) and specified by

wbðs;a;b; gÞ ¼
b

a

�
s 2 g

a

�b21

· exp

�
2

�
s 2 g

a

�b�
; g , s;

ð10Þ

and wbðs;a;b; gÞ ¼ 0 if s # g: Then a parametric

model for pn1; called the two-piece Weibull density,

is specified by:

pn1ðsnÞ ¼ wbðsn;an1;bn1;gn1Þ; zn , sn; ð11aÞ

pn1ðsnÞ ¼ wbðsn;an2;bn2;gn2Þ; gn2 , sn # zn; ð11bÞ

pn1ðsnÞ ¼ 0; sn # gn2; ð11cÞ

where ðan1;bn1;gn1;an2;bn2;gn2; znÞ are the par-

ameters satisfying constraint (Eq. (9a)–(9c)).

4.5. Estimation of parameters

The task is to fit model (Eq. (8a)–(8c)) to the set of

seven points {ðsnp; pÞ : p ¼ 0; 0:25; 0:50; 0:75; 0:90;

0:95; 0:995}: The estimation algorithm is partly

mathematical and partly heuristic; it is the result of

an extensive experimentation. The algorithm is also

lengthy. Therefore, it is presented herein only in

concept, which boils down to four steps.

1. The class to which Pn1 belongs is identified. There

are four classes, each defined in terms of the length

of the initial steep segment of the distribution.

2. Conditional on the class, three points are selected

to calculate parameters ðan1;bn1;gn1Þ of the first

Weibull function. The equations are given by Kelly

and Krzysztofowicz (2000, Appendix).

3. Conditional on the class, the meeting point zn is

determined.

4. Parameters ðan2;bn2; gn2Þ of the second Weibull

function are determined as follows. The shift

parameter is

gn2 ¼ sn0; ð12aÞ

the shape parameter bn2 is calculated from Eq.

(9c):

bn2 ¼ bn1

zn 2 gn2

zn 2 gn1

� �
; ð12bÞ

the scale parameter an2 is calculated from Eq. (9b):

an2 ¼ ðzn 2 gn2Þ
an1

zn 2 gn1

� �bn1=bn2

: ð12cÞ

In summary, the parametric model for the

conditional output distribution Pn1 takes the form of a

two-piece Weibull function, whose five independent

parameters are estimated based on the output from seven

runs of the hydrologic model at the forecast time.

Example. For each lead time n, Table 3 reports the

estimates of the seven parameters, while Fig. 4 shows

the seven points {ðsnp; pÞ} and the fitted two-piece

Weibull conditional output distribution Pn1:

4.6. Update of parameters

The analytic-numerical PUP obviates the need for

rerunning the hydrologic model when the forecast of

the total precipitation amount is updated between the

scheduled forecast times. To wit, suppose the

deterministic input subvector u0 and the matrix of

expected disaggregation factors j from the last

forecast time remain current, while the conditional

distribution H1 of the total precipitation amount W is

updated to H0
1: Then the updated conditional output

Table 3

Parameters of the two-piece Weibull conditional densities pn1 of model river stages calculated at the forecast time

Lead time (n ) Parametersa

an1 bn1 gn1 an2 bn2 gn2 zn

1 2.935 1.500 5.52 2.758 1.023 5.99 7.00

2 177.590 35.344 2160.90 13.844 1.210 5.68 11.59

3 38.398 8.291 224.19 11.464 1.056 5.40 9.72

a Lower bound on Sn is gn2 ¼ sn0; stage in feet.
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distribution P0
n1 of model river stage Sn is specified by

P0
n1ðsnÞ ¼ H 0

1ðH
21
1 ðPn1ðsnÞÞÞ; sn . sn0; ð13Þ

and P0
n1ðsnÞ ¼ 0 if sn ¼ sn0:

When H1 is a Weibull distribution with parameters

ða;bÞ; H 0
1 is a Weibull distribution with parameters

ða0;b0Þ; and Pn1 is a two-piece Weibull distribution

with parameters ðan1;bn1;gn1;an2;bn2;gn2; znÞ; then

P0
n1 is also a two-piece Weibull distribution with

parameters ða0
n1;b

0
n1;gn1;a

0
n2;b

0
n2;gn2; znÞ; where

b0
n1 ¼ bn1

b0

b
; a0

n1 ¼ an1

a0

a

� �b=bn1

; ð14aÞ

b0
n2 ¼ bn2

b0

b
; a0

n2 ¼ an2

a0

a

� �b=bn2

: ð14bÞ

Thus the shift parameters ðgn1;gn2Þ and the abscissa zn

of the meeting point are invariant, whereas the scale

parameters ðan1;an2Þ and the shape parameters

ðbn1;bn2Þ are updated via rescaling.

In summary, an operational advantage of this

analytic-numerical PUP is that whenever the con-

ditional distribution H1 of the total precipitation

amount is updated, while the deterministic inputs u0

and j remain current, the conditional output distri-

bution Pn1 can be updated rapidly by a simple

rescaling of its parameters.

5. Hydrologic uncertainty processor

The purpose of the HUP is to quantify hydrologic

uncertainty under the hypothesis that there is no

precipitation uncertainty. This quantification is based

on historical and simulated data samples. It is carried

out before any forecast must be prepared, and the

results are stored in a form ready for use in real-time

forecasting. The HUP presented herein was developed

by Krzysztofowicz and Herr (2001).

5.1. Family of posterior distributions

To formulate the HUP, one additional variable

need be defined as follows:

hn—actual river stage at the outlet of the basin at

time tn; when treated as a random variable, it is

denoted Hn; at the forecast time, h0 is the observed

river stage, whereas Hn is uncertain for any lead time

n [ {1;…;N}:

The HUP is formulated based on principles of a

Bayesian processor and the following three postulates.

(i) If there were no hydrologic uncertainty, then one

Fig. 4. Output distribution Pn1 of model river stage Sn at 1200 UTC

on day n, conditional on the hypothesis that precipitation occurs,

V ¼ 1; obtained from the precipitation uncertainty processor (PUP)

for 3 days, n ¼ 1; 2; 3: A two-piece Weibull model for Pn1 is fitted

to empirical points.

