
Probabilistic flood forecast: bounds and approximations

Roman Krzysztofowicz*

Department of Systems Engineering and Department of Statistics, University of Virginia, P.O. Box 400747, Charlottesville,

VA 22904-4747, USA

Received 24 July 2001; revised 25 April 2002; accepted 3 May 2002

Abstract

The probabilistic river stage forecast (PRSF) specifies a sequence of exceedance functions { �Cn : n ¼ 1;…;N} such that
�CnðhnÞ ¼ PðHn . hnÞ; where Hn is the river stage at time instance tn, and P stands for probability. The probabilistic flood

forecast (PFF) should specify a sequence of exceedance functions { �Fn : n ¼ 1;…;N} such that �FnðhÞ ¼ PðZn . hÞ; where Zn is

the maximum river stage within time interval ðt0; tn�; practically Zn ¼ max{H1;…;Hn}: In the absence of information about the

stochastic dependence structure of the process {H1;…;HN}; the PFF cannot be derived from the PRSF. This article presents

simple methods for calculating bounds on �Fn and approximations to �Fn using solely the marginal exceedance functions
�C1;…; �Cn: The methods are illustrated with tutorial examples and a case study for a 1430 km2 headwater basin wherein the

PRSF is for a 72-h interval discretized into 6-h steps. q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Forecast purpose

A probabilistic river stage forecast (PRSF) typi-

cally specifies exceedance functions of river stages at

time instances that form the discrete time scale of the

hydrograph (Lardet and Obled, 1994; Krzysztofo-

wicz, 2002). A probabilistic flood forecast (PFF)

should specify exceedance functions of maximum

river stages within time intervals that form a nested

set. The purpose of the PFF is to support flood

warning and response decisions (Krzysztofowicz and

Davis, 1983; Krzysztofowicz, 1993).

In order to rigorously construct a PFF, one would

need a PRSF and a real-time characterization of the

stochastic dependence structure of the river stage

process within the time horizon of the PRSF. Of

course, it is possible to produce such a characteriz-

ation, but it requires a more complex forecasting

system than that producing the PRSF alone.

This article shows how to construct bounds on and

approximations to the PFF from a given PRSF alone.

The construction methods are simple and thus easily

implementable in real-time forecasting. They can be

attached to any forecasting system that produces a

PRSF in the specified format. Herein, these methods

are illustrated in conjunction with the Bayesian

Forecasting System (BFS) that produces a short-

term PRSF for a headwater basin (Krzysztofowicz,

2002).

1.2. Case study

The case study reported throughout the article is
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Fig. 1. A PRSF produced by the BFS: sequence of exceedance functions { �Cn : n ¼ 1;…; 12} of river stages at time instances tn ðn ¼ 1;…; 12Þ; time step Dt ¼ 6 h; counting from

1200 UTC on the forecast day; Eldred, Pennsylvania.
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for the forecast point Eldred, Pennsylvania, located in

the headwater of the Allegheny River and closing a

drainage area of 550 square miles (1430 km2). In the

pilot testing of the BFS, forecasts are produced daily.

The probabilistic quantitative precipitation forecast

(PQPF) is prepared for a 24-h period beginning at

1200 UTC (Universal Time Coordinated), divided

into four 6-h subperiods. The PRSF is prepared based

on the PQPF and other input data available at 1200

UTC. The case study uses real-time input data from

the archives of the National Weather Service (NWS).

The PRSF is produced for 72 h ahead in 6-h steps.

1.3. Overview

Section 2 formally defines the PRSF and the PFF.

Section 3 derives two sets of bounds on the PFF: the

Fréchet bounds which hold without any assumptions,

and tighter bounds which hold under the assumption

of positive quadrant dependence; theoretical argu-

ments and empirical evidence in support of this

assumption for the river stage process are discussed.

Section 4 presents two estimators of the PFF based on

the bounds: a direct linear interpolator (DLI) and a

recursive linear interpolator (RLI); each interpolator

uses the PRSF and a single parameter. Section 5

comprises tutorial examples to help in the under-

standing of the bounds and the estimators. Section 6

reports a case study.

2. Probabilistic forecasts

2.1. Probabilistic river stage forecast

Let t0 denote the forecast time, and let tn ðn ¼

1;…;NÞ denote the time at which the river stage is

forecasted and then observed. The lead time of the

forecast prepared at time t0 for time tn is tn 2 t0. For

simplicity, index n itself will sometimes be referred to

as lead time. Next define

Hn—river stage at time tn; it is a continuous variate

that may take any value above the gauge datum.
�Cn—exceedance function of river stage Hn, such

that for any level h

�CnðhÞ ¼ PðHn . hÞ; ð1Þ

that is, �CnðhÞ is the probability of river stage Hn

exceeding level h at time tn.

The exceedance function �Cn produced by the BFS

is predictive in a Bayesian sense: it quantifies the total

uncertainty about river stage Hn, given all information

utilized by the forecasting system at time t0. For

Fig. 2. Isoprobability time series {hnp : n ¼ 1;…; 12} of quantiles of the river stages having the exceedance probability p ¼ �CnðhnpÞ; for seven

values of p.
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simplicity, the information conditioning the excee-

dance function is not shown. This information

includes observed river stage H0 ¼ h0 at time t0.