R. Krzysztofowicz / Journal of Hydrology 268 (2002) 16–4024



would observe hn ¼ sn for n ¼ 1;…;N: The presence

of hydrologic uncertainty gives rise to a probability

distribution of the actual river stage Hn; conditional on

a realization of the model river stage Sn ¼ sn and the

observed river stage H0 ¼ h0: (ii) Hydrologic uncer-

tainty is a nonstationary function of lead time and

depends on the precipitation event V ¼ v: (iii) The

actual river stage process {Hn : n ¼ 0; 1;…;N};

conditional on the hypothesized precipitation event

V ¼ v; is a Markov process of order one with

nonstationary transition distributions.

For every lead time n ðn ¼ 1;…;NÞ and each

hypothesized precipitation event V ¼ v ðv ¼ 0; 1Þ;

define a family of posterior distributions of actual

river stage Hn;

{Fnvð·lsn; h0Þ : all sn; h0}; ð15aÞ

where

Fnvðhnlsn; h0Þ ¼ PðHn # hnlSn ¼ sn;H0 ¼ h0;V ¼ vÞ:

ð15bÞ

That is, Fnvð·lsn; h0Þ is the distribution of Hn;

conditional on the hypotheses that the precipitation

event is V ¼ v and the model river stage induced by a

perfect forecast of the total precipitation amount is

Sn ¼ sn; and given that the river stage observed at

the forecast time is H0 ¼ h0: Each distribution

Fnvð·lsn; h0Þ has a corresponding density

fnvð·lsn; h0Þ: The family (Eqs. (15a) and (15b)) of

the posterior distributions quantifies hydrologic

uncertainty for a given hypothesis v and lead time n.

The task of the HUP is to supply Eqs. (15a) and (15b).

5.2. Meta-Gaussian posterior distributions

The parametric model for Fnv takes the form of a

family of meta-Gaussian distributions. It is built up of

marginal distributions and dependence parameters.

5.2.1. Marginal distributions

There are no constraints on the marginal distri-

butions: they can be of any form, parametric or

nonparametric. They are defined as follows:

Gnv—marginal prior distribution of actual river

stage Hn; conditional on the hypothesis that the

precipitation event is V ¼ v; it is defined for v ¼ 0; 1

and n ¼ 0; 1;…;N such that

GnvðhnÞ ¼ PðHn # hnlV ¼ vÞ: ð16Þ

�Lnv—marginal initial distribution of model river stage

Sn; conditional on the hypothesis that the precipitation

event is V ¼ v; it is defined for v ¼ 0; 1 and n ¼

1;…;N such that

�LnvðsnÞ ¼ PðSn # snlV ¼ vÞ: ð17Þ

If the distributions are parametric, then preferably

(but not necessarily) �Lnv should be of the same

type as Gnv is.

5.2.2. Dependence parameters

The stochastic dependence structure between

variates Hn; Sn; and H0 under the family of

posterior distributions Fnv is characterized para-

metrically. The dependence parameters are defined

in three steps.

1. Normal quantile transforms (NQTs). Each

original variate is transformed into a normal

variate by the composition of the inverse Q21

of the standard normal distribution and the

marginal distribution of the original variate:

Wn ¼ Q21ðGnvðHnÞÞ; n ¼ 0; 1;…;N; ð18aÞ

Xn ¼ Q21ð �LnvðSnÞÞ; n ¼ 1;…;N: ð18bÞ

2. Linear regressions. In the space of the trans-

formed variates, the stochastic dependence

structures are characterized parametrically in

terms of two linear models. The parameter cnv

ðv ¼ 0; 1; n ¼ 1;…;NÞ of the prior transition

distribution is defined by the following linear

regression:

EðWnlWn21 ¼ wn21;V ¼ vÞ ¼ cnvwn21; ð19aÞ

VarðWnlWn21 ¼ wn21;V ¼ vÞ ¼ 1 2 c2
nv: ð19bÞ

The parameters anv; bnv; dnv; and snv ðv ¼

0; 1; n ¼ 1;…;NÞ of the likelihood function are

defined by the following linear regression:

EðXnlWn ¼ wn;W0 ¼ w0;V ¼ vÞ

¼ anvwn þ dnvw0 þ bnv; ð20aÞ
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VarðXnlWn ¼ wn;W0 ¼ w0;V ¼ vÞ ¼ s2
nv: ð20bÞ

3. Dependence parameters. The parameters Anv;

Bnv; Dnv; and Tnv ðv ¼ 0; 1; n ¼ 1;…;NÞ of the

posterior distribution are calculated as follows:

Anv ¼
anvt2

nv

a2
nvt2

nv þ s2
nv

; ð21aÞ

Bnv ¼
2anvbnvt2

nv

a2
nvt2

nv þ s2
nv

; ð21bÞ

Dnv ¼
Cnvs

2
nv 2 anvdnvt2

nv

a2
nvt2

nv þ s2
nv

; ð21cÞ

T2
nv ¼

t2
nvs

2
nv

a2
nvt2

nv þ s2
nv

; ð21dÞ

where

Cnv ¼
Yn

i¼1

civ; t2
nv ¼ 1 2 C2

nv: ð22Þ

5.2.3. Posterior distribution and density

Given the marginal distributions (Eqs. (16) and

(17)) and the dependence parameters (Eqs. (21a)–

(21d)), the posterior distribution (Eq. (15b)) takes the

form of a meta-Gaussian distribution:

where Q is the standard normal distribution having

inverse Q21: The corresponding meta-Gaussian

posterior density takes the form

fnvðhnlsn; h0Þ ¼
gnvðhnÞqðQ

21ðFnvðhnlsn; h0ÞÞÞ

TnvqðQ21ðGnvðhnÞÞÞ
;

ð24Þ

where gnv is the density corresponding to the

distribution Gnv; and q is the standard normal density.

Because q has closed form and polynomial approxi-

mations to Q and Q21 are available (Abramowitz and

Stegun, 1972), expressions (23) and (24) are simple to

evaluate.

5.3. Estimation

5.3.1. Estimation framework

The task is to estimate the HUP parameters—the

marginal distributions (Eqs. (16) and (17)) and the

linear regressions (Eqs. (19a)–(20b)). The estimation

is carried out before real-time forecasting begins. The

framework for estimation rests on three assumptions.

1. The PRSFs are prepared on schedule, once or more

times per day. Each scheduled forecast time

defines a different 24-h forecast cycle. For

example, there may be two forecast cycles, one

with forecast time t0 ¼ 0000 UTC on each day, and

another with forecast time t0 ¼ 1200 UTC on each

day. Different parameter values may be necessary

for each forecast cycle in order to capture the

effects of the diurnal cycle of precipitation

(Krzysztofowicz and Pomroy, 1997). This may

be especially necessary for a small basin and a

convective precipitation season.

2. For a given forecast cycle, each day marks the

beginning of a separate realization

ðv; s1;…; sN ; h0; h1;…; hNÞ of the precipitation

event and the model–actual river stage process.

3. The calendar year is divided into hydrologic

seasons such that for a given forecast cycle, the

parameters of the HUP remain invariant for all

days within a season.

It follows that for each forecast cycle and hydro-

logic season, the HUP has a different set of parameter

values. The estimation procedure, detailed by Krzysz-

tofowicz and Herr (2001), is presented herein only in

concept, which involves three main tasks: specification

of the candidate parametric models for marginal

distributions, estimation of the prior parameters, and

estimation of the likelihood parameters.

5.3.2. Specification of parametric models

To ensure fast calculation in real time, each

marginal distribution defined in Section 5.2.1 is

Fnvðhnlsn; hoÞ ¼ Q

 
Q21ðGnvðhnÞÞ2 AnvQ21ð �LnvðsnÞÞ2 DnvQ21ðG0vðh0ÞÞ2 Bnv

Tnv

!
; ð23Þ
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represented by a parametric model having closed form

expressions for the cumulative distribution function

and the probability density function. Three such

candidate models are Weibull (WB), log-Weibull

(LW), and log-logistic (LL). Each model has three

parameters: a–scale, b–shape, and g–shift. Hence,

the basic task is to estimate the parameters of each of

the candidate models and next to choose the best

model. In effect, each marginal distribution is

specified by four parameters: ða;b;g; lÞ; where

l–distribution type, l [ {WB;LW;LL}: Usually,

the best of these three closed form models offers

as good a fit to the marginal distribution of a river

stage as does the best of the three popular models:

gamma, log-Pearson, and log-normal.

5.3.3. Estimation of prior parameters

Prior parameters are those of the marginal prior

distributions (Eq. (16)) and the linear regressions

(Eqs. (19a) and (19b)). For a given forecast cycle, the

estimation procedure consists of four steps.

1. Prior sample. From the historical data record, a

joint sample {ðv; h0; h1;…; hNÞ} is formed, with

one realization per day.

2. Prior seasons. Seasons are determined during

which the family of the prior transition distri-

butions is assumed invariant. Next, the joint

sample is partitioned into seasons.

3. Marginal distribution parameters. For each prior

season, for every v [ {0; 1} and every n [
{0; 1;…;N}; parameters ðanv;bnv;gnv; lnvÞ of the

marginal prior distribution (Eq. (16)) are estimated.

4. Prior dependence parameters. For each prior season,

for every v [ {0; 1} and every n [ {1;…;N};

parameter cnv of the linear regression (Eqs. (19a)

and (19b)) is estimated (parameter cnv can be

interpreted as the Pearson’s product-moment corre-

lation coefficient between Wn and Wn21Þ:

Example. The year was divided into monthly prior

seasons. Table 4 lists estimates of all parameters for

November. For every n, the two conditional distri-

butions are of different type: Gn0 is log-logistic

whereas Gn1 is log-Weibull. For every v; all

parameters are nonstationary with n.

5.3.4. Estimation of likelihood parameters

Likelihood parameters are those of the marginal

initial distributions (Eq. (17)) and the linear

regressions (Eqs. (20a) and (20b)). For a given

forecast cycle, the estimation procedure consists of

four steps.

1. Likelihood sample. The output from a simulation

experiment is matched with the historical data

record to form a joint sample {ðv; s1;…;

sN ; h0; h1;…; hNÞ}; with one realization per day.

(This sample may be shorter than the prior sample.)

2. Likelihood seasons. Seasons are determined during

which the family of the likelihood functions is

assumed invariant. Next, the joint sample is

partitioned into seasons. (Each likelihood season

may overlap more than one prior season. When this

is the case, the term hydrologic seasons refers to

the prior seasons.)

Table 4

Marginal prior distributions Gnv of actual river stages and prior correlation coefficients cnv at forecast time 1200 UTC in November

Precip. indicator (v ) Lead time (n ) Distribution Parameters Corr. coeff. (cnv)

Symbol (Gnv) Type (lnv)
a Scale (anv) Shape (bnv) Shift (gnv)

1 0 G01 LW 1.41 2.58 3.45

1 G11 LW 1.59 3.02 3.45 0.702

2 G21 LW 1.66 3.40 3.45 0.810

3 G31 LW 1.63 3.80 3.45 0.789

0 0 G00 LL 3.01 2.93 3.45

1 G10 LL 2.66 3.02 3.45 0.948

2 G20 LL 2.50 3.23 3.45 0.797

3 G30 LL 2.53 2.98 3.45 0.813

a LW: log-Weibull, LL: log-logistic, stage in feet.
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3. Marginal distribution parameters. For each prior

season, for every v [ {0; 1} and every n [
{1;…;N}; parameters ð �anv; �bnv; �gnv; �lnvÞ of the

marginal initial distribution (Eq. (17)) are estimated.