Thus �CnðhÞ can also be interpreted as the predictive n-

step transition probability PðHn . hlH0 ¼ h0Þ:
The PRSF is defined henceforth as a sequence of

exceedance functions

{ �Cn : n ¼ 1;…;N}: ð2Þ

Fig. 1 displays a sequence { �Cn : n ¼ 1;…; 12} with a

constant time step Dt ¼ tn 2 tn21 ¼ 6 h: The orien-

tation of the axes, with the river stage on the vertical

axis and the exceedance probability on the horizontal

axis, is the same as in the displays that communicate

the PRSF to decision makers. A partial information

extracted from the exceedance functions is displayed

in a different format in Fig. 2. It shows the

isoprobability time series {hnp : n ¼ 1;…; 12} of

quantiles of the river stages having the exceedance

probability p ¼ �CnðhnpÞ; there are seven time series

corresponding to p ¼ 0:005; 0.05, 0.25, 0.50, 0.75,

0.95, 0.995. Together, Figs. 1 and 2 convey to the

decision maker the evolution of uncertainty in time.

2.2. Probabilistic flood forecast

Whereas the exceedance functions of instan-

taneous river stages H1;…;HN provide information

useful for some decision problems, they do not

provide information needed by a flood warning

system (Krzysztofowicz, 1993). In order to optimally

decide whether or not to issue a flood warning for a

zone of the floodplain, the decision maker needs a

distribution of the maximum river stage within a time

interval. The notion of the time interval is essential for

two reasons. First, it is needed to quantify the total risk

of flooding from a rainfall event (or a portion thereof

that is covered by a probabilistic quantitative

precipitation forecast upon which the PRSF is

based). Second, it is needed to capture the uncertainty

about the timing of the flood crest.

The purpose of the PFF is to provide information

needed by a flood warning system. Toward this end

define

Zn—maximum river stage within time interval

ðt0; tn�; it is a continuous variate which for a

discrete-time river stage process {H1;…;Hn} is

defined as

Zn ¼ max{H1;…;Hn21;Hn}: ð3Þ

�Fn—exceedance function of maximum river stage

Zn, such that for any level h

�FnðhÞ ¼ PðZn . hÞ

¼ 1 2 PðZn # hÞ

¼ 1 2 PðH1 # h;…;Hn21 # h;Hn # hÞ;

ð4Þ

that is, �FnðhÞ is the probability of the maximum river

stage Zn within time interval ðt0; tn� exceeding level h.

Alternatively, it is the probability of at least one

among the n river stages H1;…;Hn exceeding level h.

The PFF is defined henceforth as a sequence of

exceedance functions

{ �Fn : n ¼ 1;…;N}: ð5Þ

The key difference between the PRSF and the PFF

boils down to the time scale: �CnðhÞ is the probability

of the variate Hn exceeding level h at time instance tn;
�FnðhÞ is the probability of the process {H1;…;Hn}

exceeding level h within time interval ðt0; tn�: Given

the PFF, the probability distributions needed for a

flood warning system can readily be obtained (Kelly

and Krzysztofowicz, 1994).

3. Bounds on flood forecast

It is apparent from Eq. (4) that the PFF cannot be

derived from the PRSF because Eqs. (1) and (2) do not

specify the joint distribution of ðH1;…;HnÞ: It turns

out, however, that certain theoretical relations

between marginal probabilities exist and that they

can be exploited to construct (i) bounds on probability
�FnðhÞ and (ii) approximations to probability �FnðhÞ:
Both constructs are obtained solely in terms of

probabilities �C1ðhÞ;…; �CnðhÞ: The objective of this

article is to present these potentially useful results.

3.1. Solution framework

For n ¼ 1; the solution is �F1ðhÞ ¼ �C1ðhÞ: For any
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n $ 2; the solution framework must be based on Eq.

(4), which implies

PðZn # hÞ ¼ PðH1 # h;…;Hn21 # h;Hn # hÞ

¼ PðZn21 # h;Hn # hÞ: ð6Þ

In other words, the event on the left side is equivalent

to two subevents on the right side; symbolically,

{Zn # h} , {Zn21 # h} and {Hn # h}: ð7Þ

We are interested in the complements whose marginal

probabilities are PðZn . hÞ ¼ �FnðhÞ; PðZn21 . hÞ ¼
�Fn21ðhÞ; and PðHn . hÞ ¼ �CnðhÞ:

3.2. Fréchet bounds

Probability theory imposes a coherence condition

that the marginal probabilities of the equivalent events

(7) must satisfy (Krzysztofowicz, 1999). For n ¼ 1;