4. Likelihood dependence parameters. For each like-

lihood season, for every v [ {0; 1} and every n [
{1;…;N}; parameters ðanv; bnv; dnv;snvÞ of the linear

regression (Eqs. (20a) and (20b)) are estimated.

Example. The year was divided into two likelihood

seasons: warm season (June–October) and cool

season (November–May). Table 5 lists estimates of

the parameters of the marginal initial distributions for

November (a prior season). Table 6 lists estimates of

the parameters of the linear regressions for the cool

season (a likelihood season). Finally, Table 7 lists

values of the parameters of the meta-Gaussian

posterior distributions for November; these parameter

values are calculated via Eqs. (21a)–(22) from the

values of cnv for November listed in Table 4 and

the values of ðanv; bnv; dnv;snvÞ for the cool season

(which overlaps November) listed in Table 6. For

every v, all parameters are nonstationary with n.

5.4. Parameters for forecasting

To recapitulate, the precipitation-dependent meta-

Gaussian HUP requires the estimation of marginal

distributions and dependence parameters for each

forecast cycle and hydrologic season. When the

marginal distributions are parametric and forecasts are

for N steps ahead, the HUP for a given forecast cycle and

hydrologic season is specified by 24N þ 8 parameters:

(i) parameters of the marginal prior distributions Gnv

of actual river stages,

{ðanv;bnv;gnv; lnvÞ : v ¼ 0; 1; n ¼ 0; 1;…;N};

(ii) parameters of the marginal initial distributions �Lnv

of model river stages,

{ð �anv; �bnv; �gnv; �lnvÞ : v ¼ 0; 1; n ¼ 1;…;N};

Table 5

Marginal initial distributions �Lnv of model river stages at forecast time 1200 UTC in November

Precip. indicator (v ) Lead time (n ) Distribution Parameters

Symbol ( �Lnv) Type (�lnv)a Scale ( �anv) Shape ( �bnv) Shift ( �gnv)

1 1 �L11 LW 1.63 3.06 3.32

2 �L21 LW 1.96 4.67 2.00

3 �L31 LW 1.83 4.63 2.26

0 1 �L10 LL 2.72 3.41 3.24

2 �L20 LL 2.50 3.70 3.14

3 �L30 LL 1.79 2.63 3.64

a LW: log-Weibull, LL: log-logistic, stage in feet.

Table 6

Likelihood parameters at forecast time 1200 UTC in cool season

Precip. indicator

(v )

Lead time

(n )

Parameters

anv bnv dnv snv

1 1 0.95 0.00 0.00 0.323

2 0.84 0.00 0.00 0.545

3 0.47 0.00 0.37 0.669

0 1 1.00 0.00 0.00 0.065

2 0.27 0.00 0.74 0.188

3 0.16 0.00 0.86 0.189

Table 7

Dependence parameters of the meta-Gaussian families of posterior

distributions Fnv of actual river stages at forecast time 1200 UTC in

November

Precip. indicator

(v )

Lead time

(n )

Parameters

Anv Bnv Dnv Tnv

1 1 0.857 0.000 0.130 0.307

2 0.734 0.000 0.218 0.509

3 0.602 0.000 0.099 0.757

0 1 0.960 0.000 0.038 0.064

2 1.739 0.000 20.886 0.477

3 1.928 0.000 21.234 0.656
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(iii) dependence parameters of the posterior distri-

butions,

{ðAnv;Bnv;Dnv; TnvÞ : v ¼ 0; 1; n ¼ 1;…;N}:

Once acquired, the values of these parameters are

stored for future use in real-time forecasting. At the

forecast time, the parameter values for the current

forecast cycle and hydrologic season are sent to the

integrator of the BFS.

6. Integrator

The purpose of the INT is to integrate precipitation

uncertainty with hydrologic uncertainty according to

the scheme prescribed by the Bayesian theory. The

integration takes place at the forecast time and the

result is the PRSF. The INT presented herein was

developed by Krzysztofowicz (2001b).

6.1. Predictive distribution

For every lead time n ðn ¼ 1;…;NÞ define the

conditional predictive distribution. This is the distri-

bution of actual river stage Hn at time tn; conditional on

river stage H0 ¼ h0 observed at the forecast time t0 :

CnðhnÞ ¼ PðHn # hnlH0 ¼ h0Þ: ð25Þ

This predictive distribution is a mixture of two

distributions:

CnðhnÞ ¼
g00ðh0Þð1 2 nÞ

g0ðh0Þ
Fn0ðhnlsn0; h0Þ

þ
g01ðh0Þn

g0ðh0Þ

ð1

sn0

Fn1ðhnlsn; h0Þpn1ðsnÞdsn;

ð26Þ

where g0 is the marginal density of initial river stage

H0 :

g0ðh0Þ ¼ g00ðh0Þð1 2 nÞ þ g01ðh0Þn: ð27Þ

All the elements of Eq. (26) are already known. The

PQPF supplies the probability of precipitation occur-

rence n; which is defined by Eq. (1). The PUP supplies

Eqs. (11a)–(11c) and parameter values for the con-

ditional output density pn1; including the model river

stage sn0 resulting from zero total precipitation amount.

The HUP supplies Eq. (23) and parameter values for the

families of the posterior distributions Fn0 and Fn1;

including the expressions and parameter values for the

marginal prior densities g00 and g01: Finally, the river

gauge at the forecast point supplies h0:

The predictive distribution Cn quantifies the total

uncertainty about actual river stage Hn at time tn;

given all information (the PQPF, the deterministic

input subvector u0; and the hydrologic model) utilized

at the forecast time t0: As such, Cn constitutes the

PRSF with lead time tn 2 t0: The task of the INT is to

output Cn for n ¼ 1;…;N:

6.2. Algorithm for predictive distribution

In the numerical algorithm, Eq. (23) for Fnv is

used as an external function, but Eqs. (10)–(11c)

for pn1 are inserted into Eq. (26). After some

rearrangement of Eqs. (26) and (27), the following

numerical algorithm for calculating the value of

the predictive distribution CnðhnÞ for any river

stage hn is obtained.