�F1ðhÞ ¼ �C1ðhÞ; ð8Þ

and for n $ 2

LnðhÞ # �FnðhÞ # UnðhÞ; ð9Þ

where the lower bound and the upper bound are,

respectively,

LnðhÞ ¼ max{ �Fn21ðhÞ; �CnðhÞ}; ð10aÞ

UnðhÞ ¼ min{ �Fn21ðhÞ þ �CnðhÞ; 1}: ð10bÞ

Beginning with L2ðhÞ; U2ðhÞ and initial condition (8),

the recursive substitutions �Fn21ðhÞ ¼ Ln21ðhÞ and
�Fn21ðhÞ ¼ Un21ðhÞ for n ¼ 3; 4;… yield explicit

expressions

LnðhÞ ¼ max{ �C1ðhÞ;…; �CnðhÞ}; ð11aÞ

UnðhÞ ¼ min{ �C1ðhÞ þ · · · þ �CnðhÞ; 1}: ð11bÞ

Bounds of this form are commonly known as the

Fréchet bounds (Fréchet, 1935). These are the most

general bounds as their derivation requires no

assumptions about the process {H1;…;Hn} or its

joint distribution.

3.3. Stochastic dependence

To obtain tighter bounds it is necessary to

characterize the stochastic dependence between the

subevents. The weakest, and therefore most general,

characterization of stochastic dependence between the

subevents rests on the following definition adapted

from Lehmann (1966).

Definition. The subevents are said to be

(i) stochastically independent if and only if

PðHn . hlZn21 . hÞ ¼ PðHn . hÞ; ð12aÞ

(ii) positively quadrant dependent if and only if

PðHn . hlZn21 . hÞ . PðHn . hÞ; ð12bÞ

(iii) negatively quadrant dependent if and only if

PðHn . hlZn21 . hÞ , PðHn . hÞ: ð12cÞ

In positive quadrant dependence, observing an

exceedance of level h within time interval ðt0; tn21�

increases the probability of exceedance at time tn. In

negative quadrant dependence, observing an excee-

dance of level h within time interval ðt0; tn21�

decreases the probability of exceedance at time tn.

An equivalent definition is obtained by replacing

subevents {Zn21 . h} and {Hn . h} in Eqs. (12a)–

(12c) with subevents {Zn21 # h} and {Hn # h};
respectively (Lehmann, 1966, Lemma 1).

To exploit this definition, define for n $ 2

MnðhÞ ¼ �Fn21ðhÞ þ �CnðhÞ2 �Fn21ðhÞ �CnðhÞ: ð13Þ

Then beginning with M2ðhÞ and initial condition (8),

the recursive substitution �Fn21ðhÞ ¼ Mn21ðhÞ for n ¼

3; 4;… yields an explicit expression

MnðhÞ ¼ 1 2
Yn

k¼1

½1 2 �CkðhÞ�: ð14Þ

It is now possible to state the following (Krzysztofo-

wicz, 1999).

Theorem 1. The subevents are

(i) stochastically independent if and only if

�FnðhÞ ¼ MnðhÞ; ð15aÞ

(ii) positively quadrant dependent if and only if
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LnðhÞ # �FnðhÞ , MnðhÞ; ð15bÞ

(iii) negatively quadrant dependent if and only if

MnðhÞ , �FnðhÞ # UnðhÞ: ð15cÞ

Hence, if it were possible to determine the sign of

the stochastic dependence between the subevents,

then the exceedance probability �FnðhÞ could be

bounded according to either Eq. (15b) or Eq. (15c).

These bounds are tighter than the Fréchet bounds (9).

3.4. Dependence sign

Our strategy is to find a logical link between some

familiar properties of the river stage process

{H1;…;HN} and the sign of the stochastic depen-

dence between the subevents.

Theorem 2. If the river stage process {H1;…;HN} is

an independent process, then Eq. (15a) holds for all h.

The proof is immediate: when the left side of Eq.

(15a) is replaced by Eq. (4) and the right side of Eq.

(15a) is replaced by Eq. (14), one obtains the

definition of the independent process.

Theorem 3. If the river stage process {H1;…;HN} is

a Markov process of order one and for each n ðn ¼

2;…;NÞ the variates ðHn21;HnÞ are positively quad-

rant dependent, then Eq. (15b) holds for all h.

The proof is given in Appendix A. Whereas the

hypothesis of the Markov process has been tested and

verified empirically (Krzysztofowicz and Herr, 2001),

the hypothesis of positive quadrant dependence has

not been tested directly to the best of our knowledge.

The following result due to Lehmann (1966, Lemma 3

and Corollary 1) offers a partial recourse.

Theorem 4. If the variates ðHn21;HnÞ are positively

quadrant dependent, then the Pearson’s product-

moment correlation coefficient and the Spearman’s

rank correlation coefficient are both positive.

Inasmuch as the Spearman’s rank correlation

coefficient for each pair ðHn21;HnÞ; on the time step

of 24 h within the time interval of 72 h, has been

found decisively positive (Krzysztofowicz and Herr,

2001), the necessary condition for positive quadrant

dependence has a strong empirical support. It is

therefore plausible to conjecture that the hypotheses

of Theorem 3 are realistic for short-term flood

forecasting. Consequently, among the three cases

covered by Theorem 1, the most plausible is case

(15b).

In summary, for any n $ 2; the exceedance

function �Fn of the maximum river stage within time

interval ðt0; tn� has bounds specified by Eqs. (11a),

(14) and (15b). These bounds are constructed solely in

terms of the exceedance functions �C1;…; �Cn of the

river stages at time instances t1;…; tn:

3.5. Examples

Table 1 shows four examples in which, for a fixed

level h, the stage exceedance probabilities �C1ðhÞ;
�C2ðhÞ; and �C3ðhÞ are transformed into the bounds on

the flood occurrence probabilities �F2ðhÞ and �F3ðhÞ:
For each �FnðhÞ; n ¼ 2; 3, there are three bounds,

LnðhÞ , MnðhÞ , UnðhÞ: The probability intervals

specified by the bounds may be viewed as imprecise

Table 1

Bounds on the flood occurrence probability �FnðhÞ obtained from the

PRSF, and the DLI estimate �Fp
nðhÞ

No. n PRSF Boundsa on �FnðhÞ DLI estimateb

�CnðhÞ LnðhÞ MnðhÞ UnðhÞ �Fp
nðhÞ

I 1 0.1 0.10

2 0.1 0.1 0.19 0.2 0.12

3 0.1 0.1 0.27 0.3 0.14

II 1 0.5 0.50

2 0.5 0.5 0.75 1.0 0.56

3 0.5 0.5 0.88 1.0 0.59

III 1 0.1 0.10

2 0.2 0.2 0.28 0.3 0.22

3 0.6 0.6 0.71 0.9 0.63

IV 1 0.1 0.10

2 0.7 0.7 0.73 0.8 0.71

3 0.2 0.7 0.78 1.0 0.72

a Calculated values of MnðhÞ and �Fp
nðhÞ are rounded off to two

decimal places.
b The weight is v ¼ 0:75:
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measures of uncertainty about flood occurrence within

time interval ðt0; tn�: With the exception of Example

II, the interval ½LnðhÞ;UnðhÞ� specified by the Fréchet

bounds may be tight enough to be useful for some

decisions. The interval ½LnðhÞ;MnðhÞ�; specified by the

bounds under the positive quadrant dependence

hypothesis, is even tighter; it may be tight enough to

be useful for flood warning decisions. Typically, the

optimal warning rule is of the threshold type

(Krzysztofowicz, 1993). Thus if the middle bound

MnðhÞ exceeds the optimal threshold for lead time

tn 2 t0; then taking action is possibly optimal; and if

the lower bound LnðhÞ exceeds the optimal threshold

for lead time tn 2 t0; then taking action is surely

optimal.

4. Approximations to flood forecast

It is tempting to forge an estimator of �Fn using the

bounds. If the bounds are tight (and Table 1 shows

that oftentimes they are) and if some rationale can be

found for �Fn to be closer to one of the bounds, either

Ln or Mn; then a reasonable approximation to �Fn may

exist. Not only it may be useful, but it is certainly

cheap: the calculation of the bounds is a simple task.

4.1. Behavior of bounds

Before constructing an estimator of �Fn; it is

desirable to understand the behavior of �Fn relative

to its bounds Ln and Mn.

First, suppose the time step Dt ¼ tn 2 tn21 is

constant for n ¼ 2;…;N: For an infinitesimal Dt,

variates ðHn;Hn21Þ are extremely positively depen-

dent for all n $ 2; consequently, �Fn tends toward the

lower Fréchet bound Ln. For some large Dt, variates

ðHn21;HnÞ are stochastically independent for all n $

2; consequently, �Fn tends toward the middle bound

Mn:
Second, the PRSF provides a discrete-time

approximation to the continuous-time random hydro-

graph within time interval ðt0; t0 þ L�: Let tN ¼ t0 þ L

and Dt ¼ tn 2 tn21 for n ¼ 2;…;N: When the number

of time steps N is increased, the approximation is

expected to improve. Thus, as N !1; �FN converges

to the exceedance function �F of the maximum of the

continuous-time random hydrograph within time

interval ðt0; t0 þ L�: Ideally, it is �F that one would

want to know. We know only the bounds on �FNðhÞ;
which behave as follows: as N !1; MNðhÞ! 1 and

LNðhÞ! lim max{ �C1ðhÞ;…; �CNðhÞ}; which is a well

defined function of h. If �FN behaved like MN, then the

probability of flood occurrence within time interval

ðt0; t0 þ L� would be increasing with the number of

time steps N, clearly an artifact of the discretization.

Therefore, �FN must behave like LN: as the number of

time steps N increases, �FN must converge to some

fixed though unknown function �F:
Third, suppose the maximum river stage is certain

to occur at time tm, m [ {1;…;N}, and only its

magnitude is uncertain. Then �F ¼ �FN ¼ �Cm and

LN ¼ �Cm; in other words, the lower Fréchet bound

constitutes the solution.