1. Calculate two constants, the posterior prob-

ability of precipitation occurrence

m ¼
g01ðh0Þn

g00ðh0Þð1 2 nÞ þ g01ðh0Þn
; ð28Þ

and the integration limit

un ¼
zn 2 gn1

an1

� �bn1

: ð29Þ

2. For the given hn; evaluate numerically two

integrals,

In1ðhnÞ ¼
ð1

un

Fn1ðhnlan1u1=bn1 þ gn1; h0Þe
2u du;

ð30aÞ

In2ðhnÞ ¼
ðun

0
Fn1ðhnlan2u1=bn2 þ gn2; h0Þe

2u du;

ð30bÞ

and calculate the sum

InðhnÞ ¼ In1ðhnÞ þ In2ðhnÞ: ð31Þ
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3. For the given hn; calculate the predictive

probability

CnðhnÞ ¼ ð1 2 mÞFn0ðhnlsn0; h0Þ þ mInðhnÞ: ð32Þ

6.3. Algorithm for predictive density

Let cn denote the predictive density corresponding

to the predictive distribution Cn: The numerical

algorithm for calculating the value of the predictive

density cnðhnÞ for any river stage hn is obtained by

modifying the above algorithm as follows. Eqs. (28)

and (29) remain intact. The posterior distribution

functions Fn1 on the right sides of Eqs. (30a) and

(30b) are replaced by the posterior density functions

fn1; which are given by Eq. (24); the resultant left

sides are denoted in1ðhnÞ and in2ðhnÞ; respectively; and

Eq. (31) is replaced by inðhnÞ ¼ in1ðhnÞ þ in2ðhnÞ:

Finally, Eq. (32) is replaced by

cnðhnÞ ¼ ð1 2 mÞfn0ðhnlsn0; h0Þ þ minðhnÞ: ð33Þ

6.4. Bounds and discretization

Because each marginal distribution has support

bounded below by a shift parameter g; the following

constraints must be satisfied for effective numerical

calculations: hn . max{ðgn0 of Gn0Þ; ðgn1 of Gn1Þ};

and sn0 . max {ð �gn0 of �Ln0Þ; ð �gn1 of �Ln1Þ}: An

algorithm for operational forecasting discretizes hn

so that the numerical representation of Cn consists of

more than 100 values covering the probability range

(0.01, 0.99) in steps of the river stage smaller than 0.5

foot. Some distributions and densities reported herein

cover the probability range (0.0001, 0.9999) in order

to better depict the tails.

Example. With n and h0 given in Table 1, the

parameter values for pn1 given in Table 3, and the

parameter values for Fnv (and fnv) given in Tables 4,

5, and 7, the analytic-numerical INT outputs the

numerical representations of Cn (and cn). Fig. 5

displays the predictive distributions Cn for n ¼

1; 2; 3; the lead times are 24, 48, and 72 h,

respectively. Fig. 6 displays the corresponding pre-

dictive densities cn for n ¼ 1; 2; 3:

7. Probabilistic river stage forecast

This section highlights three aspects of the BFS:

theoretical and empirical properties of the PRSF,

algorithms for updating the PRSF based on an updated

Fig. 5. Predictive distribution Cn of actual river stage Hn at 1200

UTC on day n, calculated numerically from the Bayesian integrator

for three days, n ¼ 1; 2; 3; the corresponding lead times are 24, 48,

and 72 h.
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PQPF, and displays of the PRSF that convey the

evolution of the total uncertainty in time.

7.1. Forecast properties

The theoretical properties of the predictive distri-

bution Cn; an analysis of the behavior of Cn; and an

explanation of the shapes of Cn can be found in

Krzysztofowicz (2001b). The following synopsis of

four properties provides a background for the

subsequent sections.

The predictive distribution Cn quantifies the total

uncertainty about actual river stage Hn at time tn: The

total uncertainty is the union of precipitation uncer-

tainty and hydrologic uncertainty, each of which is

quantified based on information utilized at the

forecast time t0:

The predictive distribution Cn is a mixture of

two distributions. As Eq. (26) shows, these are (i)

the posterior distribution of actual river stage Hn;

conditional on the hypothesis that precipitation

does not occur, given model river stage Sn ¼ sn0

for time tn; and given observed river stage H0 ¼

h0 at the forecast time t0; and (ii) the expected

posterior distribution of actual river stage Hn;

conditional on the hypothesis that precipitation

occurs, and given observed river stage H0 ¼ h0 at

the forecast time t0: The expectation, calculated as

the integral over all possible realizations of Sn;

accounts for uncertainty about the model river

stage that results from uncertainty about the total

precipitation amount. The weights of the mixture

are determined by the posterior probability of

precipitation occurrence, given observed river

stage H0 ¼ h0: In other words, it is the uncertainty

associated with the intermittence of the precipi-

tation process that determines the basic structure

of the predictive distribution of the river stage.

The predictive density cn is bimodal, as illustrated

in Fig. 6. This is a theoretical property—the

implication of the structure of cn; which is a mixture

whenever the occurrence of precipitation is uncertain

ð0 , n , 1Þ:

The predictive density cn is asymmetric, as

illustrated in Fig. 6. This is an empirical

property—the outcome of several interacting

factors: the asymmetry of the conditional density

of the total precipitation amount, the nonlinearity

of the hydrologic model, the asymmetry of the

prior density of the river stage, and the asymmetry

of the likelihood functions characterizing the

hydrologic uncertainty.

Fig. 6. Predictive density cn of actual river stage Hn at 1200 UTC on

day n, calculated numerically from the Bayesian integrator for three

days, n ¼ 1; 2; 3; the corresponding lead times are 24, 48, and 72 h.
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7.2. Forecast updating

An operational advantage of the analytic-numeri-

cal BFS is the ease of updating the PRSF whenever

the probabilistic part of the PQPF is updated between

the scheduled forecast times. Specifically, let

ðn;H1; jÞ denote the PQPF used to produce the

PRSF at the last forecast time. Suppose that thereafter

the probability of precipitation occurrence n is

updated to n0; and/or the conditional distribution H1

of the total precipitation amount is updated to H 0
1;

while the matrix of expected disaggregation factors j
remains current; thus the updated PQPF is ðn0;H 0

1; jÞ:
When the deterministic input subvector u0 from the

last forecast time also remains current, an updated

PRSF can be produced easily (without the need for

rerunning the hydrologic model). We describe two

updating algorithms, first using n0 and second using

H0
1:

7.2.1. Updated probability of precipitation

occurrence

At the forecast time, one should store values

Fn0ðhnlsn0; h0Þ and InðhnÞ calculated as part of Eq. (32)

and values fn0ðhnlsn0; h0Þ and inðhnÞ calculated as part

of Eq. (33). Then given the updated n0; the updated

PRSF can be obtained as follows:

1. Replace n by n0 in Eq. (28), and calculate the

updated m:

2. Insert into Eq. (32) the updated m and the stored

Fn0ðhnlsn0; h0Þ and InðhnÞ; and calculate the

updated CnðhnÞ:

3. Insert into Eq. (33) the updated m and the stored

fn0ðhnlsn0; h0Þ and inðhnÞ; and calculate the updated

cnðhnÞ:

Example. Fig. 7 shows the updated predictive

distributions Cn for n ¼ 1; 2; 3 based on six different

updates of the probability of precipitation occurrence

n. It is apparent that n alone exerts a phenomenal

influence on the shape of Cn: In general, the shape of

Cn varies from cliffy, when n ¼ 0; to convex–

concave when n ¼ 1: In between, when 0 , n , 1;

the shape of Cn includes both a cliffy left tail and a

concave right tail. The cliff is located in the vicinity of

sn0 and has a height proportional to the probability of

no precipitation, 1 2 n: Fig. 8 shows the updated

predictive densities c2 corresponding to the updated

predictive distributions C2 from Fig. 7b.

7.2.2. Updated conditional distribution of amount

At the forecast time, one should store parameter

values ðan1;bn1;gn1;an2;bn2;gn2; znÞ of the two-piece

Weibull distribution (Eq. (8)), values Fn0ðhnlsn0; h0Þ

calculated as part of Eq. (32), and values

Fig. 7. Updated predictive distribution Cn for day n ðn ¼ 1; 2; 3Þ;

given the updated probability of precipitation occurrence n:
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fn0ðhnlsn0; h0Þ calculated as part of Eq. (33). When

H1 and H 0
1 are arbitrary distributions, an updating

algorithm can be devised based on Eq. (13). When

H1 is a Weibull distribution with parameters

ða;bÞ; and H 0
1 is a Weibull distribution with

parameters ða0;b0Þ; the updated PRSF can be

obtained as follows:

1. Via Eqs. (14a) and (14b) calculate the updated

parameter values ða0
n1;b

0
n1;a

0
n2;b

0
n2Þ of the two-

piece Weibull distribution.

2. Replace ðan1;bn1;an2;bn2Þ by ða0
n1;b

0
n1;a

0
n2;b

0
n2Þ

in Eqs. (29)–(30b), and repeat all calculations

using Eqs. (29)–(31).

3. Insert into Eq. (32) the updated InðhnÞ and the

stored Fn0ðhnlsn0; h0Þ; and calculate the updated

CnðhnÞ:

4. Insert into Eq. (33) the updated inðhnÞ and the

stored fn0ðhnlsn0; h0Þ; and calculate the updated

cnðhnÞ:

Example. Four different updates of the conditional

distribution H1 of the total precipitation amount are

plotted in Fig. 9. Case B is a reference, as the updated

distribution H 0
1 is nearly identical to the distribution

H1 plotted in Fig. 3 and used in all previous examples.

Fig. 10 shows the updated predictive distributions Cn

for n ¼ 1; 2; 3 based on the four updates of H1: Again,

it is apparent that H1 alone exerts a phenomenal

influence on the shape of Cn: In general, the shape of

Cn varies from an inverted J, in case A, to an

asymmetric double S, in case D. Again, these shapes

manifest the basic structure of the total uncertainty

about the river stage. The cliffy left tail of Cn reflects

mostly hydrologic uncertainty under the hypothesis of

precipitation nonoccurrence, whose probability is 1 2

n ¼ 0:15; whereas the S-shaped part of Cn reflects

uncertainty about the total precipitation amount under

the hypothesis of precipitation occurrence, whose

probability is n ¼ 0:85: As the conditional distri-

bution H1 of the total precipitation amount moves to

the right (from case A to case D), the S-shaped part of

the predictive distribution Cn of the actual river stage

moves to the right as well. In effect, the mixed

structure of Cn is accentuated. Fig. 11 shows the

updated predictive densities c2 corresponding to the

updated predictive distributions C2 from Fig. 10b.

The mixed structure of C2 is manifested by the

bimodality of c2:

7.2.3. Attributes of updating

The algorithms presented above make it obvious

that the updating is computationally simple. The

examples shown in Figs. 7, 8, 10 and 11 make it clear

that the updating is potentially important. It should

thus be a part of any operational implementation of

the BFS.

From a hydrologic point of view, the updating may

be especially useful in forecasting hurricane-induced

or convection-induced floods, when the degree of

uncertainty about the storm track and basin coverage

changes rapidly. Once the elements n and H1 of the

PQPF are updated, an updated PRSF may be prepared

also rapidly.

From an organizational point of view, the updating

may be especially useful in decentralized systems

Fig. 8. Updated predictive density c2 for day 2, given the updated

probability of precipitation occurrence n:
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such as that of the NWS (Stallings and Wenzel, 1995).

Its hydrologic computing resources are concentrated

in 13 River Forecast Centers (RFCs). Each RFC

executes the hydrologic models for all basins within

its service area and then transmits the results to

Weather Forecast Offices (WFOs), each serving a

smaller area. The WFO is responsible for disseminat-

ing forecasts and issuing flood warnings. During

rapidly evolving storms, more timely PRSFs could be

produced if the WFO could update the PQPF and the

PRSF locally, without having to call upon the RFC to

rerun the hydrologic model.