In summary, the exceedance function �Fn departs

from its lower Fréchet bound as the time step Dt

increases and as the degree of uncertainty about the

timing of the miximum river stage increases. Any

approximation to �Fn must behave in this way.

4.2. Direct linear interpolator

The simplest estimator �Fp
n of �Fn from the bounds is

the DLI

�Fp
nðhÞ ¼ vLnðhÞ þ ð1 2 vÞMnðhÞ; ð16Þ

where LnðhÞ is given by Eq. (11a), MnðhÞ is given by

Eq. (14), and v is a weight bounded by 0 , v , 1:
Based on the conclusion of Section 4.1, the weight

depends, in general, on the time step Dt of the PRSF

and the degree of uncertainty about the timing of the

maximum river stage relative to the time instances

t1;…; tN : As an explicit function v ¼ vðDtÞ; the weight

v is a decreasing function of Dt, with vð0Þ ¼ 1 and

vðDtÞ! 0 as Dt increases. In application, v could be

invariant for a given forecast point, hydrologic

season, and Dt.

The last column of Table 1 shows the estimates
�Fp

nðhÞ calculated from bounds LnðhÞ and MnðhÞ

according to Eq. (16).

4.3. Recursive linear interpolator

A more refined estimator �Fp
n of �Fn from the bounds

is the RLI. It is based on recursive equations (10a),

(10b) and (13) and the initial condition (8). The initial
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condition gives

�Fp
1ðhÞ ¼ �C1ðhÞ: ð17Þ

Then proceeding recursively for n ¼ 2;…;N; the one-

step-ahead estimators of the bounds are

Lp
nðhÞ ¼ max �Fp

n21ðhÞ; �CnðhÞ
� �

; ð18aÞ

Mp
nðhÞ ¼ �Fp

n21ðhÞ þ �CnðhÞ2 �Fp
n21ðhÞ �CnðhÞ; ð18bÞ

Up
nðhÞ ¼ min �Fp

n21ðhÞ þ �CnðhÞ; 1
� �

; ð18cÞ

and the estimator of the exceedance probability is

�Fp
nðhÞ ¼ vLp

nðhÞ þ ð1 2 vÞMp
nðhÞ; ð19Þ

where v is a weight bounded by 0 , v , 1: The

weight v has the same general properties that the

weight v in Eq. (16) has, but may have a different

magnitude. In general, v ¼ vðDtÞ with vð0Þ ¼ 1 and

vðDtÞ! 0 as Dt increases. In application, v could be

invariant for a given forecast point, hydrologic

season, and Dt.

Imbedded in the algorithm is a trade-off. On one

hand, the one-step-ahead bounds Lp
n and Mp

n are only

approximate as they depend on the estimate �Fp
n21: On

the other hand, the one-step-ahead bounds Lp
n and Mp

n

are tighter than the overall bounds Ln and Mn for n $

3: Consequently, the linear interpolation (19) has a

greater degree of validity than the linear interpolation

(16).

Table 2 shows two examples of the RLI estimates.

The given stage exceedance probabilities �C1ðhÞ;

�C2ðhÞ; and �C3ðhÞ are the same as those in Table 1,

where the DLI estimates are reported.

There are no differences for n ¼ 1; 2: But for n ¼

3; the one-step-ahead bounds are tighter and the

estimates are somewhat different.

5. Tutorial examples

5.1. Weighting function

Fig. 3 shows a plot of the Spearman’s rank

correlation coefficient r between river stages Hn and

Hn21 as a function of the time step Dt ¼ tn 2 tn21:

Fig. 3. Spearman’s rank correlation coefficient r between river stages Hn and Hn21 as a function of the time step Dt ¼ tn 2 tn21: Values of rðDtÞ

are average estimates for different n, conditional on the occurrence of precipitation in the 24-h period beginning at 1200 UTC on the forecast

day; Eldred, Pennsylvania.

Table 2

One-step-ahead bounds on the flood occurrence probability �FnðhÞ

obtained from the PRSF, and the RLI estimate �Fp
nðhÞ

No. n PRSF One-step-ahead boundsa

on �FnðhÞ

RLI estimateb

�CnðhÞ Lp
nðhÞ Mp

nðhÞ Up
n ðhÞ �Fp

nðhÞ

I 1 0.1 0.10

2 0.1 0.1 0.19 0.2 0.12

3 0.1 0.12 0.21 0.21 0.14

II 1 0.5 0.50

2 0.5 0.5 0.75 1.0 0.56

3 0.5 0.56 0.78 1.0 0.62

a Calculated values of the bounds and the estimate are rounded off

to two decimal places.
b The weight is v ¼ 0:75:
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The smooth function interpolates values of rðDtÞ for

Dt ¼ 6; 12; 24; 48;…; 240 h: For each Dt, the value

rðDtÞ was obtained as an average of estimates for

different n, calculated conditional on the occurrence

of precipitation in the 24-h period beginning at 1200

UTC on the forecast day. Inasmuch as rðDtÞ

conditional on the occurrence of precipitation is

smaller than rðDtÞ conditional on the nonoccurrence

of precipitation, the former is more indicative of the

behavior of the river stage process during a flood

event.