7.3. Forecast time step

One of the purposes of the PRSF is to convey to the

decision maker the evolution of the total uncertainty

in time. To illustrate this capability, the PRSFs were

produced for 3 days in 6-h steps ðN ¼ 12Þ using the

same PQPF and the same subvector u0 of determi-

nistic inputs to the hydrologic model as in the

previous example. Thus lead times n ¼ 1; 2; 3 of the

previous example correspond to lead times n ¼

4; 8; 12 of the new example.

Fig. 12 displays the sequence {Cn : n ¼ 1;…; 12}

of the predictive distributions of the river stages. Fig.

13 displays the sequence {cn : n ¼ 1;…; 12} of the

predictive densities of the river stages. Fig. 14

displays the isoprobability time series {hnp : n ¼

1;…; 12} of quantiles having probability p ¼

CnðhnpÞ; there are seven time series corresponding

to p ¼ 0:005; 0:05; 0:25; 0:50; 0:75; 0:95; 0:995:

The PQPF (Table 1) specifies j1 ¼ 0 and j2 ¼

0:10; that is no precipitation is expected in the first 6-h

Fig. 9. Conditional distribution H1 of the basin average precipitation

amount W used in the updating. Distribution H1 is Weibull with

parameters ða;bÞ: Case A: (1.0,1.0); case B: (1.8,1.4); case C:

(2.7,2.5); case D: (3.7,3.4).

Fig. 10. Updated predictive distribution Cn for day n ðn ¼ 1; 2; 3Þ;

given the updated conditional distribution H1 of the basin average

precipitation amount. Distribution H1 is Weibull with parameters

ða;bÞ: Case A: (1.0,1.0); case B: (1.8,1.4); case C: (2.7,2.5); case D:

(3.7,3.4).
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subperiod and only 10% of the 24-h basin average

precipitation amount (whatever this amount might be)

is expected in the second 6-h subperiod. Conse-

quently, for n ¼ 1; 2 the total uncertainty is essentially

equal to the hydrologic uncertainty. As n increases

from 3 to 8, so does the contribution of the

precipitation uncertainty.

The total uncertainty first increases with lead time,

from n ¼ 1 to about n ¼ 8; and then slowly decreases

with lead time. Eventually, for very long lead times,

each predictive distribution within the 24-h forecast

cycle would converge to a prior (climatic) distribution

of the river stage for the corresponding time within the

forecast cycle. This is one of the unique properties of

the BFS (Krzysztofowicz, 2001b).

8. Assumptions and attributes

Like any operational system, this particular

analytic-numerical BFS rests on various assumptions

(structural and distributional) and offers various

attributes (limitations and advantages). The assump-

tions and attributes reflect the trade-offs made by the

system designers. These trade-offs need to be under-

stood by the potential users of the BFS; they may also

be instructive to future designers of forecasting

systems, which may have to meet different

requirements.

8.1. Assumptions

8.1.1. Structural assumptions

The structural assumptions cannot be relaxed

within the current formulation of the BFS; therefore,

they limit the domain of the applicability.

1. The total precipitation amount (over a basin and

during a period) is the dominant source of uncertainty.

Based on this assumption, the total precipitation

amount is forecasted probabilistically whereas the

aggregate of all other uncertainties is quantified

statistically. In theory, such a forecasting scheme is

suboptimal in comparison with a scheme in which

every input uncertainty would be forecasted probabil-

istically. In application, the suboptimal scheme is

much simpler than the optimal scheme and, as tested

by Kelly and Krzysztofowicz (2000), may be near

optimal. However, the assumption of a single

dominant source of uncertainty is not universally

valid. Consider, for example, warm rain falling on a

deep snow cover. The outcome may be no river rise or

a flood (as occurred in the Ohio River basin in January

1997), depending on the rain amount and air

temperature in a period following rain. Thus, prior

to the event, there may be two dominant sources of

uncertainty, precipitation and temperature.

2. The PQPF has a disaggregative structure. The

PQPF decomposed into a probabilistic forecast of the

total precipitation amount and a deterministic forecast

of the spatiotemporal disaggregation can be highly

informative but only within a certain space–time

domain. It is known that the informativeness of the

total precipitation amount forecast increases with the

size of the basin area and the length of the time period

(Antolik, 2000; Grecu and Krajewski, 2000; Krzysz-

tofowicz et al., 1993), but obviously there must be (as

yet unexplored) limits beyond which the informative-

ness decreases.

3. The HUP has a two-branch, Markovian,

nonstationary dependence structure. A possible limi-

tation of this structure is the order of the conditional

Markov process, which is assumed to be one. As

tested by Krzysztofowicz and Herr (2001), the

assumption that, conditional on the precipitation

event, the daily river stage process is Markov of

order one with nonstationary transition densities

appears to be valid. For other time steps and

hydrologic regimes, the validity of the assumption

Fig. 11. Updated predictive density c2 for day 2, given the updated

conditional distribution H1 of the basin average precipitation

amount. Distribution H1 is Weibull with parameters ða;bÞ: Case A:

(1.0,1.0); case B: (1.8, 1.4); case C: (2.7, 2.5); case D: (3.7, 3.4).
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Fig. 12. Sequence of predictive distributions {Cn : n ¼ 1;…; 12} of actual river stages at 6-h steps, counting from 1200 UTC on the forecast day.
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Fig. 13. Sequence of predictive densities {cn : n ¼ 1;…; 12} of actual river stages at 6-h steps, counting from 1200 UTC on the forecast day.
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would have to be tested. Should a higher order of the

conditional Markov process be necessary, a suitable

HUP can be formulated.