Two observations can be drawn from Fig. 3. First,

the Spearman’s rank correlation coefficient is decisi-

vely positive, which supports the rationale expounded

in Section 3.4 for choosing Mn as the upper bound on
�Fn: Second, the behavior of r in-the-large is similar to

the postulated behavior of the weighting functions v

and v. Hence rðDtÞ; or some monotone transform-

ation thereof, may offer a reasonable value of the

weight.

5.2. Effect of time step

Table 3 reports an example whose purpose is to

support the theoretical considerations in Section 4.1,

in particular (i) the effect of the time step Dt on the

bounds and (ii) the plausibility of the weighting

function v. The example is constructed as follows.

First, the stage exceedance probability �CnðhÞ for n ¼

1;…;N increases linearly with time tn in order to

prevent estimation errors due to the discretization;

such errors occur when the PRSF with large Dt misses

a significant nonlinear (with time) change in the stage

exceedance probabilities specified by the PRSF with

small Dt. Second, the PRSF is for time interval of

48 h. Third, three alternative discretizations of this

time interval are considered, with Dt ¼ 24; 12, 6 h, so

that the number of time steps is N ¼ 2; 4, 8,

respectively. Fourth, the weighting function is chosen

without any optimization as vðDtÞ ¼ ½rðDtÞ�1=2;
where rðDtÞ comes from Fig. 3.

The results support two observations. (i) The lower

bound LNðhÞ is the same regardless of N, whereas the

middle bound MNðhÞ increases with N, as conjectured.

(ii) The estimate �Fp
NðhÞ is nearly identical regardless

of N, which is a desired result. Also, nearly identical

are �Fp
1ðhÞ ¼ 0:20 when Dt ¼ 24; �Fp

2ðhÞ ¼ 0:22 when

Dt ¼ 12; and �Fp
4ðhÞ ¼ 0:23 when Dt ¼ 6; as they

should be. Likewise, practically identical are �Fp
3ðhÞ ¼

0:34 when Dt ¼ 12; and �Fp
6ðhÞ ¼ 0:34 when Dt ¼ 6;

as they should be.

In conclusion, it is possible to select the weighting

function v for the RLI (and also for the DLI) so that

the resultant estimates of the flood occurrence

probabilities behave reasonably and are consistent

regardless of the time step. Of course, one could set up

a formal estimation problem to find an optimal value

of vðDtÞ; but this is done best in the context of a

specific implementation when samples of PRSFs and

actual flood hydrographs are available.

5.3. Effect of partitioning time interval

An ensemble streamflow prediction system tested

by the NWS (Adams et al., 1999) outputs random

realizations of the discrete-time hydrograph at 6-h

steps for 72 h ahead; thus N ¼ 12: Recently, some

analysts proposed to estimate the exceedance func-

tions of the maximum river stages within three

nonoverlapping time intervals ðt0; t4�; ðt4; t8�;
ðt8; t12�: The presumption was that such exceedance

functions constitute a useful flood forecast. According

to the theory presented herein and elsewhere

Table 3

Effect of the time step Dt of the PRSF upon the bounds of the flood

occurrence probability �FnðhÞ and upon the RLI estimate �Fp
nðhÞ

Dt vðDtÞ n tn PRSF Boundsa on �FnðhÞ RLI estimate

�CnðhÞ LnðhÞ MnðhÞ UnðhÞ �Fp
nðhÞ

24 0.57 1 24 0.2 0.20

2 48 0.4 0.4 0.52 0.6 0.45

12 0.75 1 12 0.1 0.10

2 24 0.2 0.2 0.28 0.3 0.22

3 36 0.3 0.3 0.50 0.6 0.34

4 48 0.4 0.4 0.70 1.0 0.45

6 0.80 1 6 0.05 0.05

2 12 0.1 0.1 0.15 0.15 0.11

3 18 0.15 0.15 0.27 0.3 0.17

4 24 0.2 0.2 0.42 0.5 0.23

5 30 0.25 0.25 0.56 0.75 0.28

6 36 0.3 0.3 0.69 1.0 0.34

7 42 0.35 0.35 0.80 1.0 0.39

8 48 0.4 0.4 0.88 1.0 0.45

a Calculated values of MnðhÞ and �Fp
nðhÞ are rounded off to two

decimal places.
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(Krzysztofowicz, 1993), a flood forecast (when

limited to three functions) would consist of the

exceedance functions of the maximum river stages

within three nested time intervals ðt0; t4�; ðt0; t8�;
ðt0; t12�: The following simplified examples contrast

the two schemes and illustrate the pitfall of the

former.