4. The PRSF specifies only univariate predictive

distributions. Specifically, for each n ðn ¼ 1;…;NÞ;

the PRSF specifies the predictive distribution of actual

river stage Hn; which is the n-step transition

distribution from observed river stage H0 ¼ h0 at

time t0 to uncertain river stage Hn at time tn; given all

information utilized by the forecasting system. Such a

PRSF may be sufficient to support flood warning

decisions, navigation operations, and information

needs of the general public. To support reservoir

control and other multistage decision processes, one

usually requires a forecast that characterizes the

stochastic dependence among H1;…;HN : Specifi-

cally, one requires a multivariate predictive distri-

bution or, under the Markovian assumption, a family

of one-step transition predictive distributions.

8.1.2. Distributional assumptions

The distributional assumptions can be modified, if

necessary, with the implication that new analytic

expressions and estimation methods will have to be

derived.

1. In the PQPF, the distribution of the total precipi-

tation amount, conditional on the hypothesis that

precipitation occurs, is Weibull.

2. In the PUP, the distribution of the model river

stage, conditional on the hypothesis that precipi-

tation occurs, is two-piece Weibull.

3. In the HUP, the family of transition densities

characterizing the prior uncertainty about the

actual river stage process, and the family of

likelihood functions characterizing the hydrologic

uncertainty, each is meta-Gaussian.

8.2. Attributes

8.2.1. System attributes

The theoretical attributes of the BFS are proven

and discussed elsewhere (Krzysztofowicz, 1999a,

2001b). The operational attributes are summarized

herein.

1. The BFS can be attached to any deterministic

hydrologic model used for operational forecasting

without imposing on that model any structural (e.g.

linearizing) or distributional (e.g. normalizing)

assumptions.

2. The system structure is simple, and the information

flow is transparent (Fig. 1).

3. The precipitation uncertainty is quantified in real

Fig. 14. Isoprobability time series {hnp : n ¼ 1;…; 12} of quantiles having probability p ¼ CnðhnpÞ on the predictive distributions {Cn : n ¼

1;…; 12} of actual river stages at 6-h steps; the seven time series correspond to p ¼ 0:005; 0.05, 0.25, 0.50, 0.75, 0.95, 0.995.
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time by a PQPF, which must meet two require-

ments but otherwise may be produced via any

forecasting method.

4. The hydrologic uncertainty is quantified before

real-time forecasting begins; the quantification

requires only historical data, a simulation exper-

iment, estimation of univariate distributions, and

estimation of linear regressions.

5. The structural assumptions and the distributional

assumptions are all testable directly on data. (For

example, there are no assumptions about unobser-

vable quantities such as parameters of the hydro-

logic model for which no empirical prior

distributions exist.) Thus far, all component

models have been validated on data from the

operational forecast system of the NWS for a

1430 km2 headwater basin (results reported herein

and elsewhere) and for three other headwater

basins of sizes 480, 1860, and 2370 km2 (results

not yet reported).

6. The computational effort at the forecast time is

small—just seven runs of the hydrologic model

and straightforward numerical calculations. Yet

the predictive probability distribution of the actual

model river stage is (essentially) exact. Thus, the

analytic-numerical BFS is computationally more

efficient (for this particular forecasting problem)

than a Monte Carlo simulation would be if both

methods were to produce the predictive probability

distributions with the same degree of accuracy.

The fast and simple execution makes the BFS well

suited to forecasting rainfloods in headwater

basins.

7. The PRSF can be rapidly updated based on an

updated PQPF between the scheduled forecast

times without the need for rerunning the hydro-

logic model.

8.2.2. Forecast attributes

The Bayesian approach to quantification and

integration of uncertainties bestows upon the PRSF

two general attributes.

1. The PRSF quantifies the total uncertainty that

exists at the forecast time, given all knowledge

embodied in the hydrologic model and all

information utilized by the BFS.

2. The PRSF possesses a self-calibration property:

provided the PQPF is well calibrated, the PRSF is

also well calibrated. Loosely speaking, it means

that in the long run, each exceedance probability of

the river stage specified by the PRSF should verify

as a conditional relative frequency of that stage

being exceeded.

The fact that the total uncertainty comprises

both the precipitation uncertainty and the hydro-

logic uncertainty manifests itself to the user in the

following two situations.

3. When the PQPF specifies zero probability of

precipitation occurrence during the period and

over the basin, so that there is no precipitation

uncertainty, the PRSF still indicates uncertainty

about the river stage; this is the always-present

hydrologic uncertainty.

4. When the PQPF is prepared for period ½t0; t0 þ T�

that is shorter than period ðt0; tn� within which the

PRSF is computed, no presumption of zero

precipitation beyond time t0 þ T fills the gap.

Instead, the PRSF converges to the prior (climatic)

distributions of river stages that reflect all possible

realizations of the precipitation process beyond

time t0 þ T : Consequently, the predictive distri-

butions of river stages beyond time t0 þ T always

convey larger uncertainty than would be the case if

a PQPF specified zero probability of precipitation

occurrence during period ðt0 þ T ; tn�:

9. Closure

The BFS described herein constitutes one of the

many possible operational systems that could be

developed within the Bayesian theory of probabilistic

forecasting via deterministic hydrologic model. The

purpose of this particular BFS is to produce a short-

term PRSF at the outlet of a headwater basin based on

a PQPF. The overall system design offers (i) the

theoretically derived structure for integrating all

uncertainties, (ii) the empirically validated models

for characterizing the component uncertainties, and

(iii) the parsimonious analytic-numerical method of

computation for real-time forecasting.

The theoretically derived structure and the empiri-

cally validated models are essential to advancing the

science of probabilistic forecasting. In particular, they

have enabled us to show that the predictive probability
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density function of a river stage can take many

different and unusual shapes, which are predomi-

nantly asymmetric and bimodal. These shapes are the

outcome of several interacting factors: the intermit-

tence of the precipitation process, the conditional

nonstationarity of the river stage process, the

asymmetry of the densities characterizing the com-

ponent uncertainties, the nonlinearity and the hetero-

scedasticity of the stochastic dependence structures,

and the nonlinearity of the hydrologic model. While

any operational system always involves some degree

of approximation, a good system should necessarily

capture the bulk of these key factors. The Bayesian

theoretic structure helps the modeler to achieve this

goal.
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