Table 4 shows two examples, each with four time

steps ðN ¼ 4Þ: In Example V, the flood occurrence

probabilities are calculated according to the theory

presented herein. In Example VI, the flood occurrence

probabilities are calculated according to the scheme

wherein the time interval ðt0; t4� is partitioned into two

nonoverlapping subintervals ðt0; t2� and ðt2; t4�:
Clearly, the two forecasts convey very different

information and may create a very different percep-

tion of risk. The first forecast conveys the total

probability of flood occurrence within each of the

successively longer time intervals; this probability

compounds over time as the river stage process

evolves. The second forecast arbitrarily partitions the

river stage process into independent subprocesses;

then the probability of flood occurrence is calculated

independently for each of the subprocesses. Although

the latter probabilities are properly defined, one may

question (i) their usefulness for making rational

decisions about issuing warning or ordering evacua-

tion and (ii) their veracity as measures of the flood risk

for the general public.

In conclusion, the PFF should be defined on a

nested set of time intervals, the longest of which is the

time interval for which the PRSF is available.

6. Case study

6.1. Bounds on PFF

Given the sequence of exceedance functions { �Cn :

n ¼ 1;…; 12} shown in Fig. 1, Eqs. (11a), (14), and

(11b) were used to calculate the sequence of bounds

{Ln;Mn;Un : n ¼ 1;…; 12}; which is displayed in

Fig. 4. Up to n ¼ 4; the three bounds essentially

overlay each other; for n . 4 the bounds define two

regions, each increasing with n. Of primary interest is

the region defined by the lower bound Ln and the

middle bound Mn between which lies the unknown

exceedance function �Fn of the maximum river stage

Zn. It is apparent that the ability to infer the sign of the

stochastic dependence, and therefore to select one of

the two regions, reduces the imprecision with which

the exceedance function �Fn is specified by the bounds.

It is also apparent that the imprecision increases with

lead time. Thus the bounds may be useful for flood

warning decisions with lead times shorter than the

time interval for which the PRSF is available.

The decision maker can use the bounds by

interpreting them as follows: the probability of level

h being exceeded within time interval ðt0; tn� is at least

LnðhÞ and at most MnðhÞ: If LnðhÞ is greater than a

threshold probability for taking action, then it is

optimal to initiate action, and the knowledge of the

exceedance probability �FnðhÞ is redundant.

Fig. 5 depicts the evolution of each bound with

time. Clearly, each bound evolves monotonically as

Ln21 # Ln; Mn21 # Mn; and Un21 # Un for n ¼

2;…; 12: The lower bound Ln reaches its steady

shape at n ¼ 8; the other two bounds, Mn and Un,

continue to evolve until n ¼ 12: Fig. 5 shows them

only up to n ¼ 7 and n ¼ 11; respectively, in order to

avoid blurring of lines.

6.2. Estimate of PFF

The PRSF { �Cn : n ¼ 1;…; 12} shown in Fig. 1 was

Table 4

Example V of the flood occurrence probabilities calculated for time

interval ðt0; t4�; and example VI of the flood occurrence probabil-

ities calculated independently for each of the two nonoverlapping

time subintervals ðt0; t2� and ðt2; t4�

No. n PRSF Boundsa on �FnðhÞ RLI estimateb

�CnðhÞ LnðhÞ MnðhÞ UnðhÞ �Fp
nðhÞ

V 1 0.2 0.20

2 0.7 0.7 0.76 0.9 0.72

3 0.3 0.7 0.83 1.0 0.74

4 0.4 0.7 0.90 1.0 0.76

VI 1 0.2 0.20

2 0.7 0.7 0.76 0.9 0.72

3c 0.3 0.30

4c 0.4 0.4 0.58 0.7 0.45

a Calculated values of MnðhÞ and �Fp
nðhÞ are rounded off to two

decimal places.
b The weight is v ¼ 0:75:
c In the calculation of the bounds and the estimate these times are

treated as n ¼ 1; 2.
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Fig. 4. Bounds on the exceedance function �Fn of the maximum river stage Zn within time interval ðt0; tn� : lower bound Ln, middle bound Mn, and upper bound Un; time step

Dt ¼ 6 h; counting from 1200 UTC on the forecast day; Eldred, Pennsylvania.
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transformed into a PFF { �Fn : n ¼ 1;…; 12} shown in

Fig. 6. Specifically, Fig. 6 shows the estimates �Fp
n

obtained via the RLI with the weight v ¼ 0:8: As

postulated in Section 4.1, the shape of the exceedance

function �Fp
n follows closer the shape of the lower bound

Ln than the shape of the middle bound Mn.

Like the bounds, the exceedance function �Fn

evolves monotonically with time: �Fn21 # �Fn for n ¼

2;…; 12: That is, for any level h, the probability �FnðhÞ

of that level being exceeded within time interval

ðt0; tn� is a nondecreasing function of time tn. This

property is vivid in Fig. 7. It shows the isoprobability

time series {znp : n ¼ 1;…; 12} of quantiles of the

maximum river stages having the exceedance prob-

ability p ¼ �Fp
nðznpÞ; there are seven time series

corresponding to p ¼ 0:005; 0.05, 0.25, 0.50, 0.75,

0.95, 0.995. As can be seen in Fig. 7, zn21;p # znp for

n ¼ 2;…; 12 and for each p.

6.3. Distribution of time to flooding

Information derivable from the PFF and useful for

flood warning decisions is the distribution of the time

to flooding. Let TðhÞ—time instance at which river

stage process {H1;…;HN} exceeds level h for the first

time; it is a discrete variate taking values in the set

{t1;…; tN}: When t0 ¼ 0; variate TðhÞ is a discrete

measure (an approximation) of the time to flooding

level h, measured from the forecast time t0.

The distribution function of the time to flooding

TðhÞ is defined by

PðTðhÞ # tnÞ ¼ �FnðhÞ; ð20Þ

that is, �FnðhÞ is the probability of the time to flooding

TðhÞ being tn or shorter (Karlin and Taylor, 1975).

Using the RLI estimates �Fp
nðhÞ of �FnðhÞ shown in

Fig. 6, the distribution function of TðhÞ is plotted in

Fig. 8 for h ¼ 10; 14, 18 ft. The plot informs the

decision maker about the temporal evolution of the

risk of flooding for a zone of the floodplain extending

upward from level h. It is the most relevant display for

flood warning decisions: it conveys the trade-off

between the flood risk and lead time for a given zone

of the floodplain. (Yet such a display cannot be

produced based on forecasts which arbitrarily par-

tition the time scale into nonoverlapping time

intervals, as detailed in Section 5.3.)

Fig. 5. Evolution of (a) lower bound Ln with n ðn ¼ 2;…; 7Þ; (b)

middle bound Mn with n ðn ¼ 2;…; 11Þ; and (c) upper bound Un

with n ðn ¼ 2;…; 11Þ:
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Fig. 6. A PFF produced from the PRSF via the RLI estimator: sequence of exceedance functions { �Fn : n ¼ 1;…; 12} of maximum river stages within time intervals ðt0; tn�

ðn ¼ 1;…; 12Þ; time step Dt ¼ 6 h; counting from 1200 UTC on the forecast day; Eldred, Pennsylvania.
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7. Closure

A PFF is needed to support flood warning and

response decisions. Given a PRSF, it is possible to

construct bounds on and estimators of the PFF. The

Fréchet bounds hold without any assumptions; the

tighter bounds hold under the assumption of positive

quadrant dependence, which is likely to be satisfied by

probabilistic forecasts of river stage processes. The

tighter bounds are used to construct two simple

estimators of the PFF. Each of the estimators requires

a single parameter. An analysis of the behavior of the

bounds suggests that the value of this parameter could

be invariant for a given forecast point, hydrologic

season, and time step.

The simplicity of the construction methods makes

Fig. 7. Isoprobability time series {znp : n ¼ 1;…; 12} of quantiles of the maximum river stages having the exceedance probability p ¼ �Fp
nðznpÞ;

for seven values of p; �Fp
n is the RLI estimate of the exceedance function �Fn:

Fig. 8. Distribution function {PðTðhÞ # tnÞ ¼ �Fp
nðhÞ : n ¼ 1;…; 12} of the time to flooding TðhÞ; counting from 1200 UTC on the forecast day,

for three levels h ¼ 10; 14, 18 ft; �Fp
n is the RLI estimate of the exceedance function �Fn; Eldred, Pennsylvania.
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them potentially attractive for real-time forecasting.

Essentially, an approximate PFF can be constructed

from the PRSF at no additional cost. Whereas the

bounds have theoretical justification, the estimators

have to be validated experimentally for each

application.
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Appendix A. Proof of Theorem 3

The hypotheses of the theorem can be stated

formally as follows. (i) The process {H1;…;HN} is

Markov of order one if and only if

PðH1 # h1;…;HN # hNÞ ¼
YN

k¼2

PðHk # hklHk21

# hk21ÞPðH1 # h1Þ ðA1Þ

for all h1;…; hN : (ii) For each n ðn ¼ 2;…;NÞ the

variates ðHn21;HnÞ are positively quadrant dependent

if and only if

PðHn # hnlHn21 # hn21Þ . PðHn # hnÞ ðA2Þ

for all hn; hn21:
It suffices to show that the above two hypotheses

imply that for any n ðn ¼ 2;…;NÞ and all h, the

subevents {Zn21 # h} and {Hn # h} are positively

quadrant dependent. Beginning with Eq. (6) and

making use of Eq. (A1) gives

PðZn21 # h;Hn # hÞ ¼ PðH1 # h;…;Hn # hÞ

¼
Yn

k¼2

PðHk # hlHk21 # hÞPðH1 # hÞ

¼ PðHn # hlHn21 # hÞPðH1 # h;…;Hn21 # hÞ

¼ PðHn # hlHn21 # hÞPðZn21 # hÞ: ðA3Þ

Now making use of Eq. (A2) on the right side gives

PðZn21 # h;Hn # hÞ . PðHn # hÞPðZn21 # hÞ;

ðA4Þ

which when divided by PðZn21 # hÞ yields

PðHn # hlZn21 # hÞ . PðHn # hÞ: ðA5Þ

By Lemma 1 in Lehmann (1966), this is equivalent to

Eq. (12b).
